Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections
Abstract
:1. Introduction
2. General Prerequisites for the Medical Use of Bacteriophages
2.1. Availability
2.2. Production
2.3. Formulation and Administration
2.4. Dosage
2.5. Therapeutic Evaluation
3. Clinical Indications in the Literature
4. Compassionate Phage Use in France and at Villeneuve Saint Georges
5. Protocol for Compassionate Use of Phage Therapy
6. Recent Knowledge to be Taken into Consideration for Phage Therapy
7. Conclusions
Funding
Conflicts of Interest
References
- D’Hérelle, F. Sur un microbe invisible antagoniste des bacilles dysentériques. Acad. Sci. Paris 1917, 165, 373–375. [Google Scholar]
- D’Hérelle, F. Le Bactériophage: Son Rôle dans L’immunité; Masson et Cie: Paris, France, 1921. [Google Scholar]
- Bruynoghe, R.; Maisin, J. Essais de thérapeutique au moyen du bactériophage. CR Soc. Biol. 1922, 85, 1120–1121. [Google Scholar]
- WHO. Antimicrobial Resistance: Global Report on Surveillance. Available online: http://www.thehealthwell.info/node/763364 (accessed on 14 November 2018).
- Wittebole, X.; Roock, S.; Opal, S.M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2013, 5, 226–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.; Melo, L.; Boas, V.D.; Sillankorva, S.; Azeredo, J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 2017, 39, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Arias-Sánchez, F.I.; Vasse, M.; Ramsayer, J.; Kaltz, O.; Hochberg, M.E. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS ONE 2014, 9, e106628. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.-A.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2018, 19, 35–45. [Google Scholar] [CrossRef]
- Leitner, L.; Sybesma, W.; Chanishvili, N.; Goderdzishvili, M.; Chkhotua, A.; Ujmajuridze, A.; Schneider, M.P.; Sartori, A.; Mehnert, U.; Bachmann, L.M.; et al. Bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomized, placebo-controlled, double-blind clinical trial. BMC Urol. 2017, 17, 90. [Google Scholar] [CrossRef]
- Sarker, S.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef]
- Wright, A.; Hawkins, C.; Anggård, E.; Harper, D. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. Allied Sci. 2009, 34, 349–357. [Google Scholar] [CrossRef]
- Ujmajuridze, A.; Chanishvili, N.; Goderdzishvili, M.; Leitner, L.; Mehnert, U.; Chkhotua, A.; Kessler, T.M.; Sybesma, W. Adapted bacteriophages for treating urinary tract infections. Front. Microbiol. 2018, 9, 1832. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Verbeken, G.; Ceyssens, P.-J.; Huys, I.; de Vos, D.; Ameloot, C.; Fauconnier, A. The Magistral Phage. Viruses 2018, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Sybesma, W.; Rohde, C.; Bardy, P.; Pirnay, J.-P.; Cooper, I.; Caplin, J.; Chanishvili, N.; Coffey, A.; de Vos, D.; Scholz, A.; et al. Silk route to the acceptance and re-implementation of bacteriophage therapy-Part II. Antibiotics 2018, 7, 2. [Google Scholar]
- Górski, A.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Międzybrodzki, R.; Weber-Dąbrowska, B.; Borysowski, J.; Letkiewicz, S.; Bagińska, N.; Sfanos, K.S. Phage therapy in prostatitis: Recent prospects. Front. Microbiol. 2018, 9, 1434. [Google Scholar] [CrossRef] [PubMed]
- Weber-Dąbrowska, B.; Jończyk-Matysiak, E.; Żaczek, M.; Łobocka, M.; Łusiak-Szelachowska, M.; Górski, A. Bacteriophage procurement for therapeutic purposes. Front. Microbiol. 2016, 7, 1177. [Google Scholar] [CrossRef] [PubMed]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant. Proc. 2003, 35, 1385–1386. [Google Scholar] [CrossRef]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophage therapy for infections in cancer patients. Clin. Appl. Immunol. Rev. 2001, 1, 131–134. [Google Scholar] [CrossRef]
- Weber-Dabrowska, B.; Mulczyk, M.; Górski, A. Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Archivum Immunologiae Therapiae Experimentalis 2000, 48, 547–551. [Google Scholar]
- Schooley, R.T.; Biswas, B.; Gill, J.J.; Hernandez-Morales, A.; Lancaster, J.; Lessor, L.; Barr, J.J.; Reed, S.L.; Rohwer, F.; Benler, S.; et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 2017, 61, AAC-00954. [Google Scholar] [CrossRef]
- LaVergne, S.; Hamilton, T.; Biswas, B.; Kumaraswamy, M.; Schooley, R.; Wooten, D. Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect. Dis. 2018, 5, ofy064. [Google Scholar] [CrossRef]
- Pirnay, J.-P.P.; de Vos, D.; Verbeken, G.; Merabishvili, M.; Chanishvili, N.; Vaneechoutte, M.; Zizi, M.; Laire, G.; Lavigne, R.; Huys, I.; et al. The phage therapy paradigm: Prêt-à-porter or sur-mesure? Pharm. Res. 2011, 28, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Phage Directory. Available online: https://phage.directory/ (accessed on 14 November 2018).
