Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus
Abstract
:1. Introduction
2. Methods
2.1. Ethics Statement
2.2. Clinical Scoring System and Euthanasia Criteria
2.3. Cells and Virus
2.4. Determination of Viral Particle Concentration
2.5. Determination of Viral Titers
2.6. Deep Sequencing and Sample Preparation
2.7. Experimental Inoculation of Macaca fascicularis
2.8. Hematology, Coagulation, and Blood Chemistry
2.9. Statistics
3. Results
3.1. Survival
3.2. Viremia
3.3. Clinical Pathology
3.4. Anatomical Pathology
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feldmann, H.; Sanchez, A.; Geisbert, T.W. Filoviridae: Marburg and Ebola viruses. In Fields Virology, 6th ed.; Wolters Kluwer Health Adis (ESP): London, UK, 2013. [Google Scholar]
- Centers for Disease Control and Prevention. Outbreaks Chronology: Ebola Virus Disease. Available online: https://stacks.cdc.gov/view/cdc/41088/cdc_41088_DS1.pdf (accessed on 18 January 2018).
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Keïta, S.; de Clerck, H.; et al. Emergence of Zaire Ebola virus disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- International Commission. Ebola haemorrhagic fever in Zaire, 1976. Bull. World Health Organ. 1978, 56, 271–293. [Google Scholar]
- Osterholm, M.T.; Moore, K.A.; Kelley, N.S.; Brosseau, L.M.; Wong, G.; Murphy, F.A.; Peters, C.J.; LeDuc, J.W.; Russell, P.K.; van Herp, M.; et al. Transmission of Ebola viruses: What we know and what we do not know. MBio 2015, 6, e00137. [Google Scholar] [CrossRef] [PubMed]
- Judson, S.; Prescott, J.; Munster, V. Understanding ebola virus transmission. Viruses 2015, 7, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Borio, L.; Inglesby, T.; Peters, C.J.; Schmaljohn, A.L.; Hughes, J.M.; Jahrling, P.B.; Ksiazek, T.; Johnson, K.M.; Meyerhoff, A.; O’Toole, T.; et al. Hemorrhagic fever viruses as biological weapons: Medical and public health management. JAMA 2002, 287, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, A.A.; Barnes, M.; Macintyre, C.R. Persistence of Ebola virus in various body fluids during convalescence: Evidence and implications for disease transmission and control. Epidemiol. Infect. 2016, 144, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, C.R.; Chughtai, A.A. Recurrence and reinfection—A new paradigm for the management of Ebola virus disease. Int. J. Infect. Dis. 2016, 43, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Trappier, S.G.; Mahy, B.W.; Peters, C.J.; Nichol, S.T. The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc. Natl. Acad. Sci. USA 1996, 93, 3602–3607. [Google Scholar] [CrossRef] [PubMed]
- Volchkova, V.A.; Dolnik, O.; Martinez, M.J.; Reynard, O.; Volchkov, V.E. Genomic RNA Editing and Its Impact on Ebola Virus Adaptation During Serial Passages in Cell Culture and Infection of Guinea Pigs. J. Infect. Dis. 2011, 204, S941–S946. [Google Scholar] [CrossRef] [PubMed]
- Kugelman, J.R.; Lee, M.S.; Rossi, C.A.; McCarthy, S.E.; Radoshitzky, S.R.; Dye, J.M.; Hensley, L.E.; Honko, A.; Kuhn, J.H.; Jahrling, P.B.; et al. Ebola virus genome plasticity as a marker of its passaging history: A comparison of in vitro passaging to non-human primate infection. PLoS ONE 2012, 7, e50316. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Menzie, H.; Patterson, J.L.; Carrion, R.; Griffiths, A. Genetic Changes at the Glycoprotein Editing Site Associated With Serial Passage of Sudan Virus. J. Infect. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Trefry, J.C.; Wollen, S.E.; Nasar, F.; Shamblin, J.D.; Kern, S.J.; Bearss, J.J.; Jefferson, M.A.; Chance, T.B.; Kugelman, J.R.; Ladner, J.T.; et al. Ebola Virus Infections in Nonhuman Primates Are Temporally Influenced by Glycoprotein Poly-U Editing Site Populations in the Exposure Material. Viruses 2015, 7, 6739–6754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Staples, H.; Nunneley, J.W.; Ticer, A.; Dick, E.J.; Owston, M.A.; Reed, C.; Patterson, J.L.; et al. Particle-to-PFU ratio of Ebola virus influences disease course and survival in cynomolgus macaques. J. Virol. 