Development of Phage Lysins as Novel Therapeutics: A Historical Perspective
Abstract
:1. Preface
2. Phages
3. Lysis from Without
4. Early Lysin Discovery
5. The Right Person at the Right Time
6. Accelerated Development
7. New Tools
8. Other Laboratories
9. An Effective Alternative to Antibiotics
Acknowledgments
Conflicts of Interest
References
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reche, I.; D’Orta, G.; Mladenov, N.; Winget, D.M.; Suttle, C.A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018, 12, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Baker, K.; Padman, B.S.; Patwa, R.; Dunstan, R.A.; Weston, T.A.; Schlosser, K.; Bailey, B.; Lithgow, T.; Lazarou, M.; et al. Bacteriophage Transcytosis Provides a Mechanism to Cross Epithelial Cell Layers. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Delbruck, M. The Growth of Bacteriophage and Lysis of the Host. J. Gen. Physiol. 1940, 23, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T. Lysis from without. Bacteriophage 2011, 1, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.N.; Smith, D.L.; Young, R. Holins: The protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 2000, 54, 799–825. [Google Scholar] [CrossRef] [PubMed]
- Jervis, E.J.; Haynes, C.A.; Kilburn, D.G. Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem. 1997, 272, 24016–24023. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.M.; Knott, B.C.; Mayes, H.B.; Hansson, H.; Himmel, M.E.; Sandgren, M.; Stahlberg, J.; Beckham, G.T. Fungal cellulases. Chem. Rev. 2015, 115, 1308–1448. [Google Scholar] [CrossRef] [PubMed]
- Hendrix, R.W. Bacteriophages: Evolution of the Majority. Theor. Popul. Biol. 2002, 61, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Fenton, M.; Ross, P.; McAuliffe, O.; O’Mahony, J.; Coffey, A. Recombinant bacteriophage lysins as antibacterials. Bioeng. Bugs 2010, 1, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastagia, M.; Schuch, R.; Fischetti, V.A.; Huang, D.B. Lysins: The arrival of pathogen-directed anti-infectives. J. Med. Microbiol. 2013, 62, 1506–1516. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A. Bacteriophage lytic enzymes: Novel anti-infectives. Trends Microbiol. 2005, 13, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Melo, L.D.; Santos, S.B.; Nobrega, F.L.; Ferreira, E.C.; Cerca, N.; Azeredo, J.; Kluskens, L.D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol. 2013, 87, 4558–4570. [Google Scholar] [CrossRef] [PubMed]
- Koller, T.; Nelson, D.; Nakata, M.; Kreutzer, M.; Fischetti, V.A.; Glocker, M.O.; Podbielski, A.; Kreikemeyer, B. PlyC, a novel bacteriophage lysin for compartment-dependent proteomics of group A streptococci. Proteomics 2008, 8, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Twort, F.W. An investigation on the nature of ultra-microscopic viruses. Lanccet 1915, 186, 1241–1243. [Google Scholar] [CrossRef]
- D’Herelle, F.H. Sur un microbe invisible antagoniste des bacilles dysenteriques. C. R. Acad. Sci. 1917, 165, 373–375. [Google Scholar]
- Clark, P.F.; Clark, A.S. A “bacteriophage” active against a hemolytic streptococcus. J. Bacteriol. 1926, 11, 89. [Google Scholar] [CrossRef]
- Evans, A.C. The Prevalence of Streptococcus Bacteriophage. Science 1934, 80, 40–41. [Google Scholar] [CrossRef] [PubMed]
- Twort, F.W. The transmissible bacterial lysin and its action on dead bacteria. Lancet 1925, 206, 642–644. [Google Scholar] [CrossRef]
- Maxted, W.R. The active agent in nascent phage lysis of streptococci. J. Gen. Microbiol. 1957, 16, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Avery, O.T.; MacLeod, C.M.; McCarty, M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 1944, 79, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M. Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. J. Exp. Med. 1957, 106, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M. Studies on the bacteriophages of hemolytic streptococci. II Antigens released from the streptococcal cell wall by a phage-associated lysin. J. Exp. Med. 1958, 108, 803–821. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M.; McCarty, M. Studies on the chemical structure of the streptococcal cell wall. I. The identification of a mucopeptide in the cell walls of groups A and A-variant streptococci. J. Exp. Med. 1961, 114, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M.; McCarty, M. Studies on the chemical structure of the streptococcal cell wall. II. The composition of group C cell walls and chemical basis for serologic specificity of the carbohydrate moiety. J. Exp. Med. 1962, 115, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Freimer, E.H.; Krause, R.M.; McCarty, M. Studies of L forms and protoplasts of group A streptococci, I. Isolation, growth, and bacteriologic characteristics. J. Exp. Med. 1959, 110, 853–874. [Google Scholar] [CrossRef] [PubMed]