- Sillankorva, S. Isolation of bacteriophages for clinically relevant bacteria. Methods Mol. Biol. 2018, 1693, 23–30. [Google Scholar] [PubMed]
- EudraLex Good Manufacturing Practice (GMP) Guidelines. European Commission. 2010. Available online: https://ec.europa.eu/health/documents/eudralex/vol-4_en (accessed on 14 November 2018).
- Verbeken, G.; Pirnay, J.-P.; de Vos, D.; Jennes, S.; Zizi, M.; Lavigne, R.; Casteels, M.; Huys, I. Optimizing the European Regulatory Framework for Sustainable Bacteriophage Therapy in Human Medicine. Archivum Immunologiae Therapiae Experimentalis 2012, 60, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Verbeken, G.; Pirnay, J.-P.; Lavigne, R.; Jennes, S.; de Vos, D.; Casteels, M.; Huys, I. Call for a dedicated european legal framework for bacteriophage therapy. Archivum Immunologiae Therapiae Experimentalis 2014, 62, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; de Vos, D.; et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
- Pirnay, J.-P.; Merabishvili, M.; Raemdonck, H.; de Vos, D.; Verbeken, G. Bacteriophage production in compliance with regulatory requirements. In Bacteriophage Therapy. Methods Mol. Biol. 2018, 1693, 233–252. [Google Scholar] [PubMed]
- Fauconnier, A. Regulating phage therapy. EMBO Rep. 2017, 18, 198–200. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, L.L.; Payne, M.S.; Chang, B.J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol. 2018, 8, 376. [Google Scholar] [CrossRef]
- Kutter, E.M.; Gvasalia, G.; Alavidze, Z.; Brewster, E. Phage Therapy. In Biotherapy—History, Principles and Practice; CRC Press: Boca Raton, FL, USA, 2013; pp. 191–231. [Google Scholar]
- Fauconnier, A. Bacteriophage Therapy. Methods Mol. Biol. 2018, 1693, 253–268. [Google Scholar]
- Skurnik, M.; Pajunen, M.; Kiljunen, S. Biotechnological challenges of phage therapy. Biotechnol. Lett. 2007, 29, 995–1003. [Google Scholar] [CrossRef]
- Vandenheuvel, D.; Lavigne, R.; Brussow, H. Bacteriophage therapy: Advances in formulation strategies and human clinical trials. Annu. Rev. Virol. 2015, 2, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.D.; Wolcott, R.D.; Kuskowski, M.A.; Wolcott, B.M.; Ward, L.S.; Sulakvelidze, A. Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. J. Wound Care 2009, 18, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Kutter, E.; Borysowski, J.; Miedzybrodzki, R.; Gorski, A.; Weber-Dąbrowska, B.; Kutateladze, M.; Alavidze, Z.; Goderdzishvili, M.; Adamia, R. Clinical Phage Therapy. In Phage Therapy: Current Research and Applications; Borysowski, J., Miedzybrodzki, R., Gorski, A., Eds.; Nova Science Publishers: Norfolk, UK, 2014; Chapter 11; pp. 257–288. [Google Scholar]
- Speck, P.; Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed]
- Międzybrodzki, R.; Borysowski, J.; Weber-Dabrowska, B.; Fortuna, W.; Letkiewicz, S.; Szufnarowski, K.; Pawełczyk, Z.; Rogoz, P.; Kłak, M.; Wojtasik, E.B.; et al. Clinical aspects of phage therapy. Adv. Virus Res. 2012, 83, 73–121. [Google Scholar] [PubMed]
- Vandenheuvel, D.; Singh, A.; Vandersteegen, K.; Klumpp, J.; Lavigne, R.; Van den Mooter, G. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur. J. Pharm. Biopharm. 2013, 84, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Matinkhoo, S.; Lynch, K.; Dennis, J.J.; Finlay, W.H.; Vehring, R. Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J. Pharm. Sci. 2011, 100, 5197–5205. [Google Scholar] [CrossRef] [PubMed]
- Golshahi, L.; Lynch, K.H.; Dennis, J.J.; Finlay, W.H. In vitro lung delivery of bacteriophages KS4-M and PhiKZ using dry powder inhalers for treatment of Burkholderia cepacia complex and Pseudomonas aeruginosa infections in cystic fibrosis. J. Appl. Microbiol. 2011, 110, 106–117. [Google Scholar] [CrossRef]
- Morello, E.; Saussereau, E.; Maura, D.; Huerre, M.; Touqui, L.; Debarbieux, L. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: First steps towards treatment and prevention. PLoS ONE 2011, 6, e16963. [Google Scholar] [CrossRef]
- Abedon, S.T. Phage therapy of pulmonary infections. Bacteriophage 2015, 5, e1020260. [Google Scholar] [CrossRef] [Green Version]
- Roach, D.R.; Leung, C.; Henry, M.; Morello, E.; Singh, D.; Santo, J.P.; Weitz, J.S.; Debarbieux, L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 2017, 22, 38–47. [Google Scholar] [CrossRef]
