Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Bovine Epithelial Cultures from Soft Palate
2.3. Experimental Design and FMDV Infection
2.4. RNA and Protein Isolation
2.5. Library Preparation and Sequencing
2.6. Statistical Analysis of Differential Gene Expression
2.7. Quantitative Reverse Transcription PCR (RT-qPCR)
2.8. Protein Identification and Quantification, and Statistical Analysis of Differential Protein Expression
2.9. Data Availability
3. Results
3.1. A Cell Culture Model for FMDV Persistence
3.2. RNA Sequencing and Exploratory Data Analysis
3.3. Differential Expression during Acute and Persistent FMDV Infection and associated Pathways
3.4. RT-qPCR and Quantitative Proteomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Knight-Jones, T.J.; Rushton, J. The economic impacts of foot and mouth disease—What are they, how big are they and where do they occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Zell, R.; Delwart, E.; Gorbalenya, A.E.; Hovi, T.; King, A.M.Q.; Knowles, N.J.; Lindberg, A.M.; Pallansch, M.A.; Palmenberg, A.C.; Reuter, G.; et al. ICTV Virus Taxonomy Profile: Picornaviridae. J. Gen. Virol. 2017, 98, 2421–2422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forss, S.; Strebel, K.; Beck, E.; Schaller, H. Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res. 1984, 12, 6587–6601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandersen, S.; Mowat, N. Foot-and-mouth disease: Host range and pathogenesis. Curr. Top. Microbiol. Immunol. 2005, 288, 9–42. [Google Scholar] [CrossRef] [PubMed]
- Thomson, G.R.; Vosloo, W.; Bastos, A.D. Foot and mouth disease in wildlife. Virus Res. 2003, 91, 145–161. [Google Scholar] [CrossRef]
- Grubman, M.J.; Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (OIE). Foot and mouth disease (infection with foot and mouth disease virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual); OIE: Paris, France, 2018; 2.1.8. [Google Scholar]
- Arzt, J.; Belsham, G.J.; Lohse, L.; Botner, A.; Stenfeldt, C. Transmission of Foot-and-Mouth Disease from Persistently Infected Carrier Cattle to Naive Cattle via Transfer of Oropharyngeal Fluid. mSphere 2018, 3. [Google Scholar] [CrossRef]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I. Aspects of the persistence of foot-and-mouth disease virus in animals—The carrier problem. Microbes Infect. 2002, 4, 1099–1110. [Google Scholar] [CrossRef]
- Pacheco, J.M.; Smoliga, G.R.; O’Donnell, V.; Brito, B.P.; Stenfeldt, C.; Rodriguez, L.L.; Arzt, J. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression. PLoS ONE 2015, 10, e0125698. [Google Scholar] [CrossRef]
- Cox, S.J.; Voyce, C.; Parida, S.; Reid, S.M.; Hamblin, P.A.; Paton, D.J.; Barnett, P.V. Protection against direct-contact challenge following emergency FMD vaccination of cattle and the effect on virus excretion from the oropharynx. Vaccine 2005, 23, 1106–1113. [Google Scholar] [CrossRef]
- Cox, S.J.; Voyce, C.; Parida, S.; Reid, S.M.; Hamblin, P.A.; Hutchings, G.; Paton, D.J.; Barnett, P.V. Effect of emergency FMD vaccine antigen payload on protection, sub-clinical infection and persistence following direct contact challenge of cattle. Vaccine 2006, 24, 3184–3190. [Google Scholar] [CrossRef] [PubMed]
