African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II
Abstract
:1. General Aspects of African Swine Fever and the Current Situation
2. Experimental Infections with ASFV Genotype II Isolates in Wild Boar and Disease Progression
3. Other Experimental Infections in Wild Boar and Feral Pigs with ASFV Genotype I Isolates
4. Conclusions and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alonso, C.; Borca, M.; Dixon, L.; Revilla, Y.; Rodriguez, F.; Escribano, J.M. Ictv Report Consortium. ICTV Virus Taxonomy Profile: Asfarviridae. J. Gen. Virol. 2018, 99, 613–614. [Google Scholar] [CrossRef]
- Quembo, C.J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound. Emerg. Dis. 2018, 65, 420–431. [Google Scholar] [CrossRef]
- Penrith, M.L.; Bastos, A.D.; Etter, E.M.C.; Beltrán-Alcrudo, D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound Emerg. Dis. 2019, 66, 672–686. [Google Scholar] [CrossRef]
- Sanchez-Vizcaino, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Vannier, P.; Hartung, J.; Sharp, J.M.; Bøtner, A.; Broom, D.M.; Doherr, M.G.; Domingo, M.; Keeling, L.; Koenen, F.; More, S.; et al. Scientific opinion on African swine fever. EFSA J. 2010, 8, 1556. [Google Scholar]
- Mebus, C.; Arias, M.; Pineda, J.M.; Taiador, J.; House, C.; Sánchez-Vizcaíno, J.M. Survival of several porcine viruses in different Spanish dry-cured meat products. Mediterranean aspects of meat quality as related to muscle biochemistry. Food Chem. 1997, 59, 555–559. [Google Scholar] [CrossRef]
- Penrith, M.L.; Vosloo, W. Review of African swine fever: Transmission, spread and control. J. S. Afr. Vet. Assoc. 2012, 80, 58–62. [Google Scholar]
- Sánchez-Cordón, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef]
- Linden, A.; Licoppe, A.; Volpe, R.; Paternostre, J.; Lesenfant, S.C.; Cassart, D.; Garigliany, M.; Tignon, M.; van den Berg, T.; Desmecht, D.; et al. Summer 2018: African swine fever virus hits north-western Europe. Transbound. Emerg. Dis. 2019, 66, 54–55. [Google Scholar] [CrossRef] [PubMed]
- Pikalo, J.; Zani, L.; Hühr, J.; Beer, M.; Blome, S. Pathogenesis of African swine fever in domestic pigs and European wild boar—Lessons learned from recent animal trials. Virus Res. 2019, 271, 197614. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, C.; Blome, S.; Malogolovkin, A.; Parilov, S.; Kolbasov, D.; Teifke, J.P.; Beer, M. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg. Infect. Dis. 2011, 17, 2342–2345. [Google Scholar] [CrossRef]
- Department for Environment, Food and Rural Affairs (DEFRA), Animal and Plant Health Agency (APHA), Advice Services-International Disease Monitoring. Updated Outbreak Assessment #021: African swine fever in Eastern Europe. 30 April 2019; Ref: VITT/1200 ASF in Eastern Europe. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/799847/asf-update21.pdf (accessed on 11 August 2019).
- Department for Environment, Food and Rural Affairs (DEFRA), Animal and Plant Health Agency (APHA), Advice Services-International Disease Monitoring. Updated Outbreak Assessment #02: African swine fever in Europe (Eastern Europe & Belgium). 18 July 2019; Ref: VITT/1200 ASF in Europe (Eastern Europe & Belgium). Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/818675/uoa-asf-europe.pdf (accessed on 11 August 2019).
- Gallardo, C.; Soler, A.; Nieto, R.; Sanchez, M.A.; Martins, C.; Pelayo, V.; Arias, M. Experimental transmission of African swine fever (ASF) low virulent isolate NH/P68 by surviving pigs. Transbound. Emerg. Dis. 2015, 62, 612–622. [Google Scholar] [CrossRef]
- Petrov, A.; Forth, J.H.; Zani, L.; Beer, M.; Blome, S. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transbound. Emerg. Dis. 2018, 65, 1318–1328. [Google Scholar] [CrossRef]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gacic, D.; Sprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozolons, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular Characterization of African swine fever Virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef]
- World Organization for Animal Health (OIE), African swine fever (ASF). Report No. 23: July 19-August 1, 2019. World Animal Health Information and Analysis Department. Available online: https://www.oie.int/fileadmin/Home/eng/Animal_Health_in_the_World/docs/pdf/Disease_cards/ASF/Report_23_Current_situation_of_ASF.pdf (accessed on 11 August 2019).
