Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Animals
2.3. Ethics Statement
2.4. Oral Administration of the Viruses to Ducks and Chickens
2.5. Challenge with HPAIV ch/Ku Virus
2.6. Virus Transmission from Ducks to Chickens
2.7. Detection of Influenza Viruses in Feces and Internal Organs of the Birds
2.8. Identification of Influenza Virus by PCR
2.9. Assessment of Antibody Titers
3. Results
3.1. Pathogenicity and Fecal Excretion of ch/Ku and dk/4182 after Oral Administration
3.2. Immunogenicity and Protectivity of dk/4182 after Oral Administraion to Ducks and Chickens
3.3. Duration of Antibody Response in Ducks Following Immunisation and Challenge
3.4. Transmission of dk/4182 and ch/Ku Viruses from Ducks to Chickens
3.5. Prevention of ch/Ku Transmission from Ducks to Chickens by Immunization of Ducks with the dk/4182 Virus
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization (WHO). Global Influenza Programme. Available online: http://www.who.int/influenza/en/ (accessed on 13 December 2017).
- Fan, S.; Zhou, L.; Wu, D.; Gao, X.; Pei, E.; Wang, T.; Gao, Y.; Xia, X. A novel highly pathogenic H5N8 avian influenza virus isolated from a wild duck in China. Influenza Other Respi. Viruses 2014, 8, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Cui, J.; Song, H.; Ye, J.; Zhao, Z.; Wu, S.; Xu, C.; Jiao, P.; Liao, M. New reassortant H5N8 highly pathogenic avian influenza virus from waterfowl in Southern China. Front. Microbiol. 2015, 6, 1170. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Stallknecht, D.E.; Beck, J.R.; Suarez, D.L.; Swayne, D.E. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerg. Infect. Dis. 2006, 12, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Feare, C.J. The role of wild birds in the spread of HPAI H5N1. Avian Dis. 2007, 51, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Negovetich, N.J.; Forrest, H.L.; Webster, R.G. Ducks: The “Trojan Horses” of H5N1 influenza. Influenza Other Respi. Viruses 2009, 3, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Spackman, E.; Pantin-Jackwood, M. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. Ecohealth 2014, 11, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Krauss, S.; Stallknecht, D.E.; Slemons, R.D.; Bowman, A.S.; Poulson, R.L.; Nolting, J.M.; Knowles, J.P.; Webster, R.G. The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proc. Natl. Acad. Sci. USA 2016, 113, 9033–9038. [Google Scholar] [CrossRef] [PubMed]
- Fereidouni, S.R.; Starick, E.; Beer, M.; Wilking, H.; Kalthoff, D.; Grund, C.; Häuslaigner, R.; Breithaupt, A.; Lange, E.; Harder, T.C. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS ONE 2009, 4, e6706. [Google Scholar] [CrossRef] [PubMed]
- Pantin-Jackwood, M.J.; Suarez, D.L. Vaccination of domestic ducks against H5N1 HPAI: A review. Virus Res. 2013, 178, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Bertran, K.; Moresco, K.; Swayne, D.E. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 2015, 33, 1324–1330. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Than, V.T.; Thanh, H.D.; Nguyen, V.Q.; Nguyen, K.H.; Nguyen, D.T.; Park, J.-H.; Chung, I.S.; Jeong, D.G.; Chang, K.-T.; et al. The evolutionary dynamics of highly pathogenic avian influenza H5N1 in south-central Vietnam reveals multiple clades evolving from Chinese and Cambodian viruses. Comp. Immunol. Microbiol. Infect. Dis. 2015, 42, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hervé, P.-L.; Lorin, V.; Jouvion, G.; Da Costa, B.; Escriou, N. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 2015, 486, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Hu, Y.; Liu, Z.; Zhong, W.; Cao, H.; Chen, H.; Jin, M. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Vet. Res. 2015, 46, 42. [Google Scholar] [CrossRef] [PubMed]
