Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Cultures and Viruses
2.2. Construction of the Recombinant Viruses
2.3. Next-Generation Sequencing (NGS) of ASFV Genomes
2.4. Detection of ASFV-Specific Antibodies
2.5. Animal Experiments
3. Results
3.1. ASFV NL (DP71L) and UK (DP69R) Genes Are Highly Conserved between E70 Isolate and Georgia 2010 Isolates
3.2. Development of the Recombinant Deletion Mutant ASFVs
3.3. Replication of ASFV-G-ΔNL and ASFV-G-ΔUK in Primary Swine Macrophages
3.4. Assessment of Either NL (DP71L) or UK (DP69R) Gene Deletion in ASFV-G Virulence in Swine
3.5. Inclusion of Deletion of NL Gene in the Vaccine Candidate ASFV-G-Δ9GL/ΔUK Affects Its Protective Effect against Challenge with Virulent Parental Virus
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tu, S.L.; Staheli, J.P.; McClay, C.; McLeod, K.; Rose, T.M.; Upton, C. Base-by-base version 3: New comparative tools for large virus genomes. Viruses 2018, 10, 637. [Google Scholar] [CrossRef] [PubMed]
- Costard, S.; Wieland, B.; de Glanville, W.; Jori, F.; Rowlands, R.; Vosloo, W.; Roger, F.; Pfeiffer, D.U.; Dixon, L.K. African swine fever: How can global spread be prevented? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2009, 364, 2683–2696. [Google Scholar] [CrossRef] [PubMed]
- Tulman, E.R.; Delhon, G.A.; Ku, B.K.; Rock, D.L. African swine fever virus In Lesser Known Large Dsdna Viruses; Springer: Berlin/Heidelberg, Germany, 2009; Volume 328, pp. 43–87. [Google Scholar]
- Zsak, L.; Caler, E.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J. Virol. 1998, 72, 1028–1035. [Google Scholar] [PubMed]
- Zsak, L.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. An African swine fever virus virulence-associated gene nl-s with similarity to the herpes simplex virus icp34.5 gene. J. Virol. 1996, 70, 8865–8871. [Google Scholar] [PubMed]
- Moore, D.M.; Zsak, L.; Neilan, J.G.; Lu, Z.; Rock, D.L. The African swine fever virus thymidine kinase gene is required for efficient replication in swine macrophages and for virulence in swine. J. Virol. 1998, 72, 10310–10315. [Google Scholar] [PubMed]
- Lewis, T.; Zsak, L.; Burrage, T.G.; Lu, Z.; Kutish, G.F.; Neilan, J.G.; Rock, D.L. An African swine fever virus ERV1-ALR homologue, 9GL, affects virion maturation and viral growth in macrophages and viral virulence in swine. J. Virol. 2000, 74, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Carlson, J.; Sanford, B.; Alfano, M.; Kramer, E.; Lu, Z.; Arzt, J.; et al. African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (b119l), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J. Virol. 2015, 89, 8556–8566. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.; Holinka, L.G.; Gladue, D.P.; Sanford, B.; Krug, P.W.; Lu, X.; Arzt, J.; Reese, B.; Carrillo, C.; Risatti, G.R.; et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 2015, 89, 6048–6056. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.L.; Goatley, L.C.; Jabbar, T.; Sanchez-Cordon, P.J.; Netherton, C.L.; Chapman, D.A.G.; Dixon, L.K. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J. Virol. 2017, 91, e01428. [Google Scholar] [CrossRef] [PubMed]
- Afonso, C.L.; Zsak, L.; Carrillo, C.; Borca, M.V.; Rock, D.L. African swine fever virus NL gene is not required for virus virulence. J. Gen. Virol. 1998, 79 Pt 10, 2543–2547. [Google Scholar] [CrossRef]
- Sanchez-Cordon, P.J.; Jabbar, T.; Berrezaie, M.; Chapman, D.; Reis, A.; Sastre, P.; Rueda, P.; Goatley, L.; Dixon, L.K. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus benindeltamgf by different doses and routes. Vaccine 2018, 36, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar]