- Ralston, D.J.; McIvor, M. Lysis-from-without of Staphylococcus aureus strains by combinations of specific phages and phage-induced lytic enzymes. J. Bacteriol. 1964, 88, 676–681. [Google Scholar] [PubMed]
- Ralston, D.J.; McIvor, M. Cell-Wall Lysins of Staphylococcus aureus Strains Induced by Specific Typing Phages. J. Bacteriol. 1964, 88, 667–675. [Google Scholar] [PubMed]
- Doughty, C.C.; Mann, J.A. Purification and properties of a bacteriophage-induced cell wall peptidase from Staphylococcus aureus. J. Bacteriol. 1967, 93, 1089–1095. [Google Scholar] [PubMed]
- Schuytema, E.C.; Glenn, H.L.; Doughty, C.C. Relative rates of lysis of staphylococcal cell walls by lytic enzymes from various bacteriophage types. J. Bacteriol. 1969, 98, 920–923. [Google Scholar] [PubMed]
- Doughty, C.C.; Hayashi, J.A. Enzymatic properties of a phage-induced lysin affecting group A streptococci. J. Bacteriol. 1962, 83, 1058–1068. [Google Scholar] [PubMed]
- McGowan, S.; Buckle, A.M.; Mitchell, M.S.; Hoopes, J.T.; Gallagher, D.T.; Heselpoth, R.D.; Shen, Y.; Reboul, C.F.; Law, R.H.; Fischetti, V.A.; et al. X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc. Natl. Acad. Sci. USA 2012, 109, 12752–12757. [Google Scholar] [CrossRef] [PubMed]
- Barksdale, L.; Garmise, L.; Rivera, R. Toxinogeny in Corynebacterium diphtheriae. J. Bacteriol. 1961, 81, 527–540. [Google Scholar] [PubMed]
- Zabriskie, J.B. The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J. Exp. Med. 1964, 119, 761–779. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A.; Gotschlich, E.C.; Bernheimer, A.W. Purification and physical properties of group C streptococcal phage-associated lysin. J. Exp. Med. 1971, 133, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A.; Jones, K.F.; Manjula, B.N.; Scott, J.R. Streptococcal M6 protein expressed in Escherichia coli. Localization, purification and comparison with streptococcal-derived M protein. J. Exp. Med. 1984, 159, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Fischetti, V.A.; Jones, K.F.; Scott, J.R. Size variation of the M protein in group A streptococci. J. Exp. Med. 1985, 161, 1384–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pancholi, V.; Fischetti, V.A. Isolation and characterization of the cell-associated region of group A streptococcal M6 protein. J. Bacteriol. 1988, 170, 2618–2624. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.N.; Flicker, P.F.; Cohen, C.; Manjula, B.N.; Fischetti, V.A. Streptococcal M protein: Alpha-helical coiled-coil structure and arrangement on the cell surface. Proc. Natl. Acad. Sci. USA 1981, 78, 4689–4693. [Google Scholar] [CrossRef] [PubMed]
- Hollingshead, S.K.; Fischetti, V.A.; Scott, J.R. Complete nucleotide sequence of type 6 M protein of the Group A Streptococcus. J. Biol. Chem. 1986, 261, 1677–1686. [Google Scholar] [PubMed]
- Cunningham, M.W.; Beachey, E.H. Peptic digestion of streptococcal M protein. I. Effect of digestion at suboptimal pH upon the biological and immunological properties of purified M protein extracts. Infect. Immun. 1974, 9, 244–248. [Google Scholar] [PubMed]
- Beachey, E.H.; Stollerman, G.; Chiang, E.Y.; Chiang, T.M.; Seyer, J.M.; Kang, A.H. Purification and properties of M protein extracted from group A streptococci with pepsin: Covalent structure of the amino terminal region of type 24 M antigen. J. Exp. Med. 1977, 145, 1469–1483. [Google Scholar] [CrossRef] [PubMed]
- Beachey, E.H.; Gras-Masse, H.; Tarter, A.; Jolivet, M.; Audibert, F.; Chedid, L.; Seyer, J.M. Opsonic antibodies evoked by hybrid peptide copies of types 5 and 24 streptococcal M proteins synthesized in tandem. J. Exp. Med. 1986, 163, 1451–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.F.; Manjula, B.N.; Johnston, K.H.; Hollingshead, S.K.; Scott, J.R.; Fischetti, V.A. Location of variable and conserved epitopes among the multiple serotypes of streptococcal M protein. J. Exp. Med. 1985, 161, 623–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollingshead, S.K.; Fischetti, V.A.; Scott, J.R. A highly conserved region present in transcripts encoding heterologous M proteins of group A streptococcus. Infect. Immun. 1987, 55, 3237–3239. [Google Scholar] [PubMed]
- Bessen, D.; Fischetti, V.A. Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect. Immun. 1988, 56, 2666–2672. [Google Scholar] [PubMed]
- Bessen, D.; Fischetti, V.A. Synthetic peptide vaccine against mucosal colonization by group A streptococci. I. Protection against a heterologous M serotype with shared C repeat region epitopes. J. Immunol. 1990, 145, 1251–1256. [Google Scholar] [PubMed]
