Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Plants 50% Aqueous Ethanolic Extracts
2.3. Preparation of Gel Formulation
2.4. High Performance Liquid Chromatography Analysis
2.5. Cells and Viruses
2.6. Cytotoxicity Assay
2.7. Anti-viral Activity of the Gel Formulation
2.7.1. Anti-HIV-1 Activity of the Gel Formulation
2.7.2. Anti-HSV-2 Activity of the Gel Formulation
HSV-2 Virucidal Assay
HSV-2 Attachment and Penetration Assay
Post-infection anti-HSV-2 Activity of Gel Formulation
2.8. Safety Studies of Gel Formulation
2.8.1. Cytotoxicity of Gel Formulation on Lactobacilli
2.8.2. Epithelial Layer Integrity Resistance Assay
2.8.3. Pro-inflammatory Cytokines Assay
2.8.4. Mutagenic Effect of the Gel Formulation
2.9. Statistical Analysis
3. Results
3.1. Gel Formulation Has Potent anti-HIV-1 and HSV-2 Activities
Direct HSV-2 Virucidal Activity of 3 Additional Different Batches of Gel Formulation
3.2. Efficacy of the Gel Formulation on HSV-2 Attachment and Penetration to the Vero Cells
3.3. Gel Formulation was Less Effective as Compared to Acyclovir in Reducing HSV-2 Replication in Post-Infection Assay
3.4. Gel Formulation Has No Adverse Effect on the Survival of Vaginal Lactobacilli and Integrity of Epithelial Monolayer
3.5. Gel Formulation Does Not Lead to Any Significant Increase in the Secretion of Pro-inflammatory Cytokines
3.6. Gel Formulation Does not Show any Significant Increase in Mutagenic Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wasserheit, J.N. Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex. Transm. Dis. 1992, 19, 61–77. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Sarkar, S.; Chattopadhyay, D.; Bhattacharya, S.; Biswas, R.; SenGupta, M. Seroprevalence of herpes simplex virus infection in HIV co-infected individuals in eastern India with risk factor analysis. Adv. Virol. 2015, 2015, 537939. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R.J.; Roizman, B. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef]
- Gopal, M.G.; Shannoma; Sharath Kumar, B.C.; Ramesh, M.; Nandini, A.S.; Manjunath, N.C. A comparative study to evaluate the efficacy and safety of acyclovir and famciclovir in the management of herpes zoster. J. Clin. Diagn. Res. 2013, 7, 2904–2907. [Google Scholar] [PubMed]
- Bonnar, P.E. Suppressive valacyclovir therapy to reduce genital herpes transmission: Good public health policy? Mcgill J. Med. 2009, 12, 39–46. [Google Scholar]
- Simpson, D.; Lyseng-Williamson, K.A. Famciclovir: A review of its use in herpes zoster and genital and orolabial herpes. Drugs 2006, 66, 2397–2416. [Google Scholar] [CrossRef] [PubMed]
- Haefeli, W.E.; Schoenenberger, R.A.; Weiss, P.; Ritz, R.F. Acyclovir-induced neurotoxicity: Concentration-side effect relationship in acyclovir overdose. Am. J. Med. 1993, 94, 212–215. [Google Scholar] [CrossRef]
- Durglishvili, N.; Shishniashvili, D.; Kvirkvelia, V. Evaluation of safety and efficacy of prolonged suppressive therapy of genital herpes with valacyclovir. Georgian Med. News. 2009, 172–173, 47–49. [Google Scholar]
- Arndt, K.A. Adverse reactions to acyclovir: Topical, oral, and intravenous. J. Am. Acad. Dermatol. 1988, 18, 188–190. [Google Scholar] [CrossRef]
- Kang, S.H.; Chua-Gocheco, A.; Bozzo, P.; Einarson, A. Safety of antiviral medication for the treatment of herpes during pregnancy. Can. Fam. Phys. 2011, 57, 427–428. [Google Scholar]
- Pottage, J.C., Jr.; Kessler, H.A. Herpes simplex virus resistance to acyclovir: Clinical relevance. Infect. Agents Dis. 1995, 4, 115–124. [Google Scholar] [PubMed]
- Jiang, Y.C.; Feng, H.; Lin, Y.C.; Guo, X.R. New strategies against drug resistance to herpes simplex virus. Int. J. Oral Sci. 2016, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, S.K.; Kuchta, R.D. The DNA helicase–primase complex as a target for herpes viral infection. Expert Opin. Ther. Targets 2013, 17, 1119–1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsumata, K.; Weinberg, A.; Chono, K.; Takakura, S.; Kontani, T.; Suzuki, H. Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob. Agents Chemother. 2012, 56, 3587–3591. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, K.; Chono, K.; Kato, K.; Ohtsu, Y.; Takakura, S.; Kontani, T.; Suzuki, H. Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection. Antimicrob. Agents Chemother. 2013, 57, 1339–1346. [Google Scholar] [CrossRef] [PubMed]
- Astellas, A. Phase 1, Randomized, Double-Blind, Multiple Doses, Multi-Center Study to Compare the Safety of ASP2151 to Valacylcovir and Placebo in Healthy Male and Female Subjects. Available online: http://ichgcp.net/clinical-trials-registry/NCT00870441 (accessed on 21 January 2013).