- Juleff, N.; Windsor, M.; Reid, E.; Seago, J.; Zhang, Z.; Monaghan, P.; Morrison, I.W.; Charleston, B. Foot-and-mouth disease virus persists in the light zone of germinal centres. PLoS ONE 2008, 3, e3434. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Xin, X.; Wang, H.; Li, J.; Hao, Y.; Wang, M.; Zheng, C.; Shen, C. Cellular response to persistent foot-and-mouth disease virus infection is linked to specific types of alterations in the host cell transcriptome. Sci. Rep. 2018, 8, 5074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Weiss, M.; Grubman, M.J.; de los Santos, T. Differential gene expression in bovine cells infected with wild type and leaderless foot-and-mouth disease virus. Virology 2010, 404, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Kopliku, L.; Relmy, A.; Romey, A.; Gorna, K.; Zientara, S.; Bakkali-Kassimi, L.; Blaise-Boisseau, S. Establishment of persistent foot-and-mouth disease virus (FMDV) infection in MDBK cells. Arch. Virol. 2015, 160, 2503–2516. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Pacheco, J.M.; Larocco, M.; Gladue, D.P.; Pauszek, S.J.; Smoliga, G.; Krug, P.W.; Baxt, B.; Borca, M.V.; Rodriguez, L. Virus-host interactions in persistently FMDV-infected cells derived from bovine pharynx. Virology 2014, 468–470, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Hägglund, S.; Laloy, E.; Näslund, K.; Pfaff, F.; Eschbaumer, M.; Romey, A.; Relmy, A.; Rikberg, A.; Svensson, A.; Huet, H.; et al. Model of persistent foot-and–mouth disease virus infection in multilayered cells derived from bovine dorsal soft palate. Transbound. Emerg. Dis. 2018. under review. [Google Scholar]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Yu, G.; He, Q.Y. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. Biosyst. 2016, 12, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Eymann, C.; Lassek, C.; Wegner, U.; Bernhardt, J.; Fritsch, O.A.; Fuchs, S.; Otto, A.; Albrecht, D.; Schiefelbein, U.; Cernava, T.; et al. Symbiotic Interplay of Fungi, Algae, and Bacteria within the Lung Lichen Lobaria pulmonaria L. Hoffm. as Assessed by State-of-the-Art Metaproteomics. J. Proteome Res. 2017, 16, 2160–2173. [Google Scholar] [CrossRef] [PubMed]
- López-Mondéjar, R.; Zühlke, D.; Větrovský, T.; Becher, D.; Riedel, K.; Baldrian, P. Decoding the complete arsenal for cellulose and hemicellulose deconstruction in the highly efficient cellulose decomposer Paenibacillus O199. Biotechnol. Biofuels 2016, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavelka, N.; Pelizzola, M.; Vizzardelli, C.; Capozzoli, M.; Splendiani, A.; Granucci, F.; Ricciardi-Castagnoli, P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinform. 2004, 5, 203. [Google Scholar] [CrossRef]
- Vizcaino, J.A.; Csordas, A.; del-Toro, N.; Dianes, J.A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44, D447–D456. [Google Scholar] [CrossRef]
- Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [Google Scholar] [CrossRef]
- Ni, Z.; Yang, F.; Cao, W.; Zhang, X.; Jin, Y.; Mao, R.; Du, X.; Li, W.; Guo, J.; Liu, X.; et al. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus. Virol. Sin. 2016, 31, 249–257. [Google Scholar] [CrossRef]