- Semler, D.D.; Lynch, K.H.; Dennis, J.J. The promise of bacteriophage therapy for Burkholderia cepacia complex respiratory infections. Front. Cell Infect. Microbiol. 2012, 1, 27. [Google Scholar] [CrossRef] [PubMed]
- Hoe, S.; Semler, D.D.; Goudie, A.D.; Lynch, K.H.; Matinkhoo, S.; Finlay, W.H.; Dennis, J.J.; Vehring, R. Respirable bacteriophages for the treatment of bacterial lung infections. J. Aerosol Med. Pulm. Drug Deliv. 2013, 26, 317–335. [Google Scholar] [CrossRef]
- Abedon, S.T. Phage therapy: Eco-physiological pharmacology. Scientifica 2014, 2014, 581639. [Google Scholar] [CrossRef]
- Parracho, H.M.; Burrowes, B.H.; Enright, M.C.; McConville, M.L.; Harper, D.R. The role of regulated clinical trials in the development of bacteriophage therapeutics. J. Mol. Genet. Med. 2012, 6, 279–286. [Google Scholar] [CrossRef]
- McCallin, S.; Brüssow, H. Clinical Trials of Bacteriophage Therapeutics. In Bacteriophages; Harper, D., Abedon, S., Burrowes, B., McConville, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–29. [Google Scholar]
- Leszczynski, P.; Weber-Dabrowska, B.; Kohutnicka, M.; Luczak, M.; Gorecki, A.; Gorski, A. Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker-case report. Folia Microbiol. 2006, 51, 236–238. [Google Scholar] [CrossRef]
- Marcuk, L.M.; Nikiforov, V.N.; Scerbak, J.F.; Levitov, T.A.; Kotljarova, R.I.; Naumgina, M.S.; Davydov, S.U.; Monsur, K.A.; Rahman, M.A.; Latif, M.A.; et al. Clinical studies of the use of bacteriophage in the treatment of cholera. Bull. World Health Organ. 1971, 45, 77–83. [Google Scholar] [PubMed]
- Goodridge, L.D. Bacteriophages for managing Shigella in various clinical and non-clinical settings. Bacteriophage 2013, 3, e25098. [Google Scholar] [CrossRef]
- Zhvania, P.; Hoyle, N.; Nadareishvili, L.; Nizharadze, D.; Kutateladze, M. Phage Therapy in a 16-Year-Old boy with Netherton Syndrome. Front. Med. 2017, 4, 94. [Google Scholar] [CrossRef]
- Jonczyk-Matysiak, E.; Weber-Dabrowska, B.; Zaczek, M.; Miedzybrodzki, R.; Letkiewicz, S.; Lusiak-Szelchowska, M.; Gorski, A. Prospects of phage application in the treatment of acne caused by Propionibacterium acnes. Front Microbiol. 2017, 8, 164. [Google Scholar] [CrossRef]
- Crutchfield, E.D.; Stout, B.F. Treatment of staphylococcic infections of the skin by the bacteriophage. Arch. Derm. Syphilol. 1930, 22, 1010–1021. [Google Scholar] [CrossRef]
- Morozova, V.V.; Kozlova, Y.N.; Ganichev, D.A.; Tikunova, N.V. Bacteriophage treatment of infected diabetic foot ulcers. In Bacteriophage Therapy: From Lab to Clinical Practice; Azeredo, J., Sillankorva, S., Eds.; Humana Press: Clifton, NJ, USA; Springer: New York, NY, USA, 2018; Chapter 13; pp. 151–158. [Google Scholar]
- Fish, R.; Kutter, E.; Wheat, G.; Blasdel, B.; Kutateladze, M.; Kuhl, S. Bacteriophage treatment of intransigent diabetic toe ulcers: A case series. J. Wound Care 2016, 25 (Suppl. 7), S27–S33. [Google Scholar] [CrossRef]
- Rose, T.; Verbeken, G.; de Vos, D.; Merabishvili, M.; Vaneechoutte, M.; Lavigne, R.; Jennes, S.; Zizi, M.; Pirnay, J.-P.P. Experimental phage therapy of burn wound infection: Difficult first steps. Int. J. Burns Trauma 2014, 4, 66–73. [Google Scholar]
- Jennes, S.; Merabishvili, M.; Soentjens, P.; Pang, K.; Rose, T.; Keersebilck, E.; Soete, O.; François, P.-M.; Teodorescu, S.; Verween, G.; et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Crit. Care 2017, 21, 129. [Google Scholar] [CrossRef]
- Duplessis, C. Refractory Pseudomonas bacteremia in a 2-Year-Old sterilized by bacteriophage therapy. J. Pediatr. Infect. Dis. Soc. 2018, 7, 253–256. Available online: https://academic.oup.com/jpids/article/7/3/253/4004747 (accessed on 14 November 2018). [CrossRef]
- Grimont, P.A.; Grimont, F.; Lacut, J.Y.; Issanchou, A.M.; Aubertin, J. Traitement d’une endocardite à Serratia par les bactériophages. Nouvelle Presse Médicale 1978, 7, 2251. [Google Scholar]
- MacNeal, W.J.; Frisbee, F.C.; Blevins, A. Bacteriophage therapy of staphylococcic septic obstruction of cavernous sinus: II. Report of cases. Arch. Ophthalmol. 1943, 29, 341–368. [Google Scholar] [CrossRef]
- MacNeal, W.J. The use of bacteriophages in wound infections and in bacteremias. Am. J. Med. Sci. 1932, 184, 805. [Google Scholar] [CrossRef]