- Borca, M.V.; Holinka, L.G.; Berggren, K.A.; Gladue, D.P. Crispr-cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Sci. Rep. 2018, 8, 3154. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.; O’Donnell, V.; Alfano, M.; Velazquez Salinas, L.; Holinka, L.G.; Krug, P.W.; Gladue, D.P.; Higgs, S.; Borca, M.V. Association of the host immune response with protection using a live attenuated African swine fever virus model. Viruses 2016, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Krug, P.W.; Holinka, L.G.; O’Donnell, V.; Reese, B.; Sanford, B.; Fernandez-Sainz, I.; Gladue, D.P.; Arzt, J.; Rodriguez, L.; Risatti, G.R.; et al. The progressive adaptation of a Georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J. Virol. 2015, 89, 2324–2332. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- O’Donnell, V.; Risatti, G.R.; Holinka, L.G.; Krug, P.W.; Carlson, J.; Velazquez-Salinas, L.; Azzinaro, P.A.; Gladue, D.P.; Borca, M.V. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J. Virol. 2017, 91, e01760. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalvo, F.; Carnero, M.E.; Bruyel, V. Immunological Responses of Pigs to Partially Attenuated ASF and Their Resistance to Virulent Homologous and Heterologous Viruses; FAO: Rome, Italy, 1981. [Google Scholar]
- Sanford, B.; Holinka, L.G.; O’Donnell, V.; Krug, P.W.; Carlson, J.; Alfano, M.; Carrillo, C.; Wu, P.; Lowe, A.; Risatti, G.R.; et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016, 213, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Neilan, J.G.; Zsak, L.; Lu, Z.; Kutish, G.F.; Afonso, C.L.; Rock, D.L. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. J. Virol. 2002, 76, 3095–3104. [Google Scholar] [CrossRef] [PubMed]
Fever | |||||
---|---|---|---|---|---|
Treatment 1 | No. of Survivors/Total | Mean Time to Death (Days ± SD) | No. of Days to Onset (Days ± SD) | Duration No. of Days (Days ± SD) | Maximum Daily Temp (°F ± SD) |
ASFV-G | 0/5 | 5.8 (0.45) | 5 (0.71) | 1 (0.71) | 106.62 (0.77) |
ASFV-G-ΔNL | 4/5 | 4 2 | 6.7 (0.58) | 1.67 (0.58) 3 | 103.68 (1.59) |
ASFV-G-ΔUK | 0/5 | 5 (0) | 4 (1) | 1 (1) | 106.64 (0.32) |
Fever | |||||
---|---|---|---|---|---|
Treatment | No. of Survivors/Total | Mean Time to Death (Days ± SD) | No. of Days to Onset (Days ± SD) | Duration No. of Days (Days ± SD) | Maximum Daily Temp (°F ± SD) |
Mock vaccinated | 0/5 | 6.8 (0.45) | 4.2 (0.45) | 1.8 (0.45) | 104.34 (0.4) |
ASFV-G-Δ9GL/ΔNL/ΔUK 1 | 0/5 | 6 (0) | 4 (0) | 2 (0) | 105.8 (0.54) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Medina, E.; Vuono, E.; O’Donnell, V.; Holinka, L.G.; Silva, E.; Rai, A.; Pruitt, S.; Carrillo, C.; Gladue, D.P.; Borca, M.V. Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses 2019, 11, 599. https://doi.org/10.3390/v11070599
Ramirez-Medina E, Vuono E, O’Donnell V, Holinka LG, Silva E, Rai A, Pruitt S, Carrillo C, Gladue DP, Borca MV. Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses. 2019; 11(7):599. https://doi.org/10.3390/v11070599
Chicago/Turabian StyleRamirez-Medina, Elizabeth, Elizabeth Vuono, Vivian O’Donnell, Lauren G. Holinka, Ediane Silva, Ayushi Rai, Sarah Pruitt, Consuelo Carrillo, Douglas P. Gladue, and Manuel V. Borca. 2019. "Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain" Viruses 11, no. 7: 599. https://doi.org/10.3390/v11070599
APA StyleRamirez-Medina, E., Vuono, E., O’Donnell, V., Holinka, L. G., Silva, E., Rai, A., Pruitt, S., Carrillo, C., Gladue, D. P., & Borca, M. V. (2019). Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses, 11(7), 599. https://doi.org/10.3390/v11070599