Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vaccine and Viruses
2.2. Experimental Design
2.3. Clinical Monitoring, Sampling and Necropsy
2.4. Viral Genome Quantification and Virus Isolation
2.5. Haptoglobin and Cytokine Measurements
2.6. Flow Cytometry Cellular Phenotype
2.7. Quantification of IFN-γ Secreting Cells
2.8. Virus Neutralization Assays
2.9. Haemagglutination Inhibition Assays
2.10. Statistical Analyses
3. Results
3.1. Clinical Signs
3.2. Virus Shedding
3.3. Quantification of Haptoglobin and Cytokines in Sera or BALF
3.4. Phenotype of Myeloid Cells Collected in Broncho-Alveolar Fluids
3.5. Evaluation of the Cellular Adaptive Immune Response in Peripheral Blood Mononuclear Cells
3.6. Evaluation of the Neutralizing Immune Response in Sera
3.7. Evaluation of Cross-Reactive Anti-H1hu Antibodies in Sera at D21
3.8. Correlation Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simon, G.; Larsen, L.E.; Durrwald, R.; Foni, E.; Harder, T.; Van Reeth, K.; Markowska-Daniel, I.; Reid, S.M.; Dan, A.; Maldonado, J.; et al. European surveillance network for influenza in pigs: Surveillance programs, diagnostic tools and Swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS ONE 2014, 9, e115815. [Google Scholar] [CrossRef]
- Bonin, E.; Queguiner, S.; Woudstra, C.; Gorin, S.; Barbier, N.; Harder, T.C.; Fach, P.; Herve, S.; Simon, G. Molecular subtyping of European swine influenza viruses and scaling to high-throughput analysis. Virol. J. 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Herve, S.; Garin, E.; Calavas, D.; Lecarpentier, L.; Ngwa-Mbot, D.; Poliak, S.; Wendling, S.; Rose, N.; Simon, G. Virological and epidemiological patterns of swine influenza A virus infections in France: Cumulative data from the RESAVIP surveillance network, 2011-2018. Vet. Microbiol. 2019, 239, 108477. [Google Scholar] [CrossRef] [PubMed]
- Chastagner, A.; Hervé, S.; Quéguiner, S.; Hirchaud, E.; Lucas, P.; Gorin, S.; Béven, V.; Barbier, N.; Deblanc, C.; Blanchard, Y.; et al. Genetic and antigenic evolution of European swine influenza A viruses of HA-1C (avian-like) and HA-1B (human-like) lineages in France from 2000 to 2018. manuscript in preparation.
- Moreno, A.; Chiapponi, C.; Boniotti, M.B.; Sozzi, E.; Foni, E.; Barbieri, I.; Zanoni, M.G.; Faccini, S.; Lelli, D.; Cordioli, P. Genomic characterization of H1N2 swine influenza viruses in Italy. Vet. Microbiol. 2012, 156, 265–276. [Google Scholar] [CrossRef]
- Moreno, A.; Gabanelli, E.; Sozzi, E.; Lelli, D.; Chiapponi, C.; Ciccozzi, M.; Zehender, G.; Cordioli, P. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses. Vet. Res. 2013, 44, 112. [Google Scholar] [CrossRef] [Green Version]
- Sobolev, I.; Kurskaya, O.; Leonov, S.; Kabilov, M.; Alikina, T.; Alekseev, A.; Yushkov, Y.; Saito, T.; Uchida, Y.; Mine, J.; et al. Novel reassortant of H1N1 swine influenza virus detected in pig population in Russia. Emerg. Microbes Infect. 2019, 8, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Culhane, M.R.; Trovão, N.S.; Patnayak, D.P.; Halpin, R.A.; Lin, X.; Shilts, M.H.; Das, S.R.; Detmer, S.E. The emergence and evolution of influenza A (H1α) viruses in swine in Canada and the United States. J. Gen. Virol. 2017, 98, 2663–2675. [Google Scholar] [CrossRef]
- Bonin, E.; Hervé, S.; Quéguiner, S.; Barbier, N.; Gorin, S.; Garin, E.; Wendling, S.; Simon, G. Distinction de plusieurs sous-populations de virus influenza porcins H1avN2 en France (Distinction of several subpopulations of H1avN2 swine influenza viruses in France). Bull. Épidémiologique Santé Animale Aliment. 2016, 75, 11. [Google Scholar]
- Van Reeth, K.; Ma, W. Swine influenza virus vaccines: To change or not to change-that’s the question. Curr. Top. Microbiol. Immunol. 2012, 370, 173–200. [Google Scholar] [CrossRef]
- World Organisation for Animal Health (OIE). Influenza A virus of swine. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2017; World Organisation for Animal Health: Paris, France, 2015; pp. 1–14. [Google Scholar]
- Watson, S.J.; Langat, P.; Reid, S.M.; Lam, T.T.; Cotten, M.; Kelly, M.; Van Reeth, K.; Qiu, Y.; Simon, G.; Bonin, E.; et al. Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. J. Virol. 