- Raiga, A. Septicémie à staphylocoque guérie par une inoculation intra-veineuse de bactériophage. Bulletin et Mémoire de la Société des Chirurgiens de Paris 1931, 23, 441–447. [Google Scholar]
- Stroj, L.; Weber-Dabrowska, B.; Partyka, K.; Mulczyk, M.; Wojcik, M. Successful treatment with bacteriophage in purulent cerebrospinal meningitis in a newborn. Neurologia i Neurochirurgia Polska 1999, 33, 693–698. [Google Scholar]
- Merril, C.R.; Biswas, B.; Carlton, R.; Jensen, N.C.; Creed, G.J.; Zullo, S.; Adhya, S. Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA 1996, 93, 3188–3192. [Google Scholar] [CrossRef]
- Schless, R.A. Staphylococcus aureus meningitis: Treatment with specific bacteriophage. Am. J. Dis. Child. 1932, 44, 813–822. [Google Scholar] [CrossRef]
- MacNeal, W.J.; Frisbee, F.C.; Blevins, A. Recoveries of staphylococcic meningitis following bacteriophage therapy. Arch. Otolaryngol. 1943, 37, 507–525. [Google Scholar] [CrossRef]
- Martin, P. Méningite posttraumatique à pyocyaniques traitée par un bactériophage adapté intrarachidien. Acta Chir. Belg. 1959, 58, 85–90. [Google Scholar] [PubMed]
- Sedallian, P.; Bertoye, A.; Gauthier, J.; Muller, M.; Courtieu, A.L. Méningite purulente à colibacilles traitée par un bactériophage adapté intrarachidien. Lyon Med. 1958, 66, 509–512. [Google Scholar]
- Beckerich, A.; Hauduroy, P. Le traitement des infections urinaires à colibacille par le bactériophage de d’Hérelle. Bull. Med. 1923, 37, 273. [Google Scholar]
- Schultz, E.W. Bacteriophage as a therapeutic agent in genito-urinary infections: Part I. Calif. West. Med. 1932, 36, 33–37. [Google Scholar]
- Schultz, E.W. Bacteriophage as a therapeutic agent in genito-urinary infections: Part II. Calif. West. Med. 1932, 36, 91–96. [Google Scholar]
- Wehrbein, H.; Nerb, L. Bacteriophage in the treatment of urinary infections: With an appendix on the technique of phage preparation. Am. J. Surg. 1935, 29, 48–53. [Google Scholar] [CrossRef]
- Ujmajuridze, A.; Jvania, G.; Chanishvili, N.; Goderdzishvili, M.; Sybesma, W.; Managadze, L.; Chkhotua, A.; Kessler, T. Phage therapy for the treatment for urinary tract infection: Results of in-vitro screenings and in-vivo application using commercially available bacteriophage cocktails. Eur. Urol. Suppl. 2016, 15, e265. [Google Scholar] [CrossRef]
- Khawaldeh, A.; Morales, S.; Dillon, B.; Alavidze, Z.; Ginn, A.; Thomas, L.; Chapman, S.; Dublanchet, A.; Smithyman, A.; Iredell, J. Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J. Med. Microbiol. 2011, 60, 1697–1700. [Google Scholar] [CrossRef]
- Melo, L.D.; Veiga, P.; Cerca, N.; Kropinski, A.M.; Almeida, C.; Azeredo, J.; Sillankorva, S. Development of a phage cocktail to control Proteus mirabilis catheter-associated urinary tract infections. Front. Microbiol. 2016, 7, 1024. [Google Scholar] [CrossRef] [PubMed]
- Nzakizwanayo, J.; Hanin, A.; Alves, D.R.; McCutcheon, B.; Dedi, C.; Salvage, J.; Knox, K.; Stewart, B.; Metcalfe, A.; Clark, J.; et al. Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob. Agents Chemother. 2015, 60, 1530–1536. [Google Scholar] [CrossRef] [PubMed]
- Letkiewicz, S.; Miedzybrodzki, R.; Fortuna, W.; Weber-Dabrowska, B.; Górski, A. Eradication of Enterococcus faecalis by phage therapy in chronic bacterial prostatitis-case report. Folia Microbiol. 2009, 54, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Letkiewicz, S.; Międzybrodzki, R.; Kłak, M.; Jończyk, E.; Weber-Dąbrowska, B.; Górski, A. The perspectives of the application of phage therapy in chronic bacterial prostatitis. FEMS Immunol. Med. Microbiol. 2010, 60, 99–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furr, C.L.; Lehman, S.M.; Morales, S.P.; Rosas, F.X.; Gaidamaka, A.; Bilinsky, I.P.; Grint, P.C.; Schooley, R.T.; Aslam, S. Bacteriophage treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a cystic fibrosis patient. In 41st European Cystic Fibrosis Conference. J. Cystic Fibrosis 2018, 17 (Suppl. 3), S1–S150. [Google Scholar] [CrossRef]
- Kvachadze, L.; Balarjishvili, N.; Meskhi, T.; Tevdoradze, E.; Skhirtladze, N.; Pataridze, T.; Adamia, R.; Topuria, T.; Kutter, E.; Rohde, C.; et al. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb. Biotechnol. 2011, 4, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Pherecydes Pneumophage. Available online: https://www.pherecydes-pharma.com/pneumophage.html (accessed on 14 November 2018).
