Twenty Years of Progress Toward West Nile Virus Vaccine Development
Abstract
:1. West Nile Virus Background
2. Licensed Flavivirus Vaccines
3. Licensed WNV Veterinary Vaccines
4. Biological Properties of an Ideal Human WNV Vaccine
5. Animal Models and Evaluation of Protective Immunity
6. Preclinical Studies of WNV Vaccines
7. Enhancing Vaccine Immunogenicity
8. Vaccines in Clinical Evaluation
9. Phase I Clinical Trials
10. Phase II Clinical Trials
11. Alternative Approaches for WNV Vaccine Development
12. Challenges of Licensing and Marketing a WNV Vaccine
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuno, G.; Chang, G.J.; Tsuchiya, K.R.; Karabatsos, N.; Cropp, C.B. Phylogeny of the Genus Flavivirus. J. Virol. 1998, 72, 73–83. [Google Scholar] [PubMed]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A neurotropic virus isolated from the blood of a native of uganda. Am. J. Trop. Med. Hyg. 1940, 20, 471–492. [Google Scholar] [CrossRef]
- Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The global ecology and epidemiology of west nile virus. Biomed Res. Int. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [PubMed]
- West Nile Virus. Available online: https://www.cdc.gov/westnile/index.html (accessed on 5 July 2019).
- West Nile Virus—Symptoms, Diagnosis, & Treatment. Available online: https://www.cdc.gov/westnile/symptoms/index.html (accessed on 5 July 2019).
- West Nile Virus—Statistics and Maps. Available online: https://www.cdc.gov/westnile/statsmaps/index.html (accessed on 5 July 2019).
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef]
- Barrett, A. West Nile in Europe: An increasing public health problem. J. Travel Med. 2018, 25, 25. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Semenza, J.C. Environmental Drivers of West Nile Fever Epidemiology in Europe and Western Asia—A Review. Int. J. Environ. Res. Public Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.E.; Childs, J.E.; Diuk-Wasser, M.A.; Fish, D. Ecologic Factors Associated with West Nile Virus Transmission, Northeastern United States. Emerg. Infect. Dis. 2008, 14, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosa, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. PLoS ONE 2015, 10, e0121158. [Google Scholar] [CrossRef]
- Hess, A.; Davis, J.K.; Wimberly, M.C. Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America. GeoHealth 2018, 2, 395–409. [Google Scholar] [CrossRef]
- Beck, A.S.; Barrett, A.D.T. Current status and future prospects of yellow fever vaccines. Expert Rev. Vaccines 2015, 14, 1479–1492. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.D.M.; Leal, M.D.L.F.; Homma, A. Serious adverse events associated with yellow fever vaccine. Hum. Vaccines Immunother. 2015, 11, 2183–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guirakhoo, F.; Pugachev, K.; Zhang, Z.; Myers, G.; Levenbook, I.; Draper, K.; Lang, J.; Ocran, S.; Mitchell, F.; Parsons, M.; et al. Safety and Efficacy of Chimeric Yellow Fever-Dengue Virus Tetravalent Vaccine Formulations in Nonhuman Primates. J. Virol. 2004, 78, 4761–4775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clapham, H.E.; Wills, B.A. Implementing a dengue vaccination programme—Who, where and how? Trans. R. Soc. Trop. Med. Hyg. 2018, 112, 367–368. [Google Scholar] [CrossRef]
- Beth, D.K.; Anna, P.D.; Kristen, K.P.; Marya, P.C.; Cecilia, M.T.; Palmtama, L.G.; Noreen, H.; Sean, A.D.; Dan, E.; Adrienne, P.J.; et al. Robust and Balanced Immune Responses to All 4 Dengue Virus Serotypes Following Administration of a Single Dose of a Live Attenuated Tetravalent Dengue Vaccine to Healthy, Flavivirus-Naive Adults. J. Infect. Dis. 2015, 212, 702–710. [Google Scholar]
- Chen, H.L.; Chang, J.K.; Tang, R. Bin Current recommendations for the Japanese encephalitis vaccine. J. Chin. Med. Assoc. 2015, 78, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.L.; Chang, G.J.J.; Xie, H.; Trent, D.W.; Barrett, A.D.T. Molecular basis of attenuation of neurovirulence of wild- type Japanese encephalitis virus strain SA14. J. Gen. Virol. 1995, 76, 409–413. [Google Scholar] [CrossRef]
- Yu, Y. Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine 2010, 28, 3635–3641. [Google Scholar] [CrossRef]
- Ginsburg, A.S.; Meghani, A.; Halstead, S.B.; Yaich, M.; Sarah, A.; Meghani, A.; Halstead, S.B.; Yaich, M. Use of the live attenuated Japanese Encephalitis vaccine SA14–14–2 in children: A review of safety and tolerability studies. Hum. Vaccines Immunother. 2017, 13, 2222–2231. [Google Scholar] [CrossRef]
- Japanese Encephalitis Virus—Vaccines. Available online: https://www.who.int/ith/vaccines/japanese_encephalitis/en/ (accessed on 5 July 2017).
