Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Characteristics of Study Participants
2.3. Collection of Serum Samples
2.4. Algorithm for Determination of Seropositivity and Considerations for Testing
2.5. Development of Whole Virus ELISA
2.5.1. HCoV-NL63 Virus Culture for ELISA Antigen
2.5.2. Virus Concentration by Ultracentrifugation
2.5.3. Virus Inactivation
2.5.4. Viral Protein Quantification
2.5.5. Western Blot Analysis
2.5.6. Optimization of ELISA Protocol
2.5.7. Final ELISA Testing Procedure
2.6. Recombinant Spike Immunofluorescence Testing
2.7. Ethical Issues
2.8. Data Analysis
3. Results
3.1. Distribution of Samples Collected
3.2. Analysis of Virus Protein
Western Blot Analysis
3.3. Determination of ELISA Testing Conditions
3.4. Potential Cross Reactivity with Other Coronaviruses
3.5. Evaluation of ELISA with HCoV-NL63-rIFA Test of Human Samples
3.6. HCoV-NL63 in Livestock Samples
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
- -
- Coating: Coat Antigen on Nunc MicroWell™ MaxiSorp™ Plates (Sigma–Aldrich, M9410 Sigma) diluted in NaCO3 buffer (0.1 M, PH 9.6) 50 µL/well O/N at 4 °C
- -
- Antigen: 0.1% β-propiolactone-inactivated MERS CoV (3 µg/mL in NaCO3 buffer)
- -
- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- -
- Blocking: 100 µL/well PBS/T-5% milk powder → 1 h
- -
- Washing: 5× with 100 µl/well PBS/0.1% Tween [PBS/T]
- -
- Sera: Test dilutions at 100 µL/well: 1:50, 1:200, 1:800 (Screening human sera: 1:400 should be fine) for 1 h.
- ∘
- Dilution in PBS/T-1% milk powder
- ∘
- Negative controls: ONLY PBS/T-1% milk
- ∘
- Positive control: 1:800
- -
- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- -
- Conjugate: anti-human IgG HRP labeled 1:4000 in PBS/T-1% milk for a maximum of 1 h (100 µL/well)
- -
- Washing: 5× with 100 µL/well PBS/0.1% Tween [PBS/T]
- -
- Substrate: 100 µL/well (TMB, Microgen). Keep out of light. The reaction is stopped with 2 M H2SO4 (100 µL/well).
- ∘
- The time is dependent on the sera. Positive human sera should be detectable within 3–5 min. In case there is no signal after 30 min, you can be sure the test is negative.
- -
- Read: ELISA-Reader protocol “Screening ELISA”:
- ∘
- 450 nm yellow color
- ∘
- 630 nm background plates
- -
- Calculation: The 630 nm values (plate background) were subtracted from the 450 nm (sample) values
- ∘
- Negative control: secondary antibody only, or better if possible, a negative serum (Should also be negative for other Coronaviruses like HCoV-OC43)
- ∘
- Subtract negative control mean value from the other values
References
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.-W.; Wong, B.H.; Wong, S.S.; Leung, S.-Y.; Chan, K.-H.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.Y.; Li, J.L.; Yang, X.L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013, 503, 535–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaki, A.M.; Van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.; Lau, S.K.; Wernery, U.; Wong, E.Y.; Tsang, A.K.; Johnson, B.; Yip, C.C.; Lau, C.C.; Sivakumar, S.; Cai, J.-P. Novel betacoronavirus in dromedaries of the Middle East, 2013. Emerg. Infect. Dis. 2014, 20, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Drexler, J.F.; Corman, V.M.; Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 2014, 101, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Woo, P.C.; Lau, S.K.; Huang, Y.; Yuen, K.-Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. 2009, 234, 1117–1127. [Google Scholar] [CrossRef] [PubMed]