- Zhang, G.; Zhao, Y.; Paramasivan, S.; Richter, K.; Morales, S.; Wormald, P.; Vreugde, S. Bacteriophage effectively kills multidrug resistant Staphylococcus aureus clinical isolates from chronic rhinosinusitis patients. Int. Forum Allergy Rhinol. 2018, 8, 406–414. [Google Scholar] [CrossRef]
- Fong, S.A.; Drilling, A.; Morales, S.; Cornet, M.E.; Woodworth, B.A.; Fokkens, W.J.; Psaltis, A.J.; Vreugde, S.; Wormald, P.-J. Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front. Cell. Infect. Microbiol. 2017, 7, 418. [Google Scholar] [CrossRef]
- Drilling, A.J.; Ooi, M.L.; Miljkovic, D.; James, C.; Speck, P.; Vreugde, S.; Clark, J.; Wormald, P.J. Long-term safety of topical bacteriophage application to the frontal sinus region. Front. Cell. Infect. Microbiol. 2017, 7, 49. [Google Scholar] [CrossRef]
- Drilling, A.; Morales, S.; Jardeleza, C.; Vreugde, S.; Speck, P.; Wormald, P.J. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am. J. Rhinol. Allergy 2014, 28, 3–11. [Google Scholar] [CrossRef]
- Town, A.E.; Frisbee, F.C. Bacteriophage in ophthalmology. Arch. Ophthalmol. 1932, 8, 683–689. [Google Scholar] [CrossRef]
- Fadlallah, A.; Chelala, E.; Legeais, J.-M.M. Corneal infection therapy with topical bacteriophage administration. Open Ophthalmol. J. 2015, 9, 167–168. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Targonska, M.; Borysowski, J.; Weber-Dabrowska, B. The potential of phage therapy in bacterial infections of the eye. Ophthalmologica 2009, 223, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Shlezinger, M.; Houri-Haddad, Y.; Coppenhagen-Glazer, S.; Resch, G.; Que, Y.A.; Beyth, S.; Dorfman, E.; Hazan, R.; Beyth, N. Phage therapy: A new horizon in the antibacterial treatment of oral pathogens. Curr. Top. Med. Chem. 2017, 17, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, L.; Shlezinger, M.; Beyth, S.; Houri-Haddad, Y.; Coppenhagen-Glazer, S.; Beyth, N.; Hazan, R. Phage therapy against Enterococcus faecalis in dental root canals. J. Oral Microbiol. 2016, 8, 32157. [Google Scholar] [CrossRef] [PubMed]
- Ly, M.; Abeles, S.R.; Boehm, T.K.; Robles-Sikisaka, R.; Naidu, M.; Santiago-Rodriguez, T.; Pride, D.T. Altered oral viral ecology in association with periodontal disease. mBio 2014, 5, e01133-14. [Google Scholar] [CrossRef] [PubMed]
- Rossitto, M.; Fiscarelli, E.V.; Rosati, P. Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An argumentative review. Front. Microbiol. 2018, 9, 775. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Uchiyama, J.; Takemura-Uchiyama, I.; Ujihara, T.; Daibata, M. Isolation of bacteriophages for fastidious bacteria. In Bacteriophage Therapy: From Lab to Clinical Practice, Humana Press ed.; Azeredo, J., Sillankorva, S., Eds.; Springer: New York, NY, USA, 2018; Chapter 1; pp. 3–10. [Google Scholar]
- Wan, X.Q.; Li, H.M.; Bai, Y. Advances in phage therapy of Helicobacter pylori infection. World Chin. J. Digestol. 2009, 17, 3623–3626. [Google Scholar] [CrossRef]
- Shan, J.; Teulieres, L.; Clockie, M. Is there a place for bacteriophages in diagnosis and treatment of Lyme Disease? In Proceedings of the Lymes Disease Action Conference, International Lyme And Associated Diseases Society (ILADS), Philadelphia, PA, USA, 3–6 November 2016. [Google Scholar]
- Zakowska, D.; Bartoszcze, M.; Niemcewicz, M.; Bielawska-Drozd, A.; Knap, J.; Cieslik, P.; Chomiczewski, K.; Kocik, J. Bacillus anthracis infections—New possibilities of treatment. Ann. Agric. Environ. Med. AAEM 2015, 22, 202–207. [Google Scholar] [CrossRef]
- Filippov, A.A.; Kirill, V.S.; Mikeljon, P.N. Bacteriophages against biothreat bacteria: Diagnostic, environmental and therapeutic applications. J. Bioterrorism Biodefense 2013, S3, 010. [Google Scholar] [CrossRef]
- Kremers, H.M.; Nwojo, M.E.; Ransom, J.E.; Wood-Wentz, C.M.; Melton, L.J., III; Huddleston, P.M., III. Trends in the epidemiology of osteomyelitis: A population-based study, 1969 to 2009. J. Bone Jt. Surg. 2015, 97, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Grammatico-Guillon, L.; Baron, S.; Gettner, S.; Lecuyer, A.-I.; Gaborit, C.; Rosset, P.; Rusch, E.; Bernard, L. Surveillance hospitalière des infections ostéo-articulaires en France: Analyse des données médico-administratives, PMSI 2008. Bull. Epidémiol. Hosp. 2013, 4–5, 39–44. [Google Scholar]
- Albee, F.H. The treatment of osteomyelitis by bacteriophage. J. Bone Jt. Surg. 1933, 15, 58–66. [Google Scholar]
- Kutateladze, M. Experience of the Eliava Institute in bacteriophage therapy. Virol. Sin. 2015, 30, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Slopek, S.; Weber Dabrowska, B.; Dabrowski, M.; Kucharewicz-Krukowska, A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Archivum Immunologiae et Therapiae Experimentalis 1987, 37, 369–383. [Google Scholar]