- Chokephaibulkit, K.; Houillon, G.; Feroldi, E.; Bouckenooghe, A. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children. Expert Rev. Vaccines 2016, 15, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Haishi, S.; Aira, Y.; Kurihara, S.; Morita, K.; Igarashi, A. Homology among Eleven Flavivirus by Comparative Nucleotide Sequence of Geomic RNAs and Deduced Amino Acid Sequences of Viral Proteins. Trop. Med. 1991, 33, 23–33. [Google Scholar]
- Ng, T.; Hathaway, D.; Jennings, N.; Champ, D.; Chiang, Y.W.; Chu, H.J. Equine vaccine for West Nile virus. Dev. Biol. 2003, 114, 221–227. [Google Scholar]
- Vetera WNV. Available online: https://www.bi-vetmedica.com/species/equine/products/vetera_vaccines/Vetera_WNV.html (accessed on 5 July 2019).
- El Garch, H.; Minke, J.M.; Rehder, J.; Richard, S.; Edlund Toulemonde, C.; Dinic, S.; Andreoni, C.; Audonnet, J.C.; Nordgren, R.; Juillard, V. A West Nile virus (WNV) recombinant canarypox virus vaccine elicits WNV-specific neutralizing antibodies and cell-mediated immune responses in the horse. Vet. Immunol. Immunopathol. 2008, 123, 230–239. [Google Scholar] [CrossRef]
- Prestige WNV. Available online: https://merckusa.cvpservice.com/product/basic/view/1047544 (accessed on 16 July 2019).
- Schuler, L.; Khaitsa, M.; Dyer, N.; Stoltenow, C. Evaluation of an outbreak of West Nile virus infection in horses: 569 cases (2002). J. Am. Vet. Med. Assoc. 2004, 225, 1084–1089. [Google Scholar] [CrossRef]
- Gardner, I.; Wong, S.; Ferraro, G.; Balasuriya, U.; Hullinger, P.; Wilson, W.; Shi, P.; MacLachlan, N. Incidence and effects of West Nile virus infection in vaccinated and unvaccinated horses in California. Vet. Res. 2007, 38, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Angenvoort, J.; Brault, A.C.; Bowen, R.A.; Groschup, M.H. West Nile viral infection of equids. Vet. Microbiol. 2013, 167, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, S.A.; Cadoz, M.; Meignier, B.; Meric, C.; Leroy, O.; Excler, J.L.; Tartaglia, J.; Paoletti, E.; Gonczol, E.; Chappuis, G. The safety and use of canarypox vectored vaccines. Dev. Biol. Stand. 1995, 84, 165–170. [Google Scholar] [PubMed]
- Weinberger, B. Vaccines for the elderly. Clin. Microbiol. Infect. 2012, 18, 100–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanna, I.J. Balancing the Efficacy and Safety of Vaccines in the Elderly. Open Longev. Sci. 2013, 6, 64–72. [Google Scholar] [CrossRef]
- Markoff, L. Points to consider in the development of a surrogate for efficacy of novel Japanese encephalitis virus vaccines. Vaccine 2000, 18, 26–32. [Google Scholar] [CrossRef]
- Hombach, J.; Solomon, T.; Kurane, I.; Jacobson, J.; Wood, D. Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2-3 September, 2004. Vaccine 2005, 23, 5205–5211. [Google Scholar] [CrossRef]
- Engle, M.J.; Diamond, M.S. Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. J. Virol. 2003, 77, 12941–12949. [Google Scholar] [CrossRef]
- Shrestha, B.; Diamond, M.S. Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 2004, 78, 8312–8321. [Google Scholar] [CrossRef]