- Zhong, M.G.; Xiang, Y.F.; Qiu, X.X.; Liu, Z.; Kitazato, K.; Wang, Y.F. Natural products as a source of anti-herpes simplex virus agents. RSC Adv. 2013, 3, 313–328. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Tarallo, R.; Russo, L.; Galdiero, E.; Cantisani, M.; Morelli, G.; Galdiero, M. Peptide inhibitors against herpes simplex virus infections. J. Pept. Sci. 2013, 19, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Lin, T.C.; Yang, C.M.; Wang, K.C.; Lin, L.T.; Lin, C.C. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J. Antimicrob. Chemother. 2004, 53, 577–583. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A.; Adams, S.D.; Lee, L.H.; Murray, S.R.; Hsu, S.D.; Hammond, J.R.; Dickinson, D.; Chen, P.; Chu, T.C. Inhibition of herpes Simplex Virus type 1 with the modified green tea polyphenol palmitoyl-epigallo catechin gallate. Food Chem. Toxicol. 2013, 52, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Modi, M.; Dezzutti, C.S.; Kulshreshtha, S.; Rawat, A.K.S.; Srivastava, S.K.; Malhotra, S.; Verma, A.; Ranga, U.; Gupta, S.K. Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol. J. 2013, 10, 309. [Google Scholar]
- Nutan, M.M.; Goel, T.; Das, T.; Malik, S.; Suri, S.; Rawat, A.K.S.; Srivastava, S.K.; Tuli, R.; Malhotra, S.; Gupta, S.K. Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity. Indian J. Med. Res. 2013, 137, 540–548. [Google Scholar]
- Mao, X.; Wu, L.F.; Guo, H.L.; Chen, W.J.; Cui, Y.P.; Qi, Q.; Li, S.; Liang, W.Y.; Yang, G.H.; Shao, Y.Y.; et al. The genus Phyllanthus: An ethnopharmacological, phytochemical, and pharmacological review. Evid. Based Complement. Altern. Med. 2016, 2016, 7584952. [Google Scholar] [CrossRef] [PubMed]
- El-Mekkawy, S.; Meselhy, M.R.; Kusumoto, I.T.; Kadota, S.; Hattori, M.; Namba, T. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem. Pharm. Bull. 1995, 43, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, A.; Polachira, S.K.; Nair, R.; Agarwal, A.; Mishra, N.N.; Gupta, S.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement Altern. Med. 2017, 17, 110. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Korta, E.; Barranco, A.; Berrueta, L.A.; Gallo, B.; Vicente, F. Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction. J. Agric. Food Chem. 2001, 49, 3761–3767. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Kumar, A.; Ali, J. Formulation development, optimization and evaluation of aloe vera gel for wound healing. Pharmacognosy 2013, 9 (Suppl. S1), S6–S10. [Google Scholar]
- Pear, W.S.; Nolan, G.P.; Scott, M.L.; Baltimore, D. Production of high-titer helper free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 1993, 90, 8392–8396. [Google Scholar] [CrossRef] [PubMed]
- Blaho, J.A.; Morton, E.R.; Yedowitz, J.C. Herpes simplex virus: Propagation quantification, and storage. Curr. Protoc. Microbiol. 2005. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Polonis, V.R.; Brown, B.K.; Rosa Borges, A.; Zolla-Pazner, S.; Dimitrov, D.S.; Zhang, M.Y.; Barnett, S.W.; Ruprecht, R.M.; Scarlatti, G.; Fenyö, E.M.; et al. Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation of the antibody response to infection and vaccination. Virology 2008, 375, 315–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenyo, E.M.; Heath, A.; Dispinseri, S.; Holmes, H.; Lusso, P.; Zolla-Pazner, S.; Donners, H.; Heyndrickx, L.; Alcami, J.; Bongertz, V.; et al. International network for comparison of HIV neutralization assay: The NeutNet report. PLoS ONE 2009, 4, e4505. [Google Scholar] [CrossRef] [PubMed]