- Chanishvili, N.; Sharp, R. Bacteriophage therapy: Experience from the Eliva Institute, Georgia. Microbiol. Aust. 2008, 20, 96–101. [Google Scholar]
- Raiga, A. Considérations Générales sur L’ostéomyélite Aiguë et son Traitement par le Bactériophage de d’Hérelle. In Proceedings of the 52ème Congrès Français de Chirurgie, Paris, France, 4 October 1949. [Google Scholar]
- Lang, G.; Kher, P.; Mathevon, H.; Clavert, J.M.; Sejourne, P.; Pointu, J. Bactériophages et chirurgie orthopédique—A propos de sept cas. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1979, 65, 33–37. [Google Scholar]
- Chanishvili, N. Phage Therapy—History from Twort and d’Herelle through soviet experience to current approaches. Adv. Virus Res. 2012, 82, 3–40. [Google Scholar]
- Ferry, T.; Boucher, F.; Fevre, C.; Perpoint, T.; Chateau, J.; Petitjean, C.; Josse, J.; Chidiac, C.; L’hostis, G.; Leboucher, G.; et al. Innovations for the treatment of a complex bone and joint infection due to XDR Pseudomonas aeruginosa including local application of a selected cocktail of bacteriophages. J. Antimicrob. Chemother. 2018, 73, 2901–2903. [Google Scholar] [CrossRef]
- Yilmaz, C.; Colak, M.; Yilmaz, B.C.; Ersoz, G.; Kutateladze, M.; Gozlugol, M. Bacteriophage therapy in implant-related infections: An experimental study. J. Bone Jt. Surg. 2013, 95, 117–125. [Google Scholar] [CrossRef]
- Kishor, C.; Mishra, R.R.; Saraf, S.K.; Kumar, M.; vastav, A.K.; Nath, G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J. Med. Res. 2016, 143, 87–94. [Google Scholar] [PubMed]
- Kaur, S.; Harjai, K.; Chhibber, S. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS ONE 2016, 11, e0157626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sun, L.; Wei, R.; Gao, Q.; He, T.; Xu, C.; Liu, X.; Wang, R. Study of intracellular Staphylococcus aureus control by virulent bacteriophage within MAC-T bovine mammary epithelial cells. Antimicrob. Agents Chemother. 2017, 61, e01990-16. [Google Scholar] [CrossRef] [PubMed]
- Pherecydes Phosa. Available online: https://www.pherecydes-pharma.com/phosa-collaborative-project.html (accessed on 14 November 2018).
- Vieu, J.-F.; Guillermet, F.; Minck, R.; Nicolle, P. Données actuelles sur les applications thérapeutiques des bactériophages. Bull. Acad. Nat. Méd. 1979, 1, 61–66. [Google Scholar]
- Houssaye, C. Evaluation In vitro D’une Suspension de Bactériophages Anti-Staphylococcique à Usage Thérapeutique. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2004. [Google Scholar]
- Comeau, A.; Tétart, F.; Trojet, S.; Prere, M.; One, K.H. Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2007, 2, e799. [Google Scholar] [CrossRef] [PubMed]
- Kamal, F.; Dennis, J.J. Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Appl. Environ. Microbiol. 2015, 81, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712. [Google Scholar] [CrossRef]
- Valério, N.; Oliveira, C.; Jesus, V.; Branco, T.; Pereira, C.; Moreirinha, C.; Almeida, A. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res. 2017, 240, 8–17. [Google Scholar] [CrossRef]
- Knezevic, P.; Curcin, S.; Aleksic, V.; Petrusic, M.; Vlaski, L. Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Res. Microbiol. 2013, 164, 55–60. [Google Scholar] [CrossRef]
- Kumaran, D.; Taha, M.; Yi, Q.; Ramirez-Arcos, S.; Diallo, J.-S.; Carli, A.; Abdelbary, H. Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front. Microbiol. 2018, 9, 127. [Google Scholar] [CrossRef]
- Chan, B.K.; Abedon, S.T. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 2015, 21, 85–99. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.J.; Ward, C.L.; Romano, D.R.; Hurtgen, B.J.; Hardy, S.K.; Woodbury, R.L.; Trevino, A.V.; Rathbone, C.R.; Wenke, J.C. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskeletal Disord. 2013, 14, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Tevdoradze, E.; Kvachadze, L.; Kutateladze, M.; Stewart, C.R. Bactericidal genes of staphylococcal bacteriophage Sb-1. Curr. Microbiol. 2014, 68, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, K. Interaction of bacteriophages with the immune system: Induction of bacteriophage-specific antibodies. Methods Mol. Biol. 2018, 1693, 139–150. [Google Scholar] [PubMed]
- Aragón, I.M.; Herrera-Imbroda, B.; Queipo-Ortuño, M.I.; Castillo, E.; Moral, J.S.; Gómez-Millán, J.; Yucel, G.; Lara, M.F. The urinary tract microbiome in health and disease. Eur. Urol. Focus 2018, 4, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Byrd, A.L.; Park, M.; Program, N.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef]