- Brien, J.D.; Uhrlaub, J.L.; Hirsh, A.; Wiley, C.A.; Nikolich-Zugich, J. Key role of T cell defects in age-related vulnerability to West Nile virus. J. Exp. Med. 2009, 206, 2735–2745. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.; Ng, T.; Chu, H.; Noll, M.; Diamond, M. The relative contribution of antibody and CD8+ T cells to vaccine immunity against West Nile encephalitis virus. Vaccine 2008, 26, 2020–2033. [Google Scholar] [CrossRef] [Green Version]
- Uhrlaub, J.L.; Brien, J.D.; Widman, D.G.; Mason, P.W.; Nikolich-zugich, J. Repeated in vivo stimulation of T and B cell responses in old mice generates protective immunity against lethal West Nile virus encephalitis. J. Immunol. 2011, 186, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.B.; Swarts, J.L.; Thomas, S.; Voss, K.M.; Sekine, A.; Green, R.; Ireton, R.C.; Gale, M.; Lund, J.M. Immune Correlates of Protection from West Nile Virus Neuroinvasion and Disease. J. Infect. Dis. 2019, 219, 1162–1171. [Google Scholar] [CrossRef]
- Smith, H.L.; Monath, T.P.; Pazoles, P.; Rothman, A.L.; Casey, D.M.; Terajima, M.; Ennis, F.A.; Guirakhoo, F.; Green, S. Development of antigen-specific memory CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. J. Infect. Dis. 2011, 203, 513–522. [Google Scholar] [CrossRef]
- Correlates of Vaccine-Induced Protection: Methods and Implications. Available online: https://apps.who.int/iris/bitstream/handle/10665/84288/WHO_IVB_13.01_eng.pdf;sequence=1 (accessed on 15 August 2019).
- Sohn, Y.M.; Tandan, J.B.; Yoksan, S.; Ji, M.; Ohrr, H. A 5-year follow-up of antibody response in children vaccinated with single dose of live attenuated SA14-14-2 Japanese encephalitis vaccine: Immunogenicity and anamnestic responses. Vaccine 2008, 26, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Yellow Fever Vaccine. Available online: https://www.cdc.gov/yellowfever/vaccine/index.html (accessed on 5 July 2019).
- Dubischar-Kastner, K.; Eder, S.; Buerger, V.; Gartner-Woelfl, G.; Kaltenboeck, A.; Schuller, E.; Tauber, E.; Klade, C. Long-term immunity and immune response to a booster dose following vaccination with the inactivated Japanese encephalitis vaccine IXIARO®, IC51. Vaccine 2010, 28, 5197–5202. [Google Scholar] [CrossRef] [PubMed]
- Aerssens, A.; Cochez, C.; Niedrig, M.; Heyman, P.; Kühlmann-Rabens, I.; Soentjens, P. Analysis of delayed TBE-vaccine booster after primary vaccination. J. Travel Med. 2016, 23, tav020. [Google Scholar] [CrossRef]
- Liu, X.; Jia, L.; Nie, K.; Zhao, D.; Na, R.; Xu, H.; Cheng, G.; Wang, J.; Yu, Y.; Li, Y. Evaluation of environment safety of a Japanese encephalitis live attenuated vaccine. Biologicals 2019, 60, 36–41. [Google Scholar] [CrossRef]
- Bhatt, T.R.; Crabtree, M.B.; Guirakhoo, F.; Monath, T.P.; Miller, B.R. Growth Characteristics of the Chimeric Japanese Encephalitis Virus Vaccine Candidate, ChimeriVax-JE (YF/JE SA14-14-2), in Culex Tritaeniorhychus, Aedes Albopictus, and Aedes Aegypti Mosquitoes. Am. J. Trop. Med. Hyg. 2000, 62, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Danet, L.; Beauclair, G.; Berthet, M.; Moratorio, G.; Gracias, S.; Tangy, F.; Choumet, V.; Jouvenet, N. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti. PLoS Negl. Trop. Dis. 2019, 13, e0007299. [Google Scholar] [CrossRef] [PubMed]