- Van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, E.; Hardie, A.; Claas, E.; Simmonds, P.; Templeton, K. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010, 48, 2940–2947. [Google Scholar] [CrossRef] [PubMed]
- Liljander, A.; Meyer, B.; Jores, J.; Müller, M.A.; Lattwein, E.; Njeru, I.; Bett, B.; Drosten, C.; Corman, V.M. MERS-CoV Antibodies in Humans, Africa, 2013–2014. Emerg. Infect. Dis. 2016, 22, 1086–1089. [Google Scholar] [CrossRef] [Green Version]
- Fielding, B.C. Human coronavirus NL63: A clinically important virus? Future Microbiol. 2011, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, R.; Jebbink, M.F.; El Idrissi, N.B.; Pyrc, K.; Müller, M.A.; Kuijpers, T.W.; Zaaijer, H.L.; van der Hoek, L. Human coronavirus NL63 and 229E seroconversion in children. J. Clin. Microbiol. 2008, 46, 2368–2373. [Google Scholar] [CrossRef] [PubMed]
- Pfefferle, S.; Oppong, S.; Drexler, J.F.; Gloza-Rausch, F.; Ipsen, A.; Seebens, A.; Muller, M.A.; Annan, A.; Vallo, P.; Adu-Sarkodie, Y. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 2009, 15, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Eckerle, I.; Memish, Z.A.; Liljander, A.M.; Dijkman, R.; Jonsdottir, H.; Ngeiywa, K.J.J.; Kamau, E.; Younan, M.; Al Masri, M. Link of a ubiquitous human coronavirus to dromedary camels. Proc. Natl. Acad. Sci. USA 2016, 113, 9864–9869. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Mishra, N.; Olival, K.J.; Fagbo, S.F.; Kapoor, V.; Epstein, J.H.; AlHakeem, R.; Al Asmari, M.; Islam, A.; Kapoor, A. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infect. Dis. 2013, 19, 1819–1823. [Google Scholar] [CrossRef] [PubMed]
- Azhar, E.I.; El-Kafrawy, S.A.; Farraj, S.A.; Hassan, A.M.; Al-Saeed, M.S.; Hashem, A.M.; Madani, T.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 2014, 370, 2499–2505. [Google Scholar] [CrossRef]
- Menachery, V.D.; Yount, B.L., Jr.; Debbink, K.; Agnihothram, S.; Gralinski, L.E.; Plante, J.A.; Graham, R.L.; Scobey, T.; Ge, X.-Y.; Donaldson, E.F.; et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 2015, 21, 1508–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Y.; Zheng, B.; He, Y.; Liu, X.; Zhuang, Z.; Cheung, C.; Luo, S.; Li, P.; Zhang, L.; Guan, Y. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 2003, 302, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Vijgen, L.; Keyaerts, E.; Moës, E.; Thoelen, I.; Wollants, E.; Lemey, P.; Vandamme, A.-M.; Van Ranst, M. Complete genomic sequence of human coronavirus OC43: Molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 2005, 79, 1595–1604. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 2005, 102, 7988–7993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Yan, M.; Yang, L.; Ding, B.; He, B.; Wang, Y.; Liu, X.; Liu, C.; Zhu, H.; You, B.; et al. SARS-associated Coronavirus Transmitted from Human to Pig. Emerg. Infect. Dis. 2005, 11, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Gorse, G.J.; Patel, G.B.; Vitale, J.N.; O’Connor, T.Z. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin. Vaccine Immunol. 2010, 17, 1875–1880. [Google Scholar] [CrossRef] [PubMed]
- Huynh, J.; Li, S.; Yount, B.; Smith, A.; Sturges, L.; Olsen, J.C.; Nagel, J.; Johnson, J.B.; Agnihothram, S.; Gates, J.E. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol. 2012, 86, 12816–12825. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.A.; van der Hoek, L.; Voss, D.; Bader, O.; Lehmann, D.; Schulz, A.R.; Kallies, S.; Suliman, T.; Fielding, B.C.; Drosten, C. Human coronavirus NL63 open reading frame 3 encodes a virion-incorporated N-glycosylated membrane protein. Virol. J. 2010, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Guo, X.; Esper, F.; Weibel, C.; Kahn, J.S. Seroepidemiology of group I human coronaviruses in children. J. Clin. Virol. 2007, 40, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, E.F.; Yount, B.; Sims, A.C.; Burkett, S.; Pickles, R.J.; Baric, R.S. Systematic assembly of a full-length infectious clone of human coronavirus NL63. J. Virol. 2008, 82, 11948–11957. [Google Scholar] [CrossRef] [PubMed]