- Miller-Ensminger, T.; Garretto, A.; Brenner, J.; Thomas-White, K.; Zambom, A.; Wolfe, A.J.; Putonti, C. Bacteriophages of the urinary microbiome. J. Bacterial. 2018, 200, JB-00738. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, G.J.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Xian, P.; Xuedong, Z.; Xin, X.; Yuqing, L.; Yan, L.; Jiyao, L.; Xiaoquan, S.; Shi, H.; Jian, X.; Ga, L. The Oral Microbiome Bank of China. Int. J. Oral Sci. 2018, 10, 16. [Google Scholar] [CrossRef]
- Kong, H.H. Skin microbiome: Genomics-based insights into the diversity and role of skin microbes. Trends Mol. Med. 2011, 17, 320–328. [Google Scholar] [CrossRef]
- Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, K.M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 2017, 23, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Brotman, R.M. Translating the vaginal microbiome: Gaps and challenges. Genome Med. 2016, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Manrique, P.; Bolduc, B.; Walk, S.T.; van der Oost, J.; de Vos, W.M.; Young, M.J. Healthy human gut phageome. Proc. Natl. Acad. Sci. USA 2016, 113, 10400–10405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarate, S.; Taboada, B.; Yocupicio-Monroy, M.; Arias, C.F. Human virome. Arch. Med. Res. 2017, 48, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Microbiome: Phage community in the gut. Nat. Rev. Microbiol. 2016, 14, 605. [CrossRef] [PubMed]
- Kashyap, P.C.; Chia, N.; Nelson, H.; Segal, E.; Elinav, E. Microbiome at the frontier of personalized medicine. Mayo Clin. Proc. 2017, 92, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, K.S.; Yang, M.; Mao, C. Phage-enabled nanomedicine: From probes to therapeutics in precision medicine. Angew. Chem. Int. Engl. 2017, 56, 1964–1992. [Google Scholar] [CrossRef]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.-F.F. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef]
- Mirzaei, M.K.; Maurice, C.F. Ménage à trois in the human gut: Interactions between host, bacteria and phages. Nat. Rev. Microbiol. 2017, 15, 397–408. [Google Scholar] [CrossRef]
- Waldschmitt, N.; Metwaly, A.; Fischer, S.; Haller, D. Microbial signatures as a predictive tool in IBD-Pearls and pitfalls. Inflamm. Bowel Dis. 2018, 24, 1123–1132. [Google Scholar] [CrossRef]
- Knights, D.; Parfrey, L.W.; Zaneveld, J.; Lozupone, C.; Knight, R. Human-associated microbial signatures: Examining their predictive value. Cell Host Microbe 2011, 10, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Carding, S.; Davis, N.; Hoyles, L. Review article: The human intestinal virome in health and disease. Aliment. Pharmacol. Ther. 2017, 46, 800–815. [Google Scholar] [CrossRef] [PubMed]
- Galtier, M.; Sordi, L.; Sivignon, A.; de Vallée, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn’s disease. J. Crohn’s Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Burgos, M.J.; Gálvez, A.; Pulido, R. The human gastrointestinal tract and oral microbiota in inflammatory bowel disease: A state of the science review. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2017, 125, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Nale, J.Y.; Spencer, J.; Hargreaves, K.R.; Buckley, A.M.; Trzepiński, P.; Douce, G.R.; Clokie, M.R. Bacteriophage Combinations Significantly Reduce Clostridium dificile Growth In vitro and Proliferation In vivo. Antimicrob. Agents Chemother. 2016, 60, 968–981. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.C.; Alemayehu, D.; Ross, R.; Hill, C. Gut solutions to a gut problem: Bacteriocins, probiotics and bacteriophage for control of Clostridium difficile infection. J. Med. Microbiol. 2013, 62, 1369–1378. [Google Scholar] [CrossRef] [PubMed]
- Thanki, A.M.; Taylor-Joyce, G.; Dowah, A.; Nale, J.Y.; Malik, D.; Clokie, M.R.J. Unravelling the links between phage adsorption and successful infection in Clostridium difficile. Viruses 2018, 10, 411. [Google Scholar] [CrossRef]
- Shan, J.; Ramachandran, A.; Thanki, A.M.; Vukusic, F.B.; Barylski, J.; Clokie, M.R. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci. Rep. 2018, 8, 5091. [Google Scholar] [CrossRef] [Green Version]
- Ott, S.J.; Waetzig, G.H.; Rehman, A.; Moltzau-Anderson, J.; Bharti, R.; Grasis, J.A.; Cassidy, L.; Tholey, A.; Fickenscher, H.; Seegert, D.; et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 2017, 152, 799–811. [Google Scholar] [CrossRef]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; Available online: http://www.who.int/antimicrobial-resistance/global-action-plan/en/ (accessed on 14 November 2018).