- Hills, S.; Walter, E.; Atmar, R.; Fischer, M. Japanese encephalitis vaccine: Recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 2019, 68, 1–33. [Google Scholar] [CrossRef]
- Hammon, W.M.; Sather, G.E. Passive immunity for arbovirus infection: I. Artificially Induced Prophylaxis in man and mouse for Japanese (B) encephalitis. Am. J. Trop. Med. Hyg. 1973, 22, 524–534. [Google Scholar] [CrossRef]
- Lubiniecki, A.; Cypress, R.; WM, H. Passive immunity for arbovirus infection. II. Quantitative aspects of naturally and artificially acquired protection in mice for Japanese (B) encephalitis virus. Am. J. Trop. Med. Hyg. 1973, 22, 535–542. [Google Scholar] [CrossRef]
- Konishi, E.; Yamaoka, M.; Khin-Sane-Win; Kurane, I.; Takada, K.; Mason, P. The anamnestic neutralizing antibody response is critical for protection of mice from challenge following vaccination with a plasmid encoding the Japanese encephalitis virus premembrane and envelope genes. J. Virol. 1999, 73, 5527–5534. [Google Scholar]
- Beasley, D.W.C.; Li, L.; Suderman, M.T.; Guirakhoo, F.; Trent, D.W.; Monath, T.P.; Shope, R.E.; Barrett, A.D.T. Protection against Japanese encephalitis virus strains representing four genotypes by passive transfer of sera raised against ChimeriVaxTM-JE experimental vaccine. Vaccine 2004, 22, 3722–3726. [Google Scholar] [CrossRef] [PubMed]
- Van Gessel, Y.; Klade, C.S.; Putnak, R.; Formica, A.; Krasaesub, S.; Spruth, M.; Cena, B.; Tungtaeng, A.; Gettayacamin, M.; Dewasthaly, S. Correlation of protection against Japanese encephalitis virus and JE vaccine (IXIARO ®) induced neutralizing antibody titers. Vaccine 2011, 29, 5925–5931. [Google Scholar] [CrossRef]
- Recommendations for Japanese Encephalitis Vaccine (Inactivated) for Human Use (Revised 2007). Available online: https://www.who.int/biologicals/vaccines/Annex_1_WHO_TRS_963.pdf?ua=1 (accessed on 30 July 2019).
- Recommendations to Assure the Quality, Safety and Efficacy of Japanese Encephalitis Vaccines (live, attenuated) for human use. Available online: https://www.who.int/biologicals/vaccines/JE-Recommendations_TRS_980_Annex_7.pdf?ua=1 (accessed on 30 July 2019).
- Kimura, T.; Sasaki, M.; Okumura, M.; Kim, E.; Sawa, H. Flavivirus encephalitis: Pathological aspects of mouse and other animal models. Vet. Pathol. 2010, 47, 806–818. [Google Scholar] [CrossRef]
- Siirin, M.T.; Travassos da Rosa, A.P.A.; Newman, P.; Weeks-Levy, C.; Coller, B.-A.; Xiao, S.-Y.; Lieberman, M.M.; Watts, D.M. Evaluation of the Efficacy of a Recombinant Subunit West Nile Vaccine in Syrian Golden Hamsters. Am. J. Trop. Med. Hyg. 2008, 79, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.Y.; Guzman, H.; Zhang, H.; Travassos Da Rosa, A.P.A.; Tesh, R.B. West Nile virus infection in the golden hamster (Mesocricetus auratus): A model for west Nile encephalitis. Emerg. Infect. Dis. 2001, 7, 714–721. [Google Scholar] [CrossRef]