- Shigeta, S.; Mori, S.; Baba, M.; Ito, M.; Honzumi, K.; Nakamura, K. Antiviral activities of ribavirin, 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide, and 6′-(R)-6′ C methylneplanocin A against several ortho- and paramyxoviruses. Antimicrob. Agents Chemother. 1992, 36, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Comparison of a photometric method with standardized methods of antifungal susceptibility testing of yeasts. J. Clin. Microbiol. 1997, 35, 2878–2882. [Google Scholar] [PubMed]
- Modi, M.; Pancholi, B.; Kulshrestha, S.; Rawat, A.K.; Malhotra, S.; Gupta, S.K. Anti-HIV-1 activity, protease inhibition and safety profile of extracts prepared from Rhus parviflora. BMC Complement. Altern. Med. 2013, 13, 158. [Google Scholar] [CrossRef] [PubMed]
- Fichorova, R.N.; Rheinwald, J.G.; Anderson, D.J. Generation of papilloma virus-immortalized cell lines from normal human ectocervical, endocervical and vaginal epithelium that maintain expression of tissue specific differentiation proteins. Biol. Reprod. 1997, 57, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Alexandre, K.B.; Mufhandu, H.T.; London, G.M.; Chakauya, E.; Khati, M. Progress and perspectives on HIV-1 microbicide development. Virology 2016, 497, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Fichorova, R.N. Guiding the vaginal microbicide trials with biomarkers of inflammation. J. Acquir. Immune Defic. Syndr. 2004, 37 (Suppl. S3), S184–S193. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S. Sexually transmitted diseases enhance HIV transmission: No longer a hypothesis. Lancet 1998, 351, 5–7. [Google Scholar] [CrossRef]
- Corey, L.; Handsfield, H.H. Genital herpes and public health: Addressing a global problem. JAMA 2000, 283, 791–794. [Google Scholar] [CrossRef] [PubMed]
- Bhabani, S.N.; Prasant, K.R.; Udaya, K.N.; Benoy, B.B. Development and characterization of bioadhesive gel of microencapsulated metronidazole for vaginal use. Iran. J. Pharm. Res. 2010, 9, 209–219. [Google Scholar]
- Zeitlin, L.; Hoen, T.E.; Achilles, S.L.; Hegarty, T.A.; Jerse, A.E.; Kreider, J.W.; Olmsted, S.S.; Whaley, K.J.; Cone, R.A.; Moench, T.R. Tests of BufferGel for contraception and prevention of sexually transmitted diseases in animal models. Sex. Transm. Dis. 2001, 28, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Turakka, L.; Ojanen, T.; Henell, U.; Karjalainen, A. Parabens as antimicrobial preservatives in creams. Pharmazie 1988, 43, 701–703. [Google Scholar] [PubMed]
- Fiume, M.M.; Heldreth, B.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D. Safety assessment of triethanolamine and triethanolamine-containing ingredients as used in cosmetics. Int. J. Toxicol. 2013, 32 (Suppl. S3), S59–S83. [Google Scholar] [CrossRef] [PubMed]
- Lessmann, H.; Uter, W.; Schnuch, A.; Geier, J. Skin sensitizing properties of the ethanolamines mono-, di-, and triethanolamine. Data analysis of a multicentre surveillance network (IVDK) and review of the literature. Contact Dermat. 2009, 60, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Stout, E.I.; McKessor, A. Glycerin-based hydrogel for infection control. Adv. Wound Care. 2012, 1, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Lodén, M.; Wessman, W. The influence of a cream containing 20% glycerin and its vehicle on skin barrier properties. Int. J. Cosmet. Sci. 2001, 23, 115–159. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Dell’Agli, M.; Sangiovanni, E.; Dos Santos, A.; Uberti, F.; Moro, E.; Bosisio, E.; Restani, P. Correlation between catechin content and NF-κB inhibition by infusions of green and black tea. Plant Foods Hum. Nutr. 2013, 68, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Haneda, E.; Furuya, T.; Asai, S.; Morikawa, Y.; Ohtsuki, K. Biochemical characterization of casein kinase II as a protein kinase responsible for stimulation of HIV-1 protease in vitro. Biochem. Biophys. Res. Commun. 