- Boniotti, M.B.; Papetti, A.; Lavazza, A.; Alborali, G.; Sozzi, E.; Chiapponi, C.; Faccini, S.; Bonilauri, P.; Cordioli, P.; Marthaler, D. Porcine Epidemic Diarrhea Virus and Discovery of a Recombinant Swine Enteric Coronavirus, Italy. Emerg. Infect. Dis. 2016, 22, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.; García-Bocanegra, I.; Wernery, U.; Wernery, R.; Sieberg, A.; Müller, M.A.; Drexler, J.F.; Drosten, C.; Eckerle, I. Serologic assessment of possibility for MERS-CoV infection in equids. Emerg. Infect. Dis. 2015, 21, 181–182. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Ferreira, D. Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf. B Biointerfaces 2006, 53, 193–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, B.; Müller, M.A.; Corman, V.M.; Reusken, C.B.; Ritz, D.; Godeke, G.J.; Lattwein, E.; Kallies, S.; Siemens, A.; van Beek, J. Antibodies against MERS coronavirus in dromedaries, United Arab Emirates, 2003 and 2013. Emerg. Infect. Dis. 2014, 20, 552–559. [Google Scholar] [CrossRef]
- Binger, T.; Annan, A.; Drexler, J.F.; Müller, M.A.; Kallies, R.; Adankwah, E.; Wollny, R.; Kopp, A.; Heidemann, H.; Dei, D. A novel rhabdovirus isolated from the straw-colored fruit bat Eidolon helvum, with signs of antibodies in swine and humans. J. Virol. 2015, 89, 4588–4597. [Google Scholar] [CrossRef] [PubMed]
- Drosten, C.; Meyer, B.; Müller, M.A.; Corman, V.M.; Al-Masri, M.; Hossain, R.; Madani, H.; Sieberg, A.; Bosch, B.J.; Lattwein, E. Transmission of MERS-coronavirus in household contacts. N. Engl. J. Med. 2014, 371, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.L.; Loa, C.C.; Tsai, S.C.; Wu, C.C.; Bryan, T.A.; Thacker, H.L.; Hooper, T.; Schrader, D. Characterization of turkey coronavirus from turkey poults with acute enteritis. Vet. Microbiol. 2002, 84, 179–186. [Google Scholar] [CrossRef]
- Rodak, L.; Šmíd, B.; Nevorankova, Z.; Valíček, L.; Smitalova, R. Use of monoclonal antibodies in blocking ELISA detection of transmissible gastroenteritis virus in faeces of piglets. Zoonoses Public Health 2005, 52, 105–111. [Google Scholar] [CrossRef] [PubMed]
- James, K.T.; Cooney, B.; Agopsowicz, K.; Trevors, M.A.; Mohamed, A.; Stoltz, D.; Hitt, M.; Shmulevitz, M. Novel high-throughput approach for purification of infectious virions. Sci. Rep. 2016, 6, 36826. [Google Scholar] [CrossRef] [PubMed]
- Sastre, P.; Dijkman, R.; Camuñas, A.; Ruiz, T.; Jebbink, M.F.; van der Hoek, L.; Vela, C.; Rueda, P. Differentiation between Human Coronaviruses NL63 and 229E Using a Novel Double-Antibody Sandwich Enzyme-Linked Immunosorbent Assay Based on Specific Monoclonal Antibodies. Clin. Vaccine Immunol. 2011, 18, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Tedder, R.; Gilson, R.; Briggs, M.; Loveday, C.; Cameron, C.; Garson, J.; Kelly, G.; Weller, I. Hepatitis C virus: Evidence for sexual transmission. BMJ 1991, 302, 1299–1302. [Google Scholar] [CrossRef]
- OIE (World Organization for Animal Health). Manual of Diagnostic Tests for Aquatic Animals. Available online: http://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_quality_management.htm (accessed on 27 September 2018).