- Tesh, R.B.; Siirin, M.; Guzman, H.; Travassos da Rosa, A.P.A.; Wu, X.; Duan, T.; Lei, H.; Nunes, M.R.; Xiao, S. Persistent West Nile Virus Infection in the Golden Hamster: Studies on Its Mechanism and Possible Implications for Other Flavivirus Infections. J. Infect. Dis. 2005, 192, 287–295. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile Virus Live-Attenuated Vaccine: Preclinical Evaluation of Safety, Immunogenicity, and Efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieberman, M.M.; Nerurkar, V.R.; Luo, H.; Cropp, B.; Carrion, R.; De La Garza, M.; Coller, B.A.; Clements, D.; Ogata, S.; Wong, T.; et al. Immunogenicity and protective efficacy of a recombinant subunit West Nile Virus vaccine in rhesus monkeys. Clin. Vaccine Immunol. 2009, 16, 1332–1337. [Google Scholar] [CrossRef] [PubMed]
- Pletnev, A.G.; Swayne, D.E.; Speicher, J.; Rumyantsev, A.A.; Murphy, B.R. Chimeric West Nile/dengue virus vaccine candidate: Preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine 2006, 24, 6392–6404. [Google Scholar] [CrossRef]
- Poore, E.A.; Slifka, D.K.; Thomas, A.; Quintel, B.K.; Torrey, L.L.; Slifka, A.M.; Justin, M.; Dubois, M.E.; Johnson, L.P.; Diamond, M.S.; et al. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine 2017, 35, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Brandler, S.; Tangy, F. Vaccines in Development against West Nile Virus. Viruses 2013, 5, 2384–2409. [Google Scholar] [CrossRef] [Green Version]
- Iyer, A.V.; Kousoulas, K.G. A Review of Vaccine Approaches for West Nile Virus. Int. J. Environ. Res. Public Health 2013, 10, 4200–4223. [Google Scholar] [CrossRef] [PubMed]
- Amanna, I.J.; Slifka, M.K. Current Trends in West Nile Virus Vaccine Development. Expert Rev. Vaccines 2014, 13, 589–608. [Google Scholar] [CrossRef]
- Volz, A.; Lim, S.; Kaserer, M.; Lülf, A.; Marr, L.; Jany, S.; Deeg, C.A.; Pijlman, G.P.; Koraka, P.; Osterhaus, A.D.M.E.; et al. Immunogenicity and protective efficacy of recombinant Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope antigens. Vaccine 2016, 34, 1915–1926. [Google Scholar] [CrossRef]
- Li, N.; Zhang, Y.-N.; Deng, C.-L.; Shi, P.-Y.; Yuan, Z.-M.; Zhang, B. Replication-defective West Nile virus with NS1 deletion as a new vaccine platform for flavivirus. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeven, N.; Joshi, S.W.; Nana, G.I.; Bosco, A.; Fox, C.; Bowen, R.A.; Clements, D.E.; Martyak, T.; Parks, E.; Baldwin, S.; et al. A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS ONE 2016, 11, e0149610. [Google Scholar] [CrossRef]
- Chu, J.J.; Chiang, C.S.; Ng, M.; Alerts, E. Immunization of Flavivirus West Nile Recombinant Envelope Domain III Protein Induced Specific Immune Response and Protection against West Nile Virus Infection. J. Immunol. 2007, 178, 2699–2705. [Google Scholar] [CrossRef] [Green Version]
- Zlatkovic, J.; Stiasny, K.; Heinz, F.X. Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice. J. Virol. 2011, 85, 1994–2003. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, B.M.; Beasley, D.W.C.; Rudra, J.S. Supramolecular peptide hydrogel adjuvanted subunit vaccine elicits protective antibody responses against West Nile virus. Vaccine 2016, 34, 5479–5482. [Google Scholar] [CrossRef]
- Martin, J.E.; Pierson, T.C.; Hubka, S.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Andrews, C.A.; Xu, Q.; Davis, B.S.; Nason, M.C.; et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J. Infect. Dis. 2007, 196, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Ledgerwood, J.E.; Pierson, T.C.; Hubka, S.A.; Desai, N.; Rucker, S.; Gordon, I.J.; Enama, E.; Nelson, S.; Nason, M.; Gu, W.; et al. A West Nile Virus DNA Vaccine Utilizing a Modified Promoter Induces Neutralizing Antibody in Younger and Older Healthy Adults in a Phase I Clinical Trial. J. Infect. Dis. 2011, 203, 1396–1404. [Google Scholar] [CrossRef] [Green Version]