2000, 275, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Kurapati, K.R.; Atluri, V.S.; Samikkannu, T.; Garcia, G.; Nair, M.P. Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Front. Microbiol. 2016, 6, 1444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Sun, Q.; Marques, M.; Witcher, M. Anticancer properties of Phyllanthus emblica (Indian Gooseberry). Oxid. Med. Cell. Longev. 2015, 2015, 950890. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Yuan, J.R.; Wang, C.F.; Yang, N.; Chen, J.; Liu, D.; Song, J.; Feng, L.; Tan, X.B.; Jia, X.B. Anti-inflammatory effects of Phyllanthus emblica L on benzopyrene-induced precancerous lung lesion by regulating the IL-1β/miR-101/Lin28B signaling pathway. Integr. Cancer Ther. 2017, 16, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Pei, Y.; Qu, C.; Lai, Z.; Ren, Z.; Yang, K.; Xiong, S.; Zhang, Y.; Yang, C.; Wang, D.; et al. In vitro anti-herpes simplex virus activity of 1,2,4,6-tetra-O-galloyl-β-d-glucose from Phyllanthus emblica L. (Euphorbiaceae). Phytother. Res. 2011, 25, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Lin, C.C.; Lin, T.C. Antiherpes simplex virus type 2 activity of casuarinin from the bark of Terminalia arjuna Linn. Antiviral. Res. 2002, 55, 447–455. [Google Scholar] [CrossRef]
- Lin, L.T.; Chen, T.Y.; Chung, C.Y.; Noyce, R.S.; Grindley, T.B.; McCormick, C.; Lin, T.C.; Wang, G.H.; Lin, C.C.; Richardson, C.D. Hydrolyzable tannins (chebulagic acid and punicalagin) target viral glycoprotein-glycosaminoglycan interactions to inhibit herpes simplex virus 1 entry and cell-to-cell spread. J. Virol. 2011, 85, 4386–4398. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.T.; Chen, T.Y.; Chung, C.Y.; Lin, T.C.; Wang, G.H.; Anderson, R.; Lin, C.C.; Richardson, C.D. Broad-spectrum antiviral activity of chebulagic acid and punicalagin against viruses that use glycosaminoglycans for entry. BMC Microbiol. 2013, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Vashishtha, A.K.; Kuchta, R.D. Effects of Acyclovir, Foscarnet and ribonucleotides on herpes simplex virus-1 DNA polymerase: Mechanistic insights and a novel mechanism for preventing stable incorporation of ribonucleotides into DNA. Biochemistry 2016, 55, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Gnann, J.W., Jr.; Barton, N.H.; Whitley, R.J. Acyclovir: Mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 1983, 3, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Dover, S.E.; Aroutcheva, A.A.; Faro, S.; Chikindas, M.L. Natural antimicrobials and their role in vaginal health: A short review. Int. J. Probiotics Prebiotics. 2008, 3, 219–230. [Google Scholar] [PubMed]
- Hervert-Hernández, D.; Pintado, C.; Rotger, R.; Goñi, I. Stimulatory role of grape pomace polyphenols on Lactobacillus acidophilus growth. Int. J. Food Microbiol. 2009, 136, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Alberto, M.R.; Farías, M.E.; Manca De Nadra, M.C. Effect of gallic acid and catechin on Lactobacillus hilgardii 5w growth and metabolism of organic compounds. J. Agric. Food. Chem. 2001, 49, 4359–4363. [Google Scholar] [CrossRef] [PubMed]
- Stafford, M.K.; Ward, H.; Flanagan, A.; Rosenstein, I.J.; Taylor-Robinson, D.; Smith, J.R.; Weber, J.; Kitchen, V.S. Safety study of nonoxynol-9 as a vaginal microbicide: Evidence of adverse effects. J. Acquir. Immune Defic. Syndr. 1998, 17, 327–331. [Google Scholar] [CrossRef]