- He, Y.; Zhou, Y.; Siddiqui, P.; Niu, J.; Jiang, S. Identification of immunodominant epitopes on the membrane protein of the severe acute respiratory syndrome-associated coronavirus. J. Clin. Microbiol. 2005, 43, 3718–3726. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Wong, B.H.; Tsoi, H.-W.; Fung, A.M.; Chan, K.-H.; Tam, V.K.; Peiris, J.M.; Yuen, K.-Y. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol. 2004, 42, 2306–2309. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.; Wu, H.; Luo, B.; Chen, J.; Li, W.; Jiang, S. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: Implication for developing SARS diagnostics and vaccines. J. Immunol. 2004, 173, 4050–4057. [Google Scholar] [CrossRef]
- Moreno, J.L.; Zúñiga, S.; Enjuanes, L.; Sola, I. Identification of a coronavirus transcription enhancer. J. Virol. 2008, 82, 3882–3893. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, W.; Wang, W.; Zhao, Z.; Zhang, Y.; Lv, P.; Ren, F.; Gao, X.-M. Comparison of immunoglobulin G responses to the spike and nucleocapsid proteins of severe acute respiratory syndrome (SARS) coronavirus in patients with SARS. Clin. Vaccine Immunol. 2007, 14, 839–846. [Google Scholar] [CrossRef]
- Li, S.; Lin, L.; Wang, H.; Yin, J.; Ren, Y.; Zhao, Z.; Wen, J.; Zhou, C.; Zhang, X.; Li, X. The epitope study on the SARS-CoV nucleocapsid protein. Genom. Proteom. Bioinform. 2003, 1, 198–206. [Google Scholar] [CrossRef]
- Zuwała, K.; Golda, A.; Kabala, W.; Burmistrz, M.; Zdzalik, M.; Nowak, P.; Kedracka-Krok, S.; Zarebski, M.; Dobrucki, J.; Florek, D. The nucleocapsid protein of human coronavirus NL63. PLoS ONE 2015, 10, e0117833. [Google Scholar] [CrossRef] [PubMed]
- Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res. 2006, 66, 193–292. [Google Scholar] [PubMed]
- Arndt, A.L.; Larson, B.J.; Hogue, B.G. A conserved domain in the coronavirus membrane protein tail is important for virus assembly. J. Virol. 2010, 84, 11418–11428. [Google Scholar] [CrossRef] [PubMed]
- Ono, E.; Lafer, M.M.; Weckx, L.Y.; Granato, C.; Moraes-Pinto, M.I.D. A simple and cheaper in house varicella zoster virus antibody indirect ELISA. Rev. Inst. Med. Trop. Sao Paulo 2004, 46, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Crowther, J.R. Indirect ELISA. In ELISA; Springer: Berlin, Germany, 1995; pp. 131–160. [Google Scholar]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Xi, J.; Shi, Q.; Lu, Q. Development of an indirect competitive elisa kit for the rapid detection of benzopyrene residues. Food Anal. Methods 2016, 9, 966–973. [Google Scholar] [CrossRef]
- Gan, S.D.; Patel, K.R. Enzyme immunoassay and enzyme-linked immunosorbent assay. J. Investig. Dermatol. 2013, 133, e12. [Google Scholar] [CrossRef]
- Beasley, D.W.; Holbrook, M.R.; Da Rosa, A.P.T.; Coffey, L.; Carrara, A.-S.; Phillippi-Falkenstein, K.; Bohm, R.P.; Ratterree, M.S.; Lillibridge, K.M.; Ludwig, G.V. Use of a recombinant envelope protein subunit antigen for specific serological diagnosis of West Nile virus infection. J. Clin. Microbiol. 2004, 42, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Näslund, K.; Blomqvist, G.; Vernersson, C.; Zientara, S.; Bréard, E.; Valarcher, J.F. Development and evaluation of an indirect enzyme-linked immunosorbent assay for serological detection of Schmallenberg virus antibodies in ruminants using whole virus antigen. Acta Vet. Scand. 2014, 56, 71. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.M.; Dey, S.; Rai, A.; Kataria, J. Recombinant haemagglutinin neuraminidase antigen-based single serum dilution ELISA for rapid serological profiling of Newcastle disease virus. J. Virol. Methods 2006, 138, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Rosati, S.; Kwang, J.; Tolari, F.; Keen, J. A comparison of whole virus and recombinant transmembrane ELISA and immunodiffusion for detection of ovine lentivirus antibodies in Italian sheep flocks. Vet. Res. Commun. 1994, 18, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Shi, M.; Chommanard, C.; Queen, K.; Zhang, J.; Markotter, W.; Kuzmin, I.V.; Holmes, E.C.; Tong, S. Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J. Virol. 2017, JVI, 01953-16. [Google Scholar] [CrossRef] [PubMed]