- Gotschlich, E.C.; Liu, T.Y.; Artenstein, M.S. Human immunity to the meningococcus. 3. Preparation and immunochemical properties of the group A, group B, and group C meningococcal polysaccharides. J. Exp. Med. 1969, 129, 1349–1365. [Google Scholar] [CrossRef] [PubMed]
- Gotschlich, E.C.; Goldschneider, I.; Artenstein, M.S. Human immunity to the meningococcus. V. The effect of immunization with meningococcal group C polysaccharide on the carrier state. J. Exp. Med. 1969, 129, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Perl, T.M. The threat of vancomycin resistance. Am. J. Med. 1999, 106, 26–37. [Google Scholar] [CrossRef]
- Rybak, M.J.; Hershberger, E.; Moldovan, T.; Grucz, R.G. In vitro activities of daptomycin, vancomycin, linezolid, and quinupristin-dalfopristin against Staphylococci and Enterococci, including vancomycin- intermediate and -resistant strains. Antimicrob. Agents Chemother. 2000, 44, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.; Loomis, L.; Fischetti, V.A. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc. Natl. Acad. Sci. USA 2001, 98, 4107–4112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehan, M.M.; Garcia, J.L.; Lopez, R.; Garcia, P. The lytic enzyme of the pneumococcal phage Dp-1: A chimeric lysin of intergeneric origin. Mol. Microbiol. 1997, 25, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Schuch, R.; Nelson, D.; Fischetti, V.A. A bacteriolytic agent that detects and kills Bacillus anthracis. Science 2002, 418, 884–889. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.M.; Fischetti, V.A. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob. Agents Chemother. 2003, 47, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, J.M.; Djurkovic, S.; Fischetti, V.A. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect. Immun. 2003, 71, 6199–6204. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.E.; Daniel, A.; Collin, M.; Schuch, R.; Fischetti, V.A. Rapid DNA library construction for functional genomic and metagenomic screening. Appl. Environ. Microbiol. 2008, 74, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Croux, C.; Ronda, C.; Lopez, R.; Garcia, J.L. Interchange of functional domains switches enzyme specificity: Construction of a chimeric pneumococcal-clostridial cell wall lytic enzyme. Mol. Microbiol. 1993, 9, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.M.; Garcia, J.L.; Lopez, R.; Garcia, P. Analysis of the catalytic domain of the lysin of the lactococcal bacteriophage Tuc2009 by chimeric gene assembling. FEMS Microbiol. Lett. 1996, 140, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.; Proenca, D.; Cantante, C.; Silva, F.A.; Leandro, C.; Lourenco, S.; Milheirico, C.; de Lencastre, H.; Cavaco-Silva, P.; Pimentel, M.; et al. Novel Chimerical Endolysins with Broad Antimicrobial Activity Against Methicillin-Resistant Staphylococcus aureus. Microb. Drug Resist. 2012, 18, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Briers, Y.; Schmelcher, M.; Loessner, M.J.; Hendrix, J.; Engelborghs, Y.; Volckaert, G.; Lavigne, R. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem. Biophys Res. Commun. 2009, 383, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Daniel, A.; Euler, C.; Collin, M.; Chahales, P.; Gorelick, K.J.; Fischetti, V.A. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2010, 54, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Czaplewski, L.; Bax, R.; Clokie, M.; Dawson, M.; Fairhead, H.; Fischetti, V.A.; Foster, S.; Gilmore, B.F.; Hancock, R.E.; Harper, D.; et al. Alternatives to antibiotics—A pipeline portfolio review. Lancet Infect. Dis. 2016, 16, 239–251. [Google Scholar] [CrossRef]
- Gilmer, D.B.; Schmitz, J.E; Euler, C.W.; and Fischetti, V.A. Novel Bacteriophage Lysin with Broad Lytic Activity Protects Against Mixed Infection by Streptococcus pyogenes and Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischetti, V.A. Development of Phage Lysins as Novel Therapeutics: A Historical Perspective. Viruses 2018, 10, 310. https://doi.org/10.3390/v10060310
Fischetti VA. Development of Phage Lysins as Novel Therapeutics: A Historical Perspective. Viruses. 2018; 10(6):310. https://doi.org/10.3390/v10060310
Chicago/Turabian StyleFischetti, Vincent A. 2018. "Development of Phage Lysins as Novel Therapeutics: A Historical Perspective" Viruses 10, no. 6: 310. https://doi.org/10.3390/v10060310
APA StyleFischetti, V. A. (2018). Development of Phage Lysins as Novel Therapeutics: A Historical Perspective. Viruses, 10(6), 310. https://doi.org/10.3390/v10060310