Multiple Virus Infections in Western Honeybee (Apis mellifera L.) Ejaculate Used for Instrumental Insemination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Handling
2.2. Nucleic Acid Preparation
2.3. Molecular Detection of Viruses and Sequence Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cobey, S. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007, 38, 390–410. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, H.H. Artificial insemination of the queen bee (Apis. mellifera L.): Morphological basis and results. J. Morphol. 1944, 74, 429–465. [Google Scholar] [CrossRef]
- Laidlaw, H.H. Instrumental insemination of honey bee queens: Its origin and development. Bee World 1987, 68, 71–88. [Google Scholar] [CrossRef]
- Jensen, A.B.; Palmer, K.A.; Chaline, N.; Raine, N.E.; Tofilski, A.; Martin, S.J.; Pedersen, B.V.; Boomsma, J.J.; Ratnieks, F.L.W. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatelite paternity analysis. Conserv. Genet. 2005, 6, 527–537. [Google Scholar] [CrossRef]
- Scharpenberg, H.; Neumann, P.; Van Praagh, J.; Moritz, R.F.A. Reliability of an island mating apiary under routine management. J. Apic. Res. 2006, 45, 153–154. [Google Scholar] [CrossRef]
- Tarpy, D.R.; Nielsen, R.; Nielsen, D.I. A scientific note on the revised estimates of effective paternity frequency in Apis. Insect. Soc. 2004, 51, 203–204. [Google Scholar] [CrossRef]
- Palmer, K.A.; Oldroyd, B.P. Evolution of multiple mating in the genus Apis. Apidologie 2000, 31, 235–248. [Google Scholar] [CrossRef]
- Neumann, P.; Moritz, R.F.A.; van Praagh, J. Queen mating frequency in different types of honey bee mating apiaries. J. Apic. Res. 1999, 38, 11–18. [Google Scholar] [CrossRef]
- Estoup, A.; Solignac, M.; Cornuet, J.-M. Precise assessment on the number of patrilines and of genetic relatedness in honeybee colonies. Proc. R. Soc. Lond. B. 1994, 258, 1–7. [Google Scholar] [CrossRef]
- Pieplow, J.T.; Brausse, J.; van Praagh, J.P.; Moritz, R.F.A.; Erler, S. A scientific note on using large mixed sperm samples in instrumental insemination of honeybee queens. Apidologie 2017, 48, 716–718. [Google Scholar] [CrossRef]
- Van Praagh, J.P.; Brausse, J.; Titera, D. mixing and storing large volumes of honeybee (Apis. meliferra meliferra) sperm integrated in breeding program. Proc. Neth. Entomol. Soc. Meet. 2014, 25, 39–45. [Google Scholar]
- Mutinelli, F. The spread of pathogens through trade in honey bees and their products (including queen bees and semen): overview and recent developments. Rev. Sci. Tech. Off. Int. Epiz. 2011, 30, 257–271. [Google Scholar] [CrossRef]
- Gisder, S.; Genersch, E. Viruses of commercialized insect pollinators. J. Invert. Pathol. 2017, 147, 51–225. [Google Scholar] [CrossRef]
- Meixner, M.D.; Francis, R.M.; Gajda, A.; Kryger, P.; Andonov, S.; Uzunov, A.; Topolska, G.; Costa, C.; Amiri, E.; Berg, S.; et al. Occurence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. J. Apic. Res. 2014, 53, 215–229. [Google Scholar] [CrossRef]
- Amiri, E.; Strand, M.K.; Rueppell, O.; Tarpy, D.R. Queen quality and the impact of honey bee diseases on queen health: Potential for interactions between two major threats to colony health. Insects 2017, 8, 48. [Google Scholar] [CrossRef]
- De Miranda, J.R.; Cordoni, G.; Budge, G. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J. Invertebr. Pathol. 2010, 103, S30–S47. [Google Scholar] [CrossRef] [PubMed]
- Yue, C.; Schrӧder, M.; Bienfeld, K.; Genersch, E. Detection of viral sequences in semen of honeybees (Apis. mellifera): Evidence for vertical transmission of viruses through drones. J. Invertebr. Pathol. 2006, 92, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Pettis, J.S.; Corona, M.; Chen, W.P.; Li, C.J.; Spivak, M.; Visscher, P.K.; de Grandi-Hoffman, G.; Boncristiani, H.; Zhao, Y.; et al. Israeli acute paralysis virus: epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog. 2014, 10, e1004261. [Google Scholar] [CrossRef]
- Gauthier, L.; Cornman, S.; Hartmann, U.; Cousserans, F.; Evans, J.D.; de Miranda, J.R.; Neumann, P. The Apis. mellifera filamentous virus genome. Viruses 2015, 7, 3798–3815. [Google Scholar] [CrossRef]
- Krejčík, J. Situational and Prospective Report of a Honey Bee. Ministry of Agriculture of the Czech Republic, 2017; In Czech. Available online: http://eagri.cz/public/web/mze/lesy/vcelarstvi/situacni-a-vyhledove-zpravy-vcely/vcely-11–2017.html (accessed on 20 September 2018).