- Coller, I.B.; Pai, V.; Weeks-levy, C.L.; Ogata, S.A. Recombinant Subunit West Nile Virus Vaccine for Protection of Human Subjects. U.S. Patent 0165349 A1, 15 June 2017. [Google Scholar]
- Durbin, A.P.; Wright, P.F.; Cox, A.; Kagucia, W.; Elwood, D.; Henderson, S.; Wanionek, K.; Speicher, J.; Whitehead, S.S.; Pletnev, A.G. The live attenuated chimeric vaccine rWN/DEN4 30 is well-tolerated and immunogenic in healthy flavivirus-naïve adult volunteers. Vaccine 2013, 31, 5772–5777. [Google Scholar] [CrossRef]
- Pierce, K.K.; Whitehead, S.S.; Kirkpatrick, B.D.; Grier, P.L. A Live Attenuated Chimeric West Nile Virus Vaccine, rWN/DEN4Δ30, Is Well Tolerated and Immunogenic in Flavivirus-Naive Older Adult Volunteers. J. Infect. Dis. 2017, 215, 52–55. [Google Scholar] [CrossRef]
- Woods, C.W.; Sanchez, A.M.; Swamy, G.K.; Mcclain, M.T.; Harrington, L.; Freeman, D.; Poore, E.A.; Slifka, D.K.; Poer, D.E.; Amanna, I.J.; et al. An observer blinded, randomized, placebo-controlled, phase I dose escalation trial to evaluate the safety and immunogenicity of an inactivated West Nile virus Vaccine, HydroVax-001, in healthy adults. Vaccine 2019, 37, 4222–4230. [Google Scholar] [CrossRef]
- Quintel, B.K.; Thomas, A.; Poer, D.E.; Slifka, M.K.; Amanna, I.J. Advanced oxidation technology for the development of a next-generation inactivated West Nile virus vaccine. Vaccine 2019, 37, 4214–4221. [Google Scholar] [CrossRef]
- Barrett, P.N.; Terpening, S.J.; Snow, D.; Cobb, R.R.; Kistner, O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev. Vaccines 2017, 16, 883–894. [Google Scholar] [CrossRef]
- Orlinger, K.K.; Holzer, G.W.; Schwaiger, J.; Mayrhofer, J.; Schmid, K.; Kistner, O.; Noel Barrett, P.; Falkner, F.G. An inactivated West Nile Virus vaccine derived from a chemically synthesized cDNA system. Vaccine 2010, 28, 3318–3324. [Google Scholar] [CrossRef]
- Monath, T.P.; Liu, J.; Kanesa-thasan, N.; Myers, G.A.; Nichols, R.; Deary, A.; Mccarthy, K.; Johnson, C.; Shin, S.; Arroyo, J.; et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sci. USA 2006, 103, 6694–6699. [Google Scholar] [CrossRef] [Green Version]
- Biedenbender, R.; Bevilacqua, J.; Gregg, A.M.; Watson, M.; Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 2011, 203, 75–84. [Google Scholar] [CrossRef]
- Dayan, G.H.; Bevilacqua, J.; Coleman, D.; Buldo, A.; Risi, G. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥ 50 years of age. Vaccine 2012, 30, 6656–6664. [Google Scholar] [CrossRef]
- Manning, J.E.; Morens, D.M.; Kamhawi, S.; Valenzuela, J.G.; Memoli, M. Mosquito Saliva. The Hope for a Universal Arbovirus Vaccine? J. Infect. Dis. 2018, 20852, 7–15. [Google Scholar] [CrossRef]
- Study in Healthy Volunteers to Evaluate the Safety and Immunogenicity of AGS-v, a Universal Mosquito-Borne Disease Vaccine. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03055000 (accessed on 3 July 2019).