- Fichorova, R.N.; Zhou, F.; Ratnam, V.; Atanassova, V.; Jiang, S.; Strick, N.; Neurath, A.R. Anti-human immunodeficiency virus Type 1 microbicide cellulose acetate 1,2-benzenedicarboxylate in a human in vitro model of vaginal inflammation. Antimicrob. Agents Chemother. 2005, 49, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Poli, G.; Bressler, P.; Kinter, A.; Duh, E.; Timmer, W.C.; Rabson, A.; Justement, J.S.; Stanley, S.; Fauci, A.S. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J. Exp. Med. 1990, 172, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narimatsu, R.; Wolday, D.; Patterson, B.K. IL-8 increases transmission of HIV type 1 in cervical explant tissue. AIDS Res. Hum. Retroviruses 2005, 21, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Burnett, B.P.; Jia, Q.; Zhao, Y.; Levy, R.M. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J. Med. Food. 2007, 10, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Halder, B.; Pramanick, S.; Mukhopadhyay, S.; Giri, A.K. Inhibition of benzo[a]pyrene induced mutagenicity and genotoxicity by black tea polyphenols the aflavins and the arubigins in multiple test systems. Food Chem. Toxicol. 2005, 43, 591–597. [Google Scholar] [CrossRef] [PubMed]
Extracts/Formulation | Cytotoxicity Using Vero Cells a CC50 ± SEM (μg/mL) b | HSV-2 Virucidal Activity a IC50 ± SEM (μg/mL) c |
---|---|---|
Phyllanthus emblica (Fruit) | 307.63 ± 20.10 | 2.48 ± 0.86 |
Terminalia chebula (Fruit) | 409.71 ± 47.70 | 0.01 ± 0.0002 |
Acacea catechu (Heart wood) | 395.35 ± 66.85 | 0.02 ± 0.001 |
Lagerstroemia speciosa (Leaf) | 1269.10 ± 47.78 | 0.44 ± 0.17 |
Gel Formulation | 3179.20 ± 116.60 | 27.26 ± 4.87 |
Gel Base | 13512.00 ± 231.28 | NS d |
Acyclovir | 449.03 ± 148.03 | 124.50 ± 6.05 |
Formulation Batches | Virucidal Activity of Gel Formulations IC50 ± SEM (μg/mL) a | |
---|---|---|
Anti-HSV-2 | Anti-HIV-1 | |
Gel Formulation (I batch) | 30.68 ± 5.5 (p = 0.15) b | 58.37 ± 4.9 (p = 0.78) b |
Gel Formulation (II batch) | 25.72 ± 5.2 (p = 0.64) c | 59.93 ± 2.7 (p = 0.56) c |
Gel Formulation (III batch) | 24.49 ± 4.0 (p = 0.09) d | 56.92 ± 4.6 (p = 0.80) d |
Cytokines | Concentration of Cytokines (pg/mL) Secreted by Vk2/E6E7 Cells Treated with | ||
---|---|---|---|
Gel Formulation a (1 mg/mL) | Gel Base a (1 mg/mL) | Cell Control a | |
Human IL-1β | 12.06 ± 0.5 | 7.28 ± 0.5 | 7.33 ± 0.5 |
Human IL-6 | 574.74 ± 26.7 (p = 0.02) c | 534.36 ± 19.3 | 754.43 ± 1.9 |
Human IL-8 | 318.70 ± 11.0 (p = 0.004) c | 451.68 ± 12.1 | 559.63 ± 11.1 |
Human IL-10 | 0.30 ± 0.1 | ND b | 0.10 ± 0.1 |
Human IL-12p70 | 0.26 ± 0.3 | ND b | 0.26 ± 0.3 |
Human TNF | 15.12 ± 1.8 | 5.80 ± 2.5 | 11.23 ± 1.1 |
Treatment | Dose (μg/mL) | TA-100 (Number of Revertants/Plate) | TA-98 (Number of Revertants/Plate) | Mutagenic Index a | |
---|---|---|---|---|---|
TA-100 | TA-98 | ||||
Gel Formulation | 1000 | 137 ± 4.2 | 79 ± 2.0 | 0.98 | 1.16 |
Gel Base | 1000 | 142.67 ± 8.7 | 68 ± 0.0 | 1.02 | 1.00 |
Cell control | Only medium | 139.33 ± 8.6 | 68 ± 2.0 | - | - |
Sodium azide | 5 μg/plate | 426 ± 30.8 (p = 0.0008) b | - | 3.06 | - |
4-nitro-o-phenylenediamine | 5 μg/plate | - | 182 ± 26 (p = 0.04) b | - | 2.67 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, N.N.; Kesharwani, A.; Agarwal, A.; Polachira, S.K.; Nair, R.; Gupta, S.K. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses 2018, 10, 580. https://doi.org/10.3390/v10110580
Mishra NN, Kesharwani A, Agarwal A, Polachira SK, Nair R, Gupta SK. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses. 2018; 10(11):580. https://doi.org/10.3390/v10110580
Chicago/Turabian StyleMishra, Nripendra Nath, Ajay Kesharwani, Aakanksha Agarwal, Suja Kizhiyedath Polachira, Reshmi Nair, and Satish Kumar Gupta. 2018. "Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection" Viruses 10, no. 11: 580. https://doi.org/10.3390/v10110580
APA StyleMishra, N. N., Kesharwani, A., Agarwal, A., Polachira, S. K., Nair, R., & Gupta, S. K. (2018). Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses, 10(11), 580. https://doi.org/10.3390/v10110580