- Tyl, J.; Titěra, D. Success in the Instrumental Insemination of Queen Bees: Using Device Model Vesely 2000; Bee Research Institute in Dol: Máslovice, Czech Republic, 2018; ISBN 978-80-87196-13-7. [Google Scholar]
- Berényi, O.; Bakonyi, T.; Derakhshifar, I.; Köglberger, H.; Topolska, G.; Ritter, W.; Pechhacker, H.; Nowotny, N. Phylogenetic analysis of Deformed wing virus genotypes from diverse geographic origins indicates recent global distribution of the virus. Appl. Environ. Microbiol. 2007, 73, 3605. [Google Scholar] [CrossRef]
- Blanchard, P.; Olivier, V.; Iscache, A.-L.; Celle, O.; Schurr, F.; Lallemand, C.; Ribière, M. Improvement of RT-PCR detection of chronic bee paralysis virus (CBPV) required by the description of genomic variability in French CBPV isolates. J. Invert. Pathol. 2008, 97, 182–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, P.; Schurr, F.; Olivier, V.; Celle, O.; Antùnez, K.; Bakonyi, T.; Berthoud, H.; Haubruge, E.; Higes, M.; Kasprzak, S.; et al. Phylogenetic analysis of the RNA-dependent RNA polymerase (RdRp) and a predicted structural protein (pSP) of the Chronic bee paralysis virus (CBPV) isolated from various geographic regions. Virus. Res. 2009, 144, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Cornman, R.S.; Schatz, M.C.; Johnston, J.S.; Chen, Y.-P.; Pettis, J.; Hunt, G.; Bourgeois, L.; Elsik, C.; Anderson, D.; Grozinger, C.M.; et al. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis. mellifera. BMC Genom. 2010, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.; Ravallec, M.; Tournaire, M.; Cousserans, F.; Bergoin, M.; Dainat, B.; de Miranda, J.R. Viruses associated with ovarian degeneration in Apis. mellifera L. queens. PloS ONE 2011, 6, e16217. [Google Scholar] [CrossRef] [PubMed]
- Grabensteiner, E.; Bakonyi, T.; Ritter, W.; Pechhacker, H.; Nowotny, N. Development of a multiplex RT-PCR for the simultaneous detection of three viruses of the honeybee (Apis. mellifera L.): Acute bee paralysis virus, Black queen cell virus and Sacbrood. virus. J. Invert. Pathol. 2007, 94, 222–225. [Google Scholar] [CrossRef]
- Grabensteiner, E.; Ritter, W.; Carter, M.J.; Davison, S.; Pechhacker, H.; Kolodziejek, J.; Boecking, O.; Derakhshifar, I.; Moosbeckhofer, R.; Licek, E.; et al. Sacbrood virus of the honeybee (Apis mellifera): Rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin. Diagn. Lab. Immunol. 2001, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Palacios, G.; Hui, P.; Quan, P.L.; Kalkstein, A.; Honkavuori, K.S.; Bussetti, A.V.; Conlan, S.; Evans, J.; Chen, Y.P.; van Engelsdorp, D.; et al. Genetic analysis of Israel acute paralysis virus: Distinct clusters are circulating in the United States. J. Virol. 2008, 82, 6209. [Google Scholar] [CrossRef]
- Ravoet, J.; Maharramow, J.; Meeus, I.; De Smet, L.; Wenseleers, T.; Smagghe, G.; de Graaf, D.C. Comprehensive bee pathogen screening in Belgium reveals Crithidia. mellificae as a new contributory factor to winter mortality. PLoS ONE 2013, 8, e72443. [Google Scholar] [CrossRef]
- Runckel, C.; Flenniken, M.L.; Engel, J.C.; Ruby, J.G.; Ganem, D.; Andino, R.; De Risi, J.L. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema., and Crithidia. PLoS ONE 2011, 6, e20656. [Google Scholar] [CrossRef]
- Tapaszti, Z.; Forgách, P.; Kővágó, C.; Topolska, G.; Nowotny, N.; Rusvai, M.; Bakonyi, T. Genetic analysis and phylogenetic comparison of Black queen cell virus genotypes. Vet. Microbiol. 2009, 139, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradford, E.; Christie, C.R.; Campbell, E.M.; Bowman, A.S. A real-time PCR method for quantification of the total and major variant strains of the deformed wing virus. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Niño, L.; Jasper, W.C. Improving the future of honey bee breeding programs by employing recent scientific advances. Curr. Opin. Insect. Sci. 2015, 10, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Evans, J.; Feldlaufer, M. Horizontal and vertical transmission of viruses in the honey bee, Apis. mellifera. J. Invertebr. Pathol. 2006, 92, 152–159. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.R.; Fries, I. Venereal and vertical transmission of deformed wing virus in honeybees (Apis. mellifera L.). J. Invertebr. Pathol. 2008, 98, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Amiri, E.; Meixner, M.D.; Kryger, P. Deformed wing virus can be transmitted during natural mating in honey bees and infected the queens. Sci. Rep. 2016, 6, e33065. [Google Scholar] [CrossRef]