- Dan Murtaugh, D.; Curran, E. Pig ‘Ebola’ Virus Sends Shock Waves Through Global Food Chain. Available online: https://www.bloomberg.com/news/articles/2019-05-02/pig-ebola-virus-sends-shock-waves-through-global-food-chain (accessed on 3 May 2019).
- Guinat, C.; Reis, A.L.; Netherton, C.L.; Goatley, L.; Pfeiffer, D.U.; Dixon, L. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission. Vet. Res. 2014, 45, 93. [Google Scholar] [CrossRef]
- Pietschmann, J.; Guinat, C.; Beer, M.; Pronin, V.; Tauscher, K.; Petrov, A.; Keil, G.; Blome, S. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch. Virol. 2015, 160, 1657–1667. [Google Scholar] [CrossRef]
- Vlasova, N.N.; Varentsova, A.A.; Shevchenko, I.V.; Zhukov, I.Y.; Remyga, S.G.; Gavrilova, V.L.; Puzankova, O.S.; Shevtsov, A.A.; Zinyakov, N.G.; Gruzdev, K.N. Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from 2013 year Russian Federation. Br. Microbiol. Res. J. 2015, 5, 203–215. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Nieto, R.; Cano, C.; Pelayo, V.; Sánchez, M.A.; Pridotkas, G.; Fernández-Pinero, J.; Briones, V.; Arias, M. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound. Emerg. Dis. 2017, 64, 300–304. [Google Scholar] [CrossRef]
- Olesen, A.S.; Lohse, L.; Boklund, A.; Halasa, T.; Gallardo, C.; Pejsak, Z.; Belsham, G.J.; Rasmussen, T.B.; Bøtner, A. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Vet. Microbiol. 2017, 211, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, C.; Nurmoja, I.; Soler, A.; Delicado, V.; Simón, A.; Martin, E.; Perez, C.; Nieto, R.; Arias, M. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Vet. Microbiol. 2018, 219, 70–79. [Google Scholar]
- Zani, L.; Forth, J.H.; Forth, L.; Nurmoja, I.; Leidenberger, S.; Henke, J.; Carlson, J.; Breidenstein, C.; Viltrop, A.; Höper, D. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci. Rep. 2018, 8, 6510. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Dietze, K.; Breithaupt, A.; Beer, M. High virulence of African swine fever virus Caucasus isolate in European wild boars of all ages. Emerg. Infect. Dis. 2012, 18, 708. [Google Scholar] [CrossRef]
- Nurmoja, I.; Petrov, A.; Breidenstein, C.; Zani, L.; Forth, J.H.; Beer, M.; Kristian, M.; Viltrop, A.; Blome, S. Biological characterization of African swine fever virus genotype II strains from North-Eastern Estonia in European wild boar. Transbound. Emerg. Dis. 2017, 64, 2034–2041. [Google Scholar] [CrossRef]
- Khomenko, S.; Beltran-Alcrudo, D.; Rozstalnyy, A.; Gogin, A.; Kolbasov, D.; Pinto, J.; Lubroth, J.; Martin, V. African swine fever in the Russian Federation: Risk factors for Europe and beyond. Empres Watch 2013, 28, 1–14. [Google Scholar]
- Chapman, D.A.; Darby, A.C.; Da Silva, M.; Upton, C.; Radford, A.D.; Dixon, L.K. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg. Infect. Dis. 2011, 17, 599–605. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernandez-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernandez-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic variation among African swine fever genotype II viruses, Eastern and Central Europe. Emerg. Infect. Dis. 2014, 20, 1544–1547. [Google Scholar] [CrossRef]