- Arzt, J.; Juleff, N.; Zhang, Z.; Rodriguez, L.L. The pathogenesis of foot-and-mouth disease I: Viral pathways in cattle. Transbound. Emerg. Dis. 2011, 58, 291–304. [Google Scholar] [CrossRef] [PubMed]
- Stenfeldt, C.; Eschbaumer, M.; Smoliga, G.R.; Rodriguez, L.L.; Zhu, J.; Arzt, J. Clearance of a persistent picornavirus infection is associated with enhanced pro-apoptotic and cellular immune responses. Sci. Rep. 2017, 7, 17800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eschbaumer, M.; Stenfeldt, C.; Smoliga, G.R.; Pacheco, J.M.; Rodriguez, L.L.; Li, R.W.; Zhu, J.; Arzt, J. Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx. PLoS ONE 2016, 11, e0162750. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Hendrich, B.D.; Rupert, J.L.; Lafreniere, R.G.; Xing, Y.; Lawrence, J.; Willard, H.F. The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 1992, 71, 527–542. [Google Scholar] [CrossRef]
- Feng, Q.; Hato, S.V.; Langereis, M.A.; Zoll, J.; Virgen-Slane, R.; Peisley, A.; Hur, S.; Semler, B.L.; van Rij, R.P.; van Kuppeveld, F.J. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012, 2, 1187–1196. [Google Scholar] [CrossRef]
- Kato, H.; Takeuchi, O.; Sato, S.; Yoneyama, M.; Yamamoto, M.; Matsui, K.; Uematsu, S.; Jung, A.; Kawai, T.; Ishii, K.J.; et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006, 441, 101–105. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, G.; Yang, F.; Cao, W.; Mao, R.; Du, X.; Zhang, X.; Li, C.; Li, D.; Zhang, K.; et al. Foot-and-Mouth Disease Virus Viroporin 2B Antagonizes RIG-I-Mediated Antiviral Effects by Inhibition of Its Protein Expression. J. Virol. 2016, 90, 11106–11121. [Google Scholar] [CrossRef] [Green Version]
- Lin, R.; Heylbroeck, C.; Pitha, P.M.; Hiscott, J. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 1998, 18, 2986–2996. [Google Scholar] [CrossRef]
- Liu, S.; Chen, J.; Cai, X.; Wu, J.; Chen, X.; Wu, Y.T.; Sun, L.; Chen, Z.J. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife 2013, 2, e00785. [Google Scholar] [CrossRef] [Green Version]
- Belgnaoui, S.M.; Paz, S.; Hiscott, J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr. Opin. Immunol. 2011, 23, 564–572. [Google Scholar] [CrossRef]
- De Los Santos, T.; de Avila Botton, S.; Weiblen, R.; Grubman, M.J. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J. Virol. 2006, 80, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Nfon, C.K.; Ferman, G.S.; Toka, F.N.; Gregg, D.A.; Golde, W.T. Interferon-alpha production by swine dendritic cells is inhibited during acute infection with foot-and-mouth disease virus. Viral. Immunol. 2008, 21, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Eschbaumer, M.; Stenfeldt, C.; Rekant, S.I.; Pacheco, J.M.; Hartwig, E.J.; Smoliga, G.R.; Kenney, M.A.; Golde, W.T.; Rodriguez, L.L.; Arzt, J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naive cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet. Res. 2016, 12, 205. [Google Scholar] [CrossRef] [PubMed]