- Kapczynski, D.R.; Esaki, M.; Dorsey, K.M.; Jiang, H.; Jackwood, M.; Moraes, M.; Gardin, Y. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus. Vaccine 2015, 33, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Kilany, W.H.; Hassan, M.K.; Safwat, M.; Mohammed, S.; Selim, A.; VonDobschuetz, S.; Dauphin, G.; Lubroth, J.; Jobre, Y. Comparison of the effectiveness of rHVT-H5, inactivated H5 and rHVT-H5 with inactivated H5 prime/boost vaccination regimes in commercial broiler chickens carrying MDAs against HPAI H5N1 clade 2.2.1 virus. Avian Pathol. 2015, 44, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Paldurai, A.; Xiao, S.; Collins, P.L.; Samal, S.K. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens. Vaccine 2014, 32, 4428–4435. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Mena, I.; Ma, J.; Bawa, B.; Krammer, F.; Lyoo, Y.S.; Lang, Y.; Morozov, I.; Mahardika, G.N.; Ma, W.; et al. Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J. Virol. 2015, 89, 7401–7408. [Google Scholar] [CrossRef] [PubMed]
- Suguitan, A.L.; McAuliffe, J.; Mills, K.L.; Jin, H.; Duke, G.; Lu, B.; Luke, C.J.; Murphy, B.; Swayne, D.E.; Kemble, G.; et al. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med. 2006, 3, e360. [Google Scholar] [CrossRef] [PubMed]
- Steel, J. New Strategies for the Development of H5N1 Subtype Influenza Vaccines. BioDrugs 2011, 25, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Chen, S.; Han, W.; Wu, B.; Zhang, X.; Tang, Y.; Wang, X.; Zhu, Y.; Peng, D.; Liu, X. Cross-clade protective immune responses of NS1-truncated live attenuated H5N1 avian influenza vaccines. Vaccine 2016, 34, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.; Song, M.-S.; Park, S.-J.; Pascua, P.N.Q.; Baek, Y.H.; Kwon, H.; Kim, E.-H.; Kim, S.; Jang, H.-K.; Poo, H.; et al. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene. Arch. Virol. 2015, 160, 1729–1740. [Google Scholar] [CrossRef] [PubMed]
- Röhrs, S.; Kalthoff, D.; Beer, M. A model for early onset of protection against lethal challenge with highly pathogenic H5N1 influenza virus. Vaccine 2014, 32, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- Boravleva, E.I.; Lomakina, N.F.; Kropotkina, E.A.; Rudneva, I.A.; Iamnikova, S.S.; Rudenko, L.G.; Drygin, V.V.; Gambarian, A.S. [The generation and characteristics of reassortant influenza A virus with H5 hemagglutinin and other genes from the apathogenic virus H6N2]. Vopr. Virusol. 2011, 56, 9–14. [Google Scholar] [PubMed]
- Gambaryan, A.S.; Lomakina, N.F.; Boravleva, E.Y.; Kropotkina, E.A.; Mashin, V.V.; Krasilnikov, I.V.; Klimov, A.I.; Rudenko, L.G. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine). Influenza Other Respi. Viruses 2012, 6, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Boravleva, E.Y.; Chvala, I.A.; Lomakina, N.F.; Repin, P.I.; Mudrak, N.S.; Rudenko, L.G.; Gambaryan, A.S.; Drygin, V.V. [Testing of apathogenic influenza virus H5N3 as a poultry live vaccine]. Vopr. Virusol. 2015, 60, 44–49. [Google Scholar] [PubMed]
- Gambaryan, A.S.; Boravleva, E.Y.; Lomakina, N.F.; Kropotkina, E.A.; Gordeychuk, I.V.; Chvala, I.A.; Drygin, V.V.; Klenk, H.-D.; Matrosovich, M.N. Immunization with live nonpathogenic H5N3 duck influenza virus protects chickens against highly pathogenic H5N1 virus. Acta Virol. 2016, 60, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Spackman, E.; Swayne, D.E. Vaccination of gallinaceous poultry for H5N1 highly pathogenic avian influenza: Current questions and new technology. Virus Res. 2013, 178, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Sly, D.; Tierney, E.; Hosier, N.; Massicot, J.; London, W.; Chanock, R.; Webster, R.; Hinshaw, V. Reassortant virus derived from avian and human influenza A viruses is attenuated and immunogenic in monkeys. Science 1982, 218, 1330–1332. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Liu, X.F.; Zhang, X.; Chen, S.; Sun, L.; Lu, J. Generation of an attenuated H5N1 avian influenza virus vaccine with all eight genes from avian viruses. Vaccine 2007, 25, 7379–7384. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D. Should we change the definition of avian influenza for eradication purposes? Avian Dis. 2003, 47, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Gorman, O.T.; Bean, W.J.; Webster, R.G. Evolutionary processes in influenza viruses: Divergence, rapid evolution, and stasis. Curr. Top. Microbiol. Immunol. 1992, 176, 75–97. [Google Scholar] [PubMed]