- Herzog, P. Reverse Genetics for Human Coronavirus NL63; Universitäts-und Landesbibliothek Bonn: Bonn, Germany, 2015. [Google Scholar]
- Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 2005, 24, S223–S227. [Google Scholar] [CrossRef]
- Decaro, N.; Mari, V.; Campolo, M.; Lorusso, A.; Camero, M.; Elia, G.; Martella, V.; Cordioli, P.; Enjuanes, L.; Buonavoglia, C. Recombinant canine coronaviruses related to transmissible gastroenteritis virus of swine are circulating in dogs. J. Virol. 2009, 83, 1532–1537. [Google Scholar] [CrossRef]
- Herrewegh, A.A.; Smeenk, I.; Horzinek, M.C.; Rottier, P.J.; de Groot, R.J. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J. Virol. 1998, 72, 4508–4514. [Google Scholar]
Characteristic | Number | Percent |
---|---|---|
Age categories (years) | ||
10–44 | 171 | 69 |
45–80 | 72 | 29 |
Missing | 5 | 2.0 |
Sex | ||
Male | 194 | 78.2 |
Female | 51 | 20.6 |
Missing | 3 | 1.2 |
Serum ID | Origin | rIFA Testing | ||
---|---|---|---|---|
HCoV-NL63 | HCoV-229E | HCoV-OC43 | ||
Serum 1 | Germany | + | + | + |
Serum 2 | China | − | − | + |
Serum 3 | Germany | − | + | + |
Serum 4 | Germany | − | + | + |
Cut Point Percentile | Cut Point Optical Density | Number of Samples with OD above Cut Point | rIFA Result | |
---|---|---|---|---|
Positive n (%) | Negative n (%) | |||
75th | 0.54 | 50 | 42 (84) | 8 (16) |
80th | 0.55 | 38 | 33 (86.8) | 5 (13.3) |
85th | 0.58 | 26 | 23 (88.5) | 3 (11.5) |
90th | 0.61 | 18 | 16 (88.9) | 2 (11.1) |
95th | 0.64 | 8 | 8 (100) | 0 (0) |
Livestock | Number | 95th Percentile Cut Point | Number of Samples with OD above Cut Point | rIFA Result |
---|---|---|---|---|
Goat | 320 | 0.44 | 16 | All negative |
Swine | 397 | 0.53 | 19 | All negative |
Sheep | 422 | 0.15 | 21 | All negative |
Donkey | 19 | - | - | All negative |
Cattle | 169 | - | - | All negative |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Duah, P.; Meyer, B.; Sylverken, A.; Owusu, M.; Gottula, L.T.; Yeboah, R.; Lamptey, J.; Frimpong, Y.O.; Burimuah, V.; Folitse, R.; et al. Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63. Viruses 2019, 11, 43. https://doi.org/10.3390/v11010043
El-Duah P, Meyer B, Sylverken A, Owusu M, Gottula LT, Yeboah R, Lamptey J, Frimpong YO, Burimuah V, Folitse R, et al. Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63. Viruses. 2019; 11(1):43. https://doi.org/10.3390/v11010043
Chicago/Turabian StyleEl-Duah, Philip, Benjamin Meyer, Augustina Sylverken, Michael Owusu, Lina Theresa Gottula, Richmond Yeboah, Jones Lamptey, Yaw Oppong Frimpong, Vitus Burimuah, Raphael Folitse, and et al. 2019. "Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63" Viruses 11, no. 1: 43. https://doi.org/10.3390/v11010043
APA StyleEl-Duah, P., Meyer, B., Sylverken, A., Owusu, M., Gottula, L. T., Yeboah, R., Lamptey, J., Frimpong, Y. O., Burimuah, V., Folitse, R., Agbenyega, O., Oppong, S., Adu-Sarkodie, Y., & Drosten, C. (2019). Development of a Whole-Virus ELISA for Serological Evaluation of Domestic Livestock as Possible Hosts of Human Coronavirus NL63. Viruses, 11(1), 43. https://doi.org/10.3390/v11010043