- Bin, L.; Li, X.; Richers, B.; Streib, J.E.; Hu, J.W.; Taylor, P.; Leung, D.Y.M. Ankyrin repeat domain 1 regulates innate immune responses against herpes simplex virus 1: A potential role in eczema herpeticum. J. Allergy Clin. Immunol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Burns, D.K.; Swerlick, R.A.; Presky, D.H. Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J. Biol. Chem. 1995, 270, 10236–10245. [Google Scholar] [CrossRef]
- Samaras, S.E.; Almodovar-Garcia, K.; Wu, N.; Yu, F.; Davidson, J.M. Global deletion of Ankrd1 results in a wound-healing phenotype associated with dermal fibroblast dysfunction. Am. J. Pathol. 2015, 185, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Borozan, I.; Feld, J.; Sun, J.; Tannis, L.L.; Coltescu, C.; Heathcote, J.; Edwards, A.M.; McGilvray, I.D. Hepatic gene expression discriminates responders and nonresponders in treatment of chronic hepatitis C viral infection. Gastroenterology 2005, 128, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- MacQuillan, G.C.; Mamotte, C.; Reed, W.D.; Jeffrey, G.P.; Allan, J.E. Upregulation of endogenous intrahepatic interferon stimulated genes during chronic hepatitis C virus infection. J. Med. Virol. 2003, 70, 219–227. [Google Scholar] [CrossRef]
- Au, W.C.; Moore, P.A.; Lowther, W.; Juang, Y.T.; Pitha, P.M. Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes. Proc. Natl. Acad. Sci. USA 1995, 92, 11657–11661. [Google Scholar] [CrossRef]
- Wilson, E.B.; Yamada, D.H.; Elsaesser, H.; Herskovitz, J.; Deng, J.; Cheng, G.; Aronow, B.J.; Karp, C.L.; Brooks, D.G. Blockade of chronic type I interferon signaling to control persistent LCMV infection. Science 2013, 340, 202–207. [Google Scholar] [CrossRef]
- AlHossiny, M.; Luo, L.; Frazier, W.R.; Steiner, N.; Gusev, Y.; Kallakury, B.; Glasgow, E.; Creswell, K.; Madhavan, S.; Kumar, R.; et al. Ly6E/K Signaling to TGFbeta Promotes Breast Cancer Progression, Immune Escape, and Drug Resistance. Cancer Res. 2016, 76, 3376–3386. [Google Scholar] [CrossRef] [PubMed]
- Schoggins, J.W.; Wilson, S.J.; Panis, M.; Murphy, M.Y.; Jones, C.T.; Bieniasz, P.; Rice, C.M. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472, 481–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, B.A.; Cherry, S. Flavivirus internalization is regulated by a size-dependent endocytic pathway. Proc. Natl. Acad. Sci. USA 2018, 115, 4246–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.C.; Guo, H.C.; Sun, S.Q.; Jin, Y.; Wei, Y.Q.; Feng, X.; Yao, X.P.; Cao, S.Z.; Liu, D.X.; Liu, X.T. Productive Entry of Foot-and-Mouth Disease Virus via Macropinocytosis Independent of Phosphatidylinositol 3-Kinase. Sci. Rep. 2016, 6, 19294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voehringer, D.W.; Hirschberg, D.L.; Xiao, J.; Lu, Q.; Roederer, M.; Lock, C.B.; Herzenberg, L.A.; Steinman, L.; Herzenberg, L.A. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc. Natl. Acad. Sci. USA 2000, 97, 2680–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moos, M.; Tacke, R.; Scherer, H.; Teplow, D.; Früh, K.; Schachner, M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 1988, 334, 701–703. [Google Scholar] [CrossRef] [PubMed]