N | Age; Sex | Symptom Onset; PT Start | Clinical Symptoms | Bacteria | Phage Therapy | Outcome |
---|---|---|---|---|---|---|
1 | 20; F | 2004; 2006 | Suppurating chronic otitis; intense pain | S. aureus | Commercial anti-S. aureus suspension; ear drop instillations (15 days) | 2006 Complete cure |
2 | 44; M | 2005; 2008 | Accidental fall; multiple fractures (n = 37); amputation considered | S. aureus | Commercial anti-S. aureus and Pyophage suspensions; administered peroperatively over several weeks | 2009 Wound closure and complete cure |
3 | 25; M | 2007; 2008 | Road accident causing multiple trauma; uncontrolled pelvic bone infection | S. aureus P. aeruginosa | Anti-S. aureus and anti-P. aeruginosa phage suspension; administered peroperatively and via catheter in days following operation (Belgium). | 2010 Complete cure |
4 | 40; F | 1995; 2009 | Fall leading to complex fracture of the right foot; Planned amputation | S. aureus | Commercial anti-S. aureus suspension administered peroperatively and via catheter in the days following operation | 2009 Wound closure and complete cure |
5 | 60; M | 2008; 2009 | Fistulised abdominal plaque infection; continuous suppressive antibiotic administration | Methicillin resistant S. aureus (MRSA) | Commercial anti-S. aureus suspension administered via fistula | 2010 No recurrence without any antibiotic over 4 years |
6 | 80; F | 2008; 2010 | Knee prosthesis infection unsuitable for surgery | P. aeruginosa | Commercial broad spectrum multi-bacteriophage suspension; Knee joint injection | 2012 P. aeruginosa clearance, but appearance of Enterococcus sp. |
7 | 61; F | 1995/2005; 2010 | Operated tongue cancer; Dental extraction, jaw fracture, osteo-synthesis and fistulised infection | S. aureus (MRSA) | Commercial anti-S. aureus suspension administered peroperatively | 2011 Complete cure |
8 | 90; F | 2009/2010; 2010 | Femoral fracture under hip prosthesis; Drained hematoma and antibiotherapy-infection | S. aureus (MRSA) | Commercial anti-S. aureus suspension administered peroperatively by flooding the infection site and via catheter in the 10 days following the operation | 2011 Complete cure, rapid recovery without recurrence after 1 year with retention of the hip prosthesis and osteosynthesis material in situ |
9 | 20; M | 2012; 2012 | Chronic Ulcerative Colitis with liver complications. Severe weight loss (54 kg down from 80 kg). Poor digestion of food. | E. coli, Proteus spp. S. aureus (Urine) S. aureus (skin) E. coli, Proteus vulgaris, Proteus mirabilis (stool) | Treatment in Tbilisi (Georgia) with 2 commercially available phage suspensions plus special customised phage suspension. Probiotics, enzymes and Camelyn immune stimulant also given. Treatment lasted 1 month. | 2012 Healing with sterilisation of urine, reduction of E. coli and P. vulgaris growth from high (108) to low (<102) in stool. Weight gain to 72 kg by end of treatment. Digestion improved but still poor |
10 | 72; F | 2009; 2013 | Left knee prosthesis infection | Staphylococcus sp. | Commercial anti-S. aureus suspension administered peroperatively by flooding the infection site | 2013 Initial partial disinfection with closure of several fistula followed by stabilisation |
11 | 84; M | 1943/2012; 2013 | Osteomyelitis of the left tibia; Fistula next to the wound | S. aureus (MRSA) | Initial phage therapy treatment in Tbilisi via fistula with temporary improvement, followed by surgical follow up intervention in France in 2013; Commercial anti-S. aureus suspension administered peroperatively by flooding the infection site | 2013 Complete cure |
12 | 58; F | 2000; 2013 | Acoustic neuroma with nosocomial infection of the ENT and ophthalmic regions | S. aureus | Treatment in Tbilisi with locally produced phage suspensions administered locally and orally | 2013 Complete cure allowing an ophthalmic intervention of the retina that had been delayed for several years |
13 | 68; F | 1973; 2015 | Operated left tibia fracture, followed by re-opened bone infection 2013: Travel to Phage Therapy Center (Tbilisi) | S. aureus | Surgery, phage therapy with commercial staphylococcal phage suspension, and antibiotherapy | 2016 Disappearance of S. aureus replaced by P. aeruginosa & Streptococcus constellatus, followed by complete cure without recurrence |
14 | 84; M | 2006 & 2015; 2016 | Prostate adenectomy with chronic urinary infection and bacteraemia | Extended-spectrum beta-lacatamase E. coli (ESBL) | Anti-E. coli phage suspension administered per os and rectally | 2018 Complete cure |
15 | 86; M | 2016; 2018 | Recurring prostatitis with bacteraemia | P. aeruginosa | Commercial multi-phage suspension administered orally and rectally | 2018 Complete cure with disappearance of any urinary infection for the first time in 2 years |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patey, O.; McCallin, S.; Mazure, H.; Liddle, M.; Smithyman, A.; Dublanchet, A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses 2019, 11, 18. https://doi.org/10.3390/v11010018
Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses. 2019; 11(1):18. https://doi.org/10.3390/v11010018
Chicago/Turabian StylePatey, Olivier, Shawna McCallin, Hubert Mazure, Max Liddle, Anthony Smithyman, and Alain Dublanchet. 2019. "Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections" Viruses 11, no. 1: 18. https://doi.org/10.3390/v11010018
APA StylePatey, O., McCallin, S., Mazure, H., Liddle, M., Smithyman, A., & Dublanchet, A. (2019). Clinical Indications and Compassionate Use of Phage Therapy: Personal Experience and Literature Review with a Focus on Osteoarticular Infections. Viruses, 11(1), 18. https://doi.org/10.3390/v11010018