Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures
2.2. Histological Examination
2.3. Clinical Specimens and Viruses
2.4. Virus Inoculation
2.5. RNase Treatment
2.6. RNA Extraction from Viruses
2.7. Amplification of the RV Genome by Real-Time RT-PCR
2.8. Virus Isolation
2.9. Sequencing
2.9.1. RT-PCR and Sanger Sequencing of VP1 to Type RVs
2.9.2. Next-Generation Sequencing
2.10. Statistical Analyses
3. Results
3.1. RV-C9, -C53, and RV-A16 Growth in HBEC3- and HSAEC1-ALI Cultures
3.2. Isolation of Clinical RV-C Isolates Using HBEC3-ALI Culture
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jacobs, S.E.; Lamson, D.M.; St George, K.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev. 2013, 26, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Palmenberg, A.C.; Spiro, D.; Kuzmickas, R.; Wang, S.; Djikeng, A.; Rathe, J.A.; Fraser-Liggett, C.M.; Liggett, S.B. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution. Science 2009, 324, 55–59. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.L.; Knowles, N.J.; Simmonds, P. Proposals for the classification of human rhinovirus species A, B and C into genotypically assigned types. J. Gen. Virol. 2013, 94, 1791–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staunton, D.E.; Merluzzi, V.J.; Rothlein, R.; Barton, R.; Marlin, S.D.; Springer, T.A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989, 56, 849–853. [Google Scholar] [CrossRef]
- Hofer, F.; Gruenberger, M.; Kowalski, H.; Machat, H.; Huettinger, M.; Kuechler, E.; Blaas, D. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. USA 1994, 91, 1839–1842. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, Y.A.; Watters, K.; Ashraf, S.; Griggs, T.F.; Devries, M.K.; Jackson, D.J.; Palmenberg, A.C.; Gern, J.E. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc. Natl. Acad. Sci. USA 2015, 112, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Griggs, T.F.; Bochkov, Y.A.; Basnet, S.; Pasic, T.R.; Brockman-Schneider, R.A.; Palmenberg, A.C.; Gern, J.E. Rhinovirus C targets ciliated airway epithelial cells. Respir. Res. 2017, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Mäkelä, M.J.; Puhakka, T.; Ruuskanen, O.; Leinonen, M.; Saikku, P.; Kimpimäki, M.; Blomqvist, S.; Hyypiä, T.; Arstila, P. Viruses and bacteria in the etiology of the common cold. J. Clin. Microbiol. 1998, 36, 539–542. [Google Scholar] [PubMed]
- Hasegawa, K.; Mansbach, J.M.; Camargo, C.A., Jr. Infectious pathogens and bronchiolitis outcomes. Expert Rev. Anti Infect. Ther. 2014, 12, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Turunen, R.; Vuorinen, T.; Bochkov, Y.; Gern, J.; Jartti, T. Clinical and virus surveillance after the first wheezing episode: special reference to rhinovirus A and C species. Pediatr. Infect. Dis. J. 2017, 36, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; Lemanske, R.F., Jr.; Evans, M.D.; Vang, F.; Pappas, T.; Gangnon, R.; Jackson, D.J.; Gern, J.E. Human rhinovirus species and season of infection determine illness severity. Am. J. Respir. Crit. Care Med. 2012, 186, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Nakagome, K.; Bochkov, Y.A.; Ashraf, S.; Brockman-Schneider, R.A.; Evans, M.D.; Pasic, T.R.; Gern, J.E. Effects of rhinovirus species on viral replication and cytokine production. J. Allergy Clin. Immunol. 2014, 134, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Jartti, T.; Bochkov, Y.A.; Gern, J.E.; Mansbach, J.M.; Piedra, P.A.; Toivonen, L.; Camargo, C.A., Jr. Rhinovirus species in children with severe bronchiolitis: multicenter cohort studies in the US and Finland. Pediatr. Infect. Dis. J. 2019, 38, e59–e62. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, Y.A.; Palmenberg, A.C.; Lee, W.M.; Rathe, J.A.; Amineva, S.P.; Sun, X.; Pasic, T.R.; Jarjour, N.N.; Liggett, S.B.; Gern, J.E. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat. Med. 2011, 17, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, W.; Bernard, K.; Patel, N.; Ulbrandt, N.; Feng, H.; Svabek, C.; Wilson, S.; Stracener, C.; Wang, K.; Suzich, J.; et al. Infection and propagation of human rhinovirus C in human airway epithelial cells. J. Virol. 2012, 86, 13524–13532. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Brockman-Schneider, R.; Bochkov, Y.A.; Pasic, T.R.; Gern, J.E. Biological characteristics and propagation of human rhinovirus-C in differentiated sinus epithelial cells. Virology 2013, 436, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapparel, C.; Sobo, K.; Constant, S.; Huang, S.; Van Belle, S.; Kaiser, L. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro. Virology 2013, 446, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakauchi, M.; Takayama, I.; Takahashi, H.; Semba, S.; Saito, S.; Kubo, H.; Kaida, A.; Oba, K.; Nagata, S.; Odagiri, T.; et al. Development of real-time fluorescent reverse transcription loop-mediated isothermal amplification assays for rhinovirus detection. J. Med. Virol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Shirato, K.; Kawase, M.; Matsuyama, S. Wild-type human coronaviruses prefer cell-surface TMPRSS2 to endosomal cathepsins for cell entry. Virology 2018, 517, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Do, D.H.; Laus, S.; Leber, A.; Marcon, M.J.; Jordan, J.A.; Martin, J.M.; Wadowsky, R.M. A one-step, real-time PCR assay for rapid detection of rhinovirus. J. Mol. Diagn. 2010, 12, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, R.D.; Sheridan, S.; Girard, L.; Sato, M.; Kim, Y.; Pollack, J.; Peyton, M.; Zou, Y.; Kurie, J.M.; Dimaio, J.M.; et al. Immortalization of human bronchial epithelial cells in the absence of viral oncoproteins. Cancer Res. 2004, 64, 9027–9034. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, M.B.; Ramirez, R.D.; Wright, W.E.; Minna, J.D.; Shay, J.W. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells. Differentiation 2006, 74, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Delgado, O.; Kaisani, A.A.; Spinola, M.; Xie, X.J.; Batten, K.G.; Minna, J.D.; Wright, W.E.; Shay, J.W. Multipotent capacity of immortalized human bronchial epithelial cells. PLoS ONE 2011, 6, e22023. [Google Scholar] [CrossRef] [PubMed]
- Bruce, C.; Chadwick, P.; al-Nakib, W. Detection of rhinovirus RNA in nasal epithelial cells by in situ hybridization. J. Virol. Methods 1990, 30, 115–125. [Google Scholar] [CrossRef]
- Bardin, P.G.; Johnston, S.L.; Sanderson, G.; Robinson, B.S.; Pickett, M.A.; Fraenkel, D.J.; Holgate, S.T. Detection of rhinovirus infection of the nasal mucosa by oligonucleotide in situ hybridization. Am. J. Respir. Cell. Mol. Biol. 1994, 10, 207–213. [Google Scholar] [CrossRef] [PubMed]
- De Arruda, E., 3rd; Mifflin, T.E.; Gwaltney, J.M., Jr.; Winther, B.; Hayden, F.G. Localization of rhinovirus replication in vitro with in situ hybridization. J. Med. Virol. 1991, 34, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Arruda, E.; Boyle, T.R.; Winther, B.; Pevear, D.C.; Gwaltney, J.M., Jr.; Hayden, F.G. Localization of human rhinovirus replication in the upper respiratory tract by in situ hybridization. J. Infect. Dis. 1995, 171, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Pitkaranta, A.; Puhakka, T.; Mäkelä, M.J.; Ruuskanen, O.; Carpen, O.; Vaheri, A. Detection of rhinovirus RNA in middle turbinate of patients with common colds by in situ hybridization. J. Med. Virol. 2003, 70, 319–323. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakauchi, M.; Nagata, N.; Takayama, I.; Saito, S.; Kubo, H.; Kaida, A.; Oba, K.; Odagiri, T.; Kageyama, T. Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells. Viruses 2019, 11, 216. https://doi.org/10.3390/v11030216
Nakauchi M, Nagata N, Takayama I, Saito S, Kubo H, Kaida A, Oba K, Odagiri T, Kageyama T. Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells. Viruses. 2019; 11(3):216. https://doi.org/10.3390/v11030216
Chicago/Turabian StyleNakauchi, Mina, Noriyo Nagata, Ikuyo Takayama, Shinji Saito, Hideyuki Kubo, Atsushi Kaida, Kunihiro Oba, Takato Odagiri, and Tsutomu Kageyama. 2019. "Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells" Viruses 11, no. 3: 216. https://doi.org/10.3390/v11030216
APA StyleNakauchi, M., Nagata, N., Takayama, I., Saito, S., Kubo, H., Kaida, A., Oba, K., Odagiri, T., & Kageyama, T. (2019). Propagation of Rhinovirus C in Differentiated Immortalized Human Airway HBEC3-KT Epithelial Cells. Viruses, 11(3), 216. https://doi.org/10.3390/v11030216