2015, 89, 6773–6781. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Avena, L.E.; Delgado, J.; Beadles, M.W.; Patterson, J.L.; Carrion, R.; Griffiths, A. A Single Amino Acid Change in the Marburg Virus Glycoprotein Arises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease. mSphere 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.; Davis, K.; Geisbert, T.; Schmaljohn, C.; Huggins, J. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 1998, 178, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, N.J.; Geisbert, T.W.; Geisbert, J.B.; Xu, L.; Yang, Z.-Y.; Roederer, M.; Koup, R.A.; Jahrling, P.B.; Nabel, G.J. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 2003, 424, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Mire, C.E.; Geisbert, J.B.; Agans, K.N.; Deer, D.J.; Fenton, K.A.; Geisbert, T.W. Oral and Conjunctival Exposure of Nonhuman Primates to Low Doses of Ebola Makona Virus. J. Infect. Dis. 2016, 214, S263–S267. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Shurtleff, A.; Biggins, J.; Keeney, A.; Zumbrun, E.; Bloomfield, H.; Kuehne, A.; Audet, J.; Alfson, K.; Griffiths, A.; Olinger, G.; et al. Standardization of the Filovirus Plaque Assay for Use in Preclinical Studies. Viruses 2012, 4, 3511–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfson, K.J.; Beadles, M.W.; Griffiths, A. A new approach to determining whole viral genomic sequences including termini using a single deep sequencing run. J. Virol. Methods 2014, 208, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.; Qiu, X.; de La Vega, M.-A.; Fernando, L.; Wei, H.; Bello, A.; Fausther-Bovendo, H.; Audet, J.; Kroeker, A.; Kozak, R.; et al. Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques. J. Infect. Dis. 2016, 214, S281–S289. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Avena, L.E.; Worwa, G.; Carrion, R.; Griffiths, A. Development of a Lethal Intranasal Exposure Model of Ebola Virus in the Cynomolgus Macaque. Viruses 2017, 9, 319. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Worwa, G.; Carrion, R.; Griffiths, A. Determination and Therapeutic Exploitation of Ebola Virus Spontaneous Mutation Frequency. J. Virol. 2016, 90, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Kortepeter, M.G.; Bausch, D.G.; Bray, M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J. Infect. Dis. 2011, 204, S810–S816. [Google Scholar] [CrossRef] [PubMed]
- Bah, E.I.; Lamah, M.-C.; Fletcher, T.; Jacob, S.T.; Brett-Major, D.M.; Sall, A.A.; Shindo, N.; Fischer, W.A.; Lamontagne, F.; Saliou, S.M.; et al. Clinical presentation of patients with Ebola virus disease in Conakry, Guinea. N. Engl. J. Med. 2015, 372, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Geisbert, T.W.; Strong, J.E.; Feldmann, H. Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection. J. Infect. Dis. 2015, 212, S91–S97. [Google Scholar] [CrossRef] [PubMed]
- Bausch, D.G.; Towner, J.S.; Dowell, S.F.; Kaducu, F.; Lukwiya, M.; Sanchez, A.; Nichol, S.T.; Ksiazek, T.G.; Rollin, P.E. Assessment of the risk of Ebola virus transmission from bodily fluids and fomites. J. Infect. Dis. 2007, 196, S142–S147. [Google Scholar] [CrossRef] [PubMed]
- Marriott, A.C.; Dove, B.K.; Whittaker, C.J.; Bruce, C.; Ryan, K.A.; Bean, T.J.; Rayner, E.; Pearson, G.; Taylor, I.; Dowall, S.; et al. Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir. PLoS ONE 2014, 9, e94090. [Google Scholar] [CrossRef] [PubMed]