- Taubenberger, J.K.; Reid, A.H.; Lourens, R.M.; Wang, R.; Jin, G.; Fanning, T.G. Characterization of the 1918 influenza virus polymerase genes. Nature 2005, 437, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Goto, H.; Yamamoto, E.; Tanaka, H.; Takeuchi, M.; Kuwayama, M.; Kawaoka, Y.; Otsuki, K. Generation of a highly pathogenic avian influenza A virus from an avirulent field isolate by passaging in chickens. J. Virol. 2001, 75, 4439–4443. [Google Scholar] [CrossRef] [PubMed]
№ | Species | Primary Virus Administration | Challenge with 105 TCID50 a ch/Ku | ||||||
---|---|---|---|---|---|---|---|---|---|
Age, Days | Virus | TCID50 | Survival b | Excretion c | DPI d | Survival b | Excretion c | ||
1 | Ducks | 7 | ch/Ku | 105 | 2/6 | 19/34 | |||
2 | Ducks | 40 | ch/Ku | 105 | 5/5 | 13/29 | |||
3 | Ducks | 7 | dk/4182 | 106 | 6/6 | 16/31 | 16 | 6/6 | 0/18 |
4 | Ducks | 40 | dk/4182 | 104 | 8/8 | 15/20 | 90 | 8/8 | 0/17 |
5 | Ducks | 40 | dk/4182 | 105 | 10/10 | 17/22 | 90 | 10/10 | 0/23 |
6 | Ducks | 40 | dk/4182 | 106 | 7/7 | 15/18 | 90 | 7/7 | 0/19 |
7 | Chickens | 7 | ch/Ku | 105 | 0/5 | 7/20 | |||
8 | Chickens | 50 | ch/Ku | 105 | 0/5 | 13/25 | |||
9 | Chickens | 1 | dk/4182 | 106 | 6/6 | 4/10 | |||
10 | Chickens | 7 | dk/4182 | 106 | 10/10 | 8/18 | |||
11 | Chickens | 30 | dk/4182 | 106 | 80/80 | 22/67 | 20 | 25/25 | 0/47 |
12 | Chickens | 27 | dk/4182 | 106 | 30/30 | 19/42 | 85 | 17/19 | 0/32 |
№ | Species (Number) | Age, Days | Virus | Dose a | ELISA b | HAI c |
---|---|---|---|---|---|---|
1 | Ducks (8) | 40 | dk/4182 | 104 | 249 | 26 |
2 | Ducks (5) | 40 | dk/4182 | 105 | 228 | 28 |
3 | Ducks (7) | 40 | dk/4182 | 106 | 255 | 17 |
4 | Chickens (5) | 30 | dk/4182 | 105 | 193 | 11 |
5 | Chickens (10) | 30 | dk/4182 | 106 | 463 | 37 |
Number of Ducks | Primary Infection of Ducks | Challenge a | Infection Rate in Contact Chickens | ||||
---|---|---|---|---|---|---|---|
Age, Days | Virus | TCID50 | DPI b | Survival c | Excretion d | ELISA e | |
Transmission after primary administration | |||||||
6 f | 7 | dk/4182 | 106 | 5/5 | 0/25 | <10 | |
6 | 7 | ch/Ku | 105 | 0/5 | 12/23 | N/A | |
5 | 40 | ch/Ku | 105 | 0/5 | 5/9 | N/A | |
Transmission after challenge with ch/Ku | |||||||
6 f | 7 | dk/4182 | 106 | 16 | 7/7 | 0/27 | <10 |
5 | 40 | dk/4182 | 104 | 90 | 5/5 | 0/11 | <10 |
5 | 40 | dk/4182 | 105 | 90 | 5/5 | 0/9 | <10 |
4 | 40 | dk/4182 | 106 | 90 | 4/4 | 0/13 | <10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambaryan, A.; Gordeychuk, I.; Boravleva, E.; Lomakina, N.; Kropotkina, E.; Lunitsin, A.; Klenk, H.-D.; Matrosovich, M. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens. Viruses 2018, 10, 164. https://doi.org/10.3390/v10040164
Gambaryan A, Gordeychuk I, Boravleva E, Lomakina N, Kropotkina E, Lunitsin A, Klenk H-D, Matrosovich M. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens. Viruses. 2018; 10(4):164. https://doi.org/10.3390/v10040164
Chicago/Turabian StyleGambaryan, Alexandra, Ilya Gordeychuk, Elizaveta Boravleva, Natalia Lomakina, Ekaterina Kropotkina, Andrey Lunitsin, Hans-Dieter Klenk, and Mikhail Matrosovich. 2018. "Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens" Viruses 10, no. 4: 164. https://doi.org/10.3390/v10040164
APA StyleGambaryan, A., Gordeychuk, I., Boravleva, E., Lomakina, N., Kropotkina, E., Lunitsin, A., Klenk, H. -D., & Matrosovich, M. (2018). Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens. Viruses, 10(4), 164. https://doi.org/10.3390/v10040164