- Blaheta, R.A.; Beecken, W.D.; Engl, T.; Jonas, D.; Oppermann, E.; Hundemer, M.; Doerr, H.W.; Scholz, M.; Cinatl, J. Human cytomegalovirus infection of tumor cells downregulates NCAM (CD56): A novel mechanism for virus-induced tumor invasiveness. Neoplasia 2004, 6, 323–331. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [Green Version]
- Feller, L.; Khammissa, R.A.; Wood, N.H.; Lemmer, J. Epithelial maturation and molecular biology of oral HPV. Infect. Agent Cancer 2009, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Prato Murphy, M.L.; Forsyth, M.A.; Belsham, G.J.; Salt, J.S. Localization of foot-and-mouth disease virus RNA by in situ hybridization within bovine tissues. Virus Res. 1999, 62, 67–76. [Google Scholar] [CrossRef]
- Stenfeldt, C.; Eschbaumer, M.; Rekant, S.I.; Pacheco, J.M.; Smoliga, G.R.; Hartwig, E.J.; Rodriguez, L.L.; Arzt, J. The Foot-and-Mouth Disease Carrier State Divergence in Cattle. J. Virol. 2016, 90, 6344–6364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, A.A. Mechanisms and strategies of papillomavirus replication. Biol. Chem. 2017, 398, 919–927. [Google Scholar] [CrossRef] [PubMed]
Metabolic Complex | Pathway | 24 hpi | 28 dpi |
---|---|---|---|
Innate immune system | DDX58/IFIH1-mediated induction of interferon-alpha/beta | DDX58, DHX58, HERC5, IFIH1, IFNB1, IRF1, IRF3, IRF7, ISG15, NFKBIA, NFKBIB, NLRC5, TNFAIP3, TRIM25, UBA7 | DDX58, DHX58, HERC5, IFIH1, IRF7, ISG15, UBA7 |
Cytokine signaling in immune system | Interferon alpha, beta signaling | ADAR, GBP2, IFI27, IFI35, IFI6, IFIT2, IFIT3, IFITM1, IFITM2, IFNB1, IRF1, IRF3, IRF5, IRF7, IRF9, ISG15, MX1, MX2, OAS2, PSMB8, RNASEL, RSAD2, SOCS1, STAT2, USP18, XAF1 | GBP2, IFI27, IFI35, IFI6, IFIT2, IFITM1, IRF7, IRF9, ISG15, MX1, MX2, OAS2, RSAD2, USP18, XAF1 |
Interferon gamma signaling | GBP2, IFI27, IFI35, IFI6, IFIT2, IFITM1, IRF7, IRF9, ISG15, MX1, MX2, OAS2, RSAD2, USP18, XAF1 | GBP2, GBP4, GBP5, IRF7, IRF9, NCAM1, OAS2, SP100 | |
Interleukin-1 family signaling | IL18, IL18BP, MAP3K8, NFKBIA, NFKBIB, PELI1, PSMB10, PSMB8, PSMB9, PSME2, PSMF1 | ||
Interleukin-10 signaling | CCL2, CCL5, CXCL10, CXCL2, CXCL8, IL18, IL6 | CCL5 | |
Antiviral mechanism by IFN-stimulated genes/ISG15 antiviral mechanism | DDX58, EIF2AK2, HERC5, IRF3, ISG15, MX1, MX2, TRIM25, UBA7, USP18 | DDX58, HERC5, ISG15, MX1, MX2, UBA7, USP18 | |
Adaptive immune system | Class I MHC mediated antigen processing and presentation | AREL1, CTSS, DTX3L, ERAP2, HECTD2, HERC5, HERC6, PSMB10, PSMB8, PSMB9, PSME2, PSMF1, RBCK1, RNF114, RNF19B, SOCS1, TAP1, TRIM21, UBA7 | DTX3L, HERC5, HERC6, UBA7 |
Activation of NF-kappaB in B cells | NFKBIA, NFKBIB, NFKBIE, PSMB10, PSMB8, PSMB9, PSME2, PSMF1 | ||
Programmed cell death | Programmed cell death | CASP7, CFLAR, PMAIP1, PSMB10, PSMB8, PSMB9, PSME2, PSMF1, RIPK3, TNFSF10 | TNFSF10 |
Gene | Description | LFC† | Adjusted p-value | Enriched DAVID Terms |
---|---|---|---|---|
NCAM1 | neural cell adhesion molecule 1 | −4.48 | 3.35 × 10−4 | signal peptide, secreted |
ANKRD1 | ankyrin repeat domain 1 | −4.19 | 6.61 × 10−5 | positive regulation of apoptotic process |
SFRP2 | secreted frizzled related protein 2 | −4.16 | 3.31 × 10−5 | signal peptide, secreted, positive regulation of apoptotic process |