- Gallardo, C.; Soler, A.; Rodze, I.; Nieto, R.; Cano-Gómez, C.; Fernandez-Pinero, J.; Arias, M. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound. Emerg. Dis. 2019, 66, 1399–1404. [Google Scholar] [CrossRef]
- Barasona, J.A.; Gallardo, C.; Cardena-Fernandez, E.; Jurado, C.; Rivera, B.; Rodriguez-Bertos, A.; Arias, M.; Sanchez-Vizcaino, J.M. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 2019, 6, 137. [Google Scholar] [CrossRef]
- Ravaioli, F.; Palliola, E.; Ioppolo, A. African swine fever in wild boars, Note I: Possibility of experimental infection through inoculation. Vet. Ital. 1967, 18, 508–513. [Google Scholar]
- Palliola, E.; Ioppolo, A.; Pestalozza, S. African swine fever in wild boars. Note II: Possibility of experimental infection through ingestion and contact. Vet. Ital. 1968, 19, 371–387. [Google Scholar]
- Tauscher, K.; Pietschmann, J.; Wernike, K.; Teifke, J.P.; Beer, M.; Blome, S. The situation of African swine fever and the biological characterization of recent virus isolates. Berl. Munch. Tierarztl. Wochenschr 2015, 128, 169–176. [Google Scholar]
- Cabezón, O.; Muñoz-González, S.; Colom-Cadena, A.; Pérez-Simó, M.; Rosell, R.; Lavín, S.; Marco, I.; Fraile, L.; de la Riva, P.M.; Rodríguez, F.; et al. African swine fever virus infection in Classical swine fever subclinically infected wild boars. BMC Vet. Res. 2017, 13, 227. [Google Scholar] [CrossRef]
- McVicar, J.W.; Mebus, C.A.; Becker, H.N.; Belden, R.C.; Gibbs, E.P. Induced African swine fever in feral pigs. J. Am. Vet. Med. Assoc. 1981, 179, 441–446. [Google Scholar]
- Mebus, C.A.; Dardiri, A.H. Additional characteristics of disease caused by the African swine fever viruses isolated from Brazil and the Dominican Republic. In Proceedings of the 83rd Annual Meeting of the United States Animal Health Association, San Diego, CA, USA, 28 October–2 November 1979; pp. 227–239. [Google Scholar]
- Gavier-Widén, D.; Ståhl, K.; Hård av Segerstad, C.; Gortázar, C.; Rossi, S.; Kuiken, T. African swine fever in wild boar in Europe: A notable challenge. Vet. Rec. 2015, 176, 199–200. [Google Scholar] [CrossRef]
- Galindo-Cardiel, I.; Ballester, M.; Solanes, D.; Nofrarías, M.; López-Soria, S.; Argilaguet, J.M.; Lacasta, A.; Accensi, F.; Rodríguez, F.; Segalés, J. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Res. 2013, 173, 180–190. [Google Scholar] [CrossRef]
- Reis, A.L.; Goatley, L.C.; Jabbar, T.; Sánchez-Cordón, P.J.; Netherton, C.L.; Chapman, D.A.G.; Dixon, L.K. Deletion of the African swine fever virus gene DP148R does not Reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J. Virol. 2017, 91, e01428-17. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Chapman, D.; Jabbar, T.; Reis, A.L.; Goatley, L.; Netherton, C.L.; Taylor, G.; Montoya, M.; Dixon, L. Different routes and doses influence protection in pigs immunised with the naturally attenuated African swine fever virus isolate OURT88/3. Antivir. Res. 2017, 138, 1–8. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Jabbar, T.; Berrezaie, M.; Chapman, D.; Reis, A.; Sastre, P.; Rueda, P.; Goatley, L.; Dixon, L.K. Evaluation of protection induced by immunisation of domestic pigs with deletion mutant African swine fever virus BeninΔMGF by different doses and routes. Vaccine 2018, 36, 707–715. [Google Scholar] [CrossRef]