- Ravoet, J.; de Smet, L.; Wenseleers, T.; de Graaf, D.C. Vertical transmission of honey bee viruses in a Belgian queen breeding program. BMC Vet. Res. 2015, 11, 61. [Google Scholar] [CrossRef]
- De Miranda, J.R.; Bailey, L.; Ball, B.V.; Blanchard, P.; Budge, G.E.; Chejanovsky, N.; Chen, N.; Chen, Y.; Gauthier, L.; Genersch, E.; et al. Standard methods for virus research in Apis. mellifera. J. Apic. Res. 2013, 52, 1–56. [Google Scholar] [CrossRef]
- Bailey, L.; Woods, R.D. Two more small RNA viruses from honey bees and further observation on sacbrood and acute bee-paralysis viruses. J. Gen. Virol. 1977, 37, 175–182. [Google Scholar] [CrossRef]
- Daughenbaugh, K.F.; Martin, M.; Brutscher, L.M.; Cavigli, I.; Garcia, E.; Lavin, M.; Flenniken, M.L. Honey bee infecting Lake Sinai Virus. Viruses 2015, 7, 3285–3309. [Google Scholar] [CrossRef]
- Spurny, R.; Přidal, A.; Pálková, L.; Kiem, H.K.T.; de Miranda, J.; Plevka, P. Virion structure of Black queen cell virus, a common honeybee pathogen. J. Virol. 2017, 91, e02100-16. [Google Scholar] [CrossRef]
- Li, J.; Wang, T.; Evans, J.D.; Rose, R.; Zhao, Y.; Li, Z.; Li, J.; Huang, S.; Heerman, M.; Rodríguez-García, C.; et al. The phylogeny and pathogenesis of Sacbrood. Virus (SBV) infection in European honey bees, Apis. mellifera. Viruses 2019, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Tencheva, D.; Gauthier, L.; Zappulla, N.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Prevalence and seasonal variations of six bee viruses in Apis. mellifera L. and Varroa. destructor mite populations in France. Appl. Environ. Microbiol. 2004, 70, 7185–7191. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, L.; Tencheva, D.; Tournaire, M.; Dainat, B.; Cousserans, F.; Colin, M.E.; Bergoin, M. Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie 2007, 38, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.L.; Nicolaisen, M.; Kryger, P. Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing virus, Kashmir bee virus and sacbrood virus in honey bees (Apis. mellifera) in Denmark. Apidologie 2008, 39, 310–314. [Google Scholar] [CrossRef]
- Amiri, E.; Meixner, M.; Nielsen, S.L.; Kryger, P. Four categories of viral infection describe the health status of honey bee colonies. PLoS ONE 2015, 10, e0140272. [Google Scholar] [CrossRef]
- Circovic, D.; Stevanovic, J.; Glavinic, U.; Aleksic, N.; Djuric, S.; Aleksic, J.; Stanimirovic, Z. Honey bee viruses in serbian colonies of different strength. PeerJ 2018, 6, e5887. [Google Scholar] [CrossRef]
- Shumkova, R.; Neov, B.; Sirakova, D.; Georgieva, A.; Gadjev, D.; Teofanova, D.; Radoslavov, G.; Bouga, M.; Hristov, P. Molecular detection and phylogenetic assessment of six honeybee viruses in Apis. mellifera L. colonies in Bulgaria. PeerJ 2018, 6, e5077. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pettis, J.S.; Feldlaufer, M.F. Detection of multiple viruses in queens of the honey bee Apis. mellifera L. J. Invertebr. Pathol. 2005, 90, 118–121. [Google Scholar] [CrossRef]
- Ryabov, E.V.; Fannon, J.M.; Moore, J.D.; Wood, G.R.; Evans, D.J. The Iflaviruses Sacbrood virus and deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal and vertical transmission. PeerJ 2016, 4, e1591. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prodělalová, J.; Moutelíková, R.; Titěra, D. Multiple Virus Infections in Western Honeybee (Apis mellifera L.) Ejaculate Used for Instrumental Insemination. Viruses 2019, 11, 306. https://doi.org/10.3390/v11040306
Prodělalová J, Moutelíková R, Titěra D. Multiple Virus Infections in Western Honeybee (Apis mellifera L.) Ejaculate Used for Instrumental Insemination. Viruses. 2019; 11(4):306. https://doi.org/10.3390/v11040306
Chicago/Turabian StyleProdělalová, Jana, Romana Moutelíková, and Dalibor Titěra. 2019. "Multiple Virus Infections in Western Honeybee (Apis mellifera L.) Ejaculate Used for Instrumental Insemination" Viruses 11, no. 4: 306. https://doi.org/10.3390/v11040306
APA StyleProdělalová, J., Moutelíková, R., & Titěra, D. (2019). Multiple Virus Infections in Western Honeybee (Apis mellifera L.) Ejaculate Used for Instrumental Insemination. Viruses, 11(4), 306. https://doi.org/10.3390/v11040306