COL1A1 | collagen type I alpha 1 chain | −3.50 | 4.16 × 10−4 | signal peptide, secreted |
COL3A1 | collagen type III alpha 1 chain | −3.28 | 3.23 × 10−4 | signal peptide, secreted |
MYLK | myosin light chain kinase | −3.26 | 9.61 × 10−7 | |
HTRA3 | HtrA serine peptidase 3 | −3.21 | 2.93 × 10−7 | signal peptide, secreted |
ALDH1A2 | aldehyde dehydrogenase 1 family member A2 | −3.09 | 7.83 × 10−5 | positive regulation of apoptotic process |
LY6E | lymphocyte antigen 6 family member E | 3.45 | 2.59 × 10−6 | signal peptide |
FBP1 | fructose-bisphosphatase 1 | 4.09 | 2.94 × 10−5 |
Protein | Description | 24 hpi Mean NSAF | 28 dpi Mean NSAF | NSAF28 dpi/NSAF24 hpi |
---|---|---|---|---|
ATAD1 | ATPase Family, AAA Domain Containing 1 | 2.50 × 10−4 ** | 1.56 × 10−4 | 0.6 |
CAG23917.14 | FMDV polyprotein | 3.16 × 10−4 ** | 0 † | n.a. |
HERC6 | HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 6 | 2.46 × 10−5 | 2.74 × 10−4 ** | 11.2 |
IFI44 | Interferon Induced Protein 44 | 1.12 × 10−4 * | 4.58 × 10−4 ** | 4.1 |
IFI44L | Interferon Induced Protein 44 like | 8.32 × 10−5 * | 6.98 × 10−4 ** | 8.4 |
IFIT1 | Interferon-Induced Protein with Tetratricopeptide Repeats 1 | 5.41 × 10−4 ** | 7.62 × 10−5 * | 0.1 |
IFIT2 | Interferon Induced Protein With Tetratricopeptide Repeats 2 | 2.31 × 10−4 ** | 9.34 × 10−5 * | 0.4 |
IFIT3 | Interferon Induced Protein With Tetratricopeptide Repeats 3 | 3.78 × 10−4 ** | 0 † | n.a. |
ISG15 | ISG15 Ubiquitin-Like Modifier | 3.53 × 10−3 ** | 7.52 × 10−3 ** | 2.1 |
MX1 | MX Dynamin Like GTPase 1 | 8.42 × 10−4 ** | 2.27 × 10−3 ** | 2.7 |
MX2 | MX Dynamin Like GTPase 2 | 2.44 × 10−4 ** | 5.04 × 10−4 ** | 2.1 |
OAS1X | 2′-5′-Oligoadenylate Synthetase 1 X | 2.47 × 10−4 ** | 4.85 × 10−4 ** | 2.0 |
OAS1Y | 2′-5′-Oligoadenylate Synthetase 1 Y | 2.31 × 10−4 ** | 3.68 × 10−4 ** | 1.6 |
RSAD2 | Radical S-Adenosyl Methionine Domain Containing 2 | 5.69 × 10−4 ** | 0 † | n.a. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfaff, F.; Hägglund, S.; Zoli, M.; Blaise-Boisseau, S.; Laloy, E.; Koethe, S.; Zühlke, D.; Riedel, K.; Zientara, S.; Bakkali-Kassimi, L.; et al. Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses 2019, 11, 53. https://doi.org/10.3390/v11010053
Pfaff F, Hägglund S, Zoli M, Blaise-Boisseau S, Laloy E, Koethe S, Zühlke D, Riedel K, Zientara S, Bakkali-Kassimi L, et al. Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses. 2019; 11(1):53. https://doi.org/10.3390/v11010053
Chicago/Turabian StylePfaff, Florian, Sara Hägglund, Martina Zoli, Sandra Blaise-Boisseau, Eve Laloy, Susanne Koethe, Daniela Zühlke, Katharina Riedel, Stephan Zientara, Labib Bakkali-Kassimi, and et al. 2019. "Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus" Viruses 11, no. 1: 53. https://doi.org/10.3390/v11010053
APA StylePfaff, F., Hägglund, S., Zoli, M., Blaise-Boisseau, S., Laloy, E., Koethe, S., Zühlke, D., Riedel, K., Zientara, S., Bakkali-Kassimi, L., Valarcher, J. -F., Höper, D., Beer, M., & Eschbaumer, M. (2019). Proteogenomics Uncovers Critical Elements of Host Response in Bovine Soft Palate Epithelial Cells Following In Vitro Infection with Foot-And-Mouth Disease Virus. Viruses, 11(1), 53. https://doi.org/10.3390/v11010053