- Netherton, C.L.; Goatley, L.C.; Reis, A.L.; Portugal, R.; Nash, R.H.; Morgan, S.B.; Gault, L.; Nieto, R.; Norlin, V.; Gallardo, C. Identification and immunogenicity of African swine fever virus antigens. Front. Immunol. 2019, 10, 1318. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J.; Floyd, T.; McCleary, S.; McCarthy, R.; Steinbach, F.; Crooke, H.; Núñez, A. Evaluation of lesions and the distribution of viral antigen in domestic pigs inoculated by intranasal route with different doses of African swine fever isolate Ken05/Tk1. In Proceedings of the European College of Veterinary Pathology Annual Meeting, Arnheim, The Netherlands, 25–28 September 2019. [Google Scholar]
- Gómez-Villamandos, J.C.; Carrasco, L.; Bautista, M.J.; Sierra, M.A.; Quezada, M.; Hervas, J.; Chacón de Lara, F.; Ruiz-Villamor, E.; Salguero, F.J.; Sánchez-Cordón, P.J.; et al. African swine fever and classical swine fever: A review of the pathogenesis. Dtsch. Tierarztl. Wochenschr. 2003, 10, 165–169. [Google Scholar]
- Gomez-Villamandos, J.C.; Bautista, M.J.; Sanchez-Cordon, P.J.; Carrasco, L. Pathology of African swine fever: The role of monocyte-macrophage. Virus Res. 2013, 173, 140–149. [Google Scholar] [CrossRef]
- Heuschele, W.P. Studies on the pathogenesis of African swine fever. I. Quantitative studies on the sequential development of virus in pig tissues. Arch. Gesamte. Virusforsch. 1967, 21, 349–356. [Google Scholar] [CrossRef]
- Plowright, W.; Parker, J.; Staple, R.F. The growth of a virulent strain of African swine fever virus in domestic pigs. J. Hyg. 1968, 66, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Colgrove, G.S.; Haelterman, E.O.; Coggins, L. Pathogenesis of African swine fever in young pigs. Am. J. Vet. Res. 1969, 30, 1343–1359. [Google Scholar]
Isolate/ Origin | GT | Type /Number of Animals | Estimated Age | Dose | Route of Exposure | Onset of Clinical Signs After Infection | Survival After Infection (dpi) | Ref. |
---|---|---|---|---|---|---|---|---|
Armenia 2008 | II | WB (n = 6) | 9 weeks | 106 TCID | Oral | 3–4 dpi (6) | 5–7 dpi (6) | [11] |
II | DP (n = 3) | Weaner pigs | NA | In contact | 11–12 dpi (2)/ 20 dpi (1) | 17 dpi (2)/ 25 dpi (1) | ||
Chechen Republic 2009 | II | WB (n = 1) | 9 months | 103 HAU | Intramusc. | 3 dpi (1) | 5 dpi (1) | [11] |
II | WB (n = 3) | 9 months | NA | In contact | 8 dpi (3) | 10 dpi (3) | ||
Caucasus isolate | II | WB (n = 1) | 10 years | 3 × 106 TCID | Oral | ND | 8–9 dpi (4) | [27] |
Sow (n = 2) | 4–5 years | |||||||
WB (n = 1) | Piglet | |||||||
Armenia 2008 | II | WB (n = 6) | 4–5 months | 100 HAU (25 HAU after back titration) | Oronasal | WB: 2–5 dpi (1)/ 11–13 dpi (5) | WB: 11 dpi (1)/ 14–17 dpi (5) | [21] |
DP (n = 6) | 8–12 weeks | DP: 23 dpi (1)/ 30–33 dpi (5) | DP: 28 dpi (1)/ 34–36 dpi (5) | |||||
II | WB (n = 6) | 4–5 months | 10 HAU (3 HAU after back titration) | Oronasal | WB: 0–9 dpi (2; runt animals)/ 14–19 dpi (4) | WB: 6–10 (2; runt animals)/ 18–23 dpi (4) | ||
DP (n = 6) | 8–12 weeks | DP: 12–19 dpi (6) | DP: 17–23 dpi (6) | |||||
North-Eastern Estonia | II | WB (n = 10) | 4 months | 104.5 HAU | Oronasal | 4–6 dpi (10) | 7–13 dpi (9)/ recovered WB (1) | [28] |
North-Eastern Estonia | II | 1 recovered WB and 3 WB (sentinels) | 5 months | NA | In contact | No clinical signs (4) | End of trial at 96 dpi. All animals (4) completely healthy. | [28] |