Virus | Genotype | Particles per PFU | Calculated no. Particles in Target Dose | Cohort Size | Survivors |
---|---|---|---|---|---|
SUDV | 7U (75%) | 6 × 104 | 600 | 4 | 1/4 |
8U (75%) | 3 × 103 | 30 | 4 | 3/4 | |
EBOV | 7U (94%) | 2 × 104 | 200 | 4 | 3/4 |
8U (94%) [15] | 8 × 103 | 80 | 4 | 0/4 |
Animal ID | Exposure Virus | Day of Death (Days Post-Exposure) | Manner of Death | Total Clinical Score at Death |
---|---|---|---|---|
955 | SUDV, 7U | 13 | Euthanized | 18 |
956 | SUDV, 7U | 21 | Euthanized (S) | 0 |
957 | SUDV, 7U | 16 | Euthanized | 26 |
958 | SUDV, 7U | 11 | FDIC | 8 * |
947 | SUDV, 8U | 11 | Expired 1 | 28 |
948 | SUDV, 8U | 21 | Euthanized (S) | 0 |
949 | SUDV, 8U | 21 | Euthanized (S) | 0 |
950 | SUDV, 8U | 21 | Euthanized (S) | 0 |
807 | EBOV, 7U | 21 | Euthanized (S) | 0 |
808 | EBOV, 7U | 10 | Euthanized | 16 |
809 | EBOV, 7U | 21 | Euthanized (S) | 0 |
811 | EBOV, 7U | 21 | Euthanized (S) | 0 |
810 | EBOV, 8U | 9 | Euthanized | 23 |
812 | EBOV, 8U | 8 | Euthanized | 23 |
814 | EBOV, 8U | 13 | FDIC | 4 * |
817 | EBOV, 8U | 12 | Euthanized | 19 |
Animal ID | Exposure Virus | Day of Death (Days Post Exposure) | Total Sequence Reads Mapped to Genome | Median Depth of Coverage |
---|---|---|---|---|
955 | SUDV, 7U | 13 | 19,095 | 31 |
956 | SUDV, 7U | 21 | 20,331 | 107 |
957 | SUDV, 7U | 16 | 7197 | 45 |
958 | SUDV, 7U | 11 | 2,053,126 | 40,873 |
947 | SUDV, 8U | 11 | 41,818 | 205 |
948 | SUDV, 8U | 21 | 195 | 2 |
949 | SUDV, 8U | 21 | 222 | 2 |
950 | SUDV, 8U | 21 | 23 | 2 |
807 | EBOV, 7U | 21 | 23,061 | 104 |
808 | EBOV, 7U | 10 | 1,819,700 | 37,967 |
809 | EBOV, 7U | 21 | 28,222 | 152 |
811 | EBOV, 7U | 21 | 6111 | 29 |
810 | EBOV, 8U | 9 | 2,977,753 | 29,536 |
812 | EBOV, 8U | 8 | 119,048 | 186 |
814 | EBOV, 8U | 13 | 254,831 | 3267 |
817 | EBOV, 8U | 12 | 126,678 | 919 |
Pathology Findings | SUDV 7U | SUDV 8U | EBOV 7U | EBOV 8U |
---|---|---|---|---|
Macroscopic gross pathology | ||||
Petechia | 2/3 | 1/1 | 1/1 | 4/4 |
Spleen pale | 1/3 | 0/1 | 0/1 | 0/4 |
Liver pale | 1/3 | 0/1 | 1/1 | 2/4 |
Lymph nodes firm, or dark | 0/3 | 1/1 | 0/1 | 1/4 |
Testes red/hemorrhage | 1/3 | 1/1 | 0/1 | 2/4 |
Injection site abnormality | 1/3 | 1/1 | n.d. | n.d. |
Microscopic histopathology | ||||
Splenic fibrin deposition | 3/3 | 1/1 | 1/1 | 4/4 |
Splenic lymphoid depletion | 3/3 | 1/1 | 1/1 | 4/4 |
Splenic necrosis | 3/3 | 1/1 | 1/1 | 4/4 |
Splenic hemorrhage | 2/3 | 1/1 | 1/1 | 3/4 |
Lymphoid depletion in lymph nodes | 3/3 | 0/1 | 1/1 | 3/4 |
Lymph node necrosis | 3/3 | 1/1 | 1/1 | 4/4 |
Adrenal gland necrosis | 1/3 | 1/1 | 1/1 | 1/4 |
Testicular hemorrhage | 1/3 | 1/1 | 1/1 | 3/4 |
Hepatocellular necrosis | 2/3 | 1/1 | 1/1 | 2/4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfson, K.J.; Avena, L.E.; Beadles, M.W.; Worwa, G.; Amen, M.; Patterson, J.L.; Carrion, R., Jr.; Griffiths, A. Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses 2018, 10, 642. https://doi.org/10.3390/v10110642
Alfson KJ, Avena LE, Beadles MW, Worwa G, Amen M, Patterson JL, Carrion R Jr., Griffiths A. Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses. 2018; 10(11):642. https://doi.org/10.3390/v10110642
Chicago/Turabian StyleAlfson, Kendra J., Laura E. Avena, Michael W. Beadles, Gabriella Worwa, Melanie Amen, Jean L. Patterson, Ricardo Carrion, Jr., and Anthony Griffiths. 2018. "Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus" Viruses 10, no. 11: 642. https://doi.org/10.3390/v10110642
APA StyleAlfson, K. J., Avena, L. E., Beadles, M. W., Worwa, G., Amen, M., Patterson, J. L., Carrion, R., Jr., & Griffiths, A. (2018). Intramuscular Exposure of Macaca fascicularis to Low Doses of Low Passage- or Cell Culture-Adapted Sudan Virus or Ebola Virus. Viruses, 10(11), 642. https://doi.org/10.3390/v10110642