- Hoke, C.H.; Nisalak, A.; Sangawhipa, N.; Jatanasen, S.; Laorakapongse, T.; Innis, B.L. Protection against Japanese Encephalitis by Inactivated Vaccines. N. Engl. J. Med. 1988, 319, 608–614. [Google Scholar] [CrossRef]
- Staples, J.E.; Shankar, M.B.; Sejvar, J.J.; Meltzer, M.I.; Fischer, M. Initial and Long-Term Costs of Patients Hospitalized with West Nile Virus Disease. Am. J. Trop. Med. Hyg. 2014, 90, 402–409. [Google Scholar] [CrossRef]
- Shankar, M.B.; Staples, J.E.; Meltzer, M.I.; Fischer, M. Cost effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine 2017, 35, 3143–3151. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines-a new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
Vaccine | Developer | Vaccine Type | WNV Strain | Clinical Trial (Onset) | Clinical Trial Number | Dose and Route | Dosing Series |
---|---|---|---|---|---|---|---|
1 VRC 302 2 VRC 303 | NIAID Vaccine Research Center | prM/E DNA with 1 CMV or 2 CMV/R promoter | NY99 | Phase I (2006) | 1 NCT00106769 2 NCT00300417 | 4 mg i.m. | Three doses four weeks apart |
WN-80E | Hawaii Biotech | Recombinant, truncated E protein | NY99 | Phase I (2008) | NCT00707642 | 5, 15, or 50 µg i.m. | Three doses four weeks apart |
WN/DEN4∆30 | NIAID Division of Intramural Research | Chimeric, live virus with WNV prM/E and DENV-4 nonstrucutral genes with a 30 nt deletion | NY99 | Phase I (2004) Phase I (2007) Phase I (2014) | NCT00094718 NCT00537147 NCT02186626 | 103, 104, or 105 PFU s.c. | * One or two doses |
HydroVax-001 | Najit Technologies | Hydrogen peroxide-inactivated whole virus | Kunjin | Phase I (2015) | NCT02337868 | 1 or 4 µg i.m. | Two doses four weeks apart |
Formalin-inactivated WNV | Nanotherapeutics Inc. | Formalin-inactivated whole virus | NY99 | Phase I/II | none | 1.25, 2.5, 5.0, or 10.0 µg i.m. | Two doses 21 days apart plus booster dose on day 180 |
ChimeriVax-WN02 | Sanofi Pasteur | Chimeric, live virus with WNV prM/E and YFV 17D nonstrucutral genes with three site-directed mutations in the E protein | NY99 | Phase 1 Phase II (2005) Phase II (2008) | none NCT00442169 NCT00746798 | 103, 104, or 105 PFU s.c. | One dose |
Vaccine | Neutralization Assay | Challenge Virus | Seroconversion Definition | Seroconversion Rate (Time Post Vaccination) | Neutralization Titer Range # | Age Group |
---|---|---|---|---|---|---|
VRC 303 | Neutralization of reporter virus particles (reduction of fluorescence) | Reporter virus with NY99 structural components | above limit of detection | 97% (12 weeks) | ~ 20–10,000 | 22–65 |
WN-80E | PRNT50 | unknown | ≥ 1:10 dilution | 100% (2 weeks) | ~ 50–100 | 18–45 |
WN/DEN4∆30 | (a) PRNT60 (b) PRNT50 | NY99, WN02, WN/DEN4∆30 | (a) ≥ 4-fold increase from baseline (b) ≥ 1:10 dilution | *,(a) 75% for NY99 (180 days) (b) 95% for each challenge virus (90 days) | (a) ≤ 5–232 (b) 38–134 | (a) 18–50 (b) 50–65 |
HydroVax-001 | PRNT50 | unknown | ≥ 1:20 dilution | 31% (15 days) | ∞ 9.8 | 18–49 |
Formalin-inactivated WNV | Microneutraliztion (reduction of CPE) | unknown | n.d. | n.d. | ∞ ~ 140 | ≥ 18 |
ChimeriVax-WN02 | PRNT50 | ChimeriVax-WN02 | ≥ 4-fold increase from baseline | (c) 96% (28 days) (d) > 92% (28 days) | ∞,(c) 3309 ∞,(d) 674 | (c) 18–80 (d) 50–88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, J.A.; Barrett, A.D.T. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses 2019, 11, 823. https://doi.org/10.3390/v11090823
Kaiser JA, Barrett ADT. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses. 2019; 11(9):823. https://doi.org/10.3390/v11090823
Chicago/Turabian StyleKaiser, Jaclyn A., and Alan D.T. Barrett. 2019. "Twenty Years of Progress Toward West Nile Virus Vaccine Development" Viruses 11, no. 9: 823. https://doi.org/10.3390/v11090823
APA StyleKaiser, J. A., & Barrett, A. D. T. (2019). Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses, 11(9), 823. https://doi.org/10.3390/v11090823