North-Eastern Estonia | II | Minipigs (n = 12) | 6 months | 105 HAU | Oronasal | Minipigs: 7 dpi (12) | Minipigs: 8–15 dpi (3)/recovered minipigs (9) | |
DP (n = 5) | 6 months | DP: 4–6 dpi (4)/10 dpi (1). All animals without clinical signs from 19 dpi | DP: All animals recovered (5) | [26] | ||||
II | WB (n = 3) | 2 years (adults) | 106.5 HAU | Oronasal | Adults WB: 3–4 dpi (3) | Adult WB 8–9 dpi (3) | ||
WB (n = 2) | 6 months (piglets) | Piglets WB: 3–4 dpi (2) | Piglets: 16–17 dpi (2) |
Isolate/ Origin | GT | Type /Number of Animals | Estimated Age | Dose | Route of Exposure | Onset of Clinical Signs After Infection | Survival After Infection (dpi) | Ref. |
---|---|---|---|---|---|---|---|---|
Tor Sapienza | I | WB (n = 2) | Adults | ND (2–4 mL infected blood | Subcutaneous (base of the ear) | Temperature: from 24–72 h/clinical signs: from 5 dpi (2) | 11–13 dpi (2) | [34] |
Nemi | I | WB (n = 1) | Young | ND (2 mL of leukocyte culture infected) | Intramusc. (neck) | Temperature: from 24 h (1) | 11 dpi (1) | [35] |
WB (n = 1) | In contact | No clinical signs (1) | Euthanized weeks after infection | |||||
I | WB (n = 1) | Young | ND (2 mL of leukocyte culture infected) | Oral | 6 dpi (1) | 20 dpi (1) | [35] | |
WB (n = 1) | In contact | 20 dpi (1) | 28 dpi (1) | |||||
Sardinian 2008 | I | WB (n = 4) | ND | 106 HAU | Intramusc. | 3–4 dpi (4) | 5–8 dpi (4) | [36] |
E75 | I | CSFV PI WB (n = 3) | 7 weeks | 104 TCID | Intramusc. | CSFV PI WB: 4 dpi (3) | CSFV PI WB: 6–7 dpi (3) | [37] |
Pestivirus-free WB (n = 3) | Pestivirus-free WB: 4 dpi (3) | Pestivirus-free WB: 8–10 dpi (3) | ||||||
Lisbon 1960 | I | Feral pigs (2) | Adults | 107 HAU | Intranasal | Feral pigs: 3–4 dpi (2) | Feral pigs: 7–8 dpi (2) | [38] |
I | Feral pigs (4) | Adults | NA | In contact | Feral pigs: 8–17 dpi (4) | Feral pigs: 14–20 dpi (4) | ||
Dominic. Republic 1979 | I | Feral pigs (2) | Adults | 107 HAU | Intranasal | Feral pigs: 3–4 dpi (2) | Feral pigs: 11–16 dpi (2) | [38] |
I | Feral pigs (4) | Adults | NA | In contact | Feral pigs: 10–13 dpi (4) | Feral pigs: 19–22 dpi (4) |
© 2019 by the Crown. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Cordón, P.J.; Nunez, A.; Neimanis, A.; Wikström-Lassa, E.; Montoya, M.; Crooke, H.; Gavier-Widén, D. African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II. Viruses 2019, 11, 852. https://doi.org/10.3390/v11090852
Sánchez-Cordón PJ, Nunez A, Neimanis A, Wikström-Lassa E, Montoya M, Crooke H, Gavier-Widén D. African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II. Viruses. 2019; 11(9):852. https://doi.org/10.3390/v11090852
Chicago/Turabian StyleSánchez-Cordón, Pedro J., Alejandro Nunez, Aleksija Neimanis, Emil Wikström-Lassa, María Montoya, Helen Crooke, and Dolores Gavier-Widén. 2019. "African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II" Viruses 11, no. 9: 852. https://doi.org/10.3390/v11090852
APA StyleSánchez-Cordón, P. J., Nunez, A., Neimanis, A., Wikström-Lassa, E., Montoya, M., Crooke, H., & Gavier-Widén, D. (2019). African Swine Fever: Disease Dynamics in Wild Boar Experimentally Infected with ASFV Isolates Belonging to Genotype I and II. Viruses, 11(9), 852. https://doi.org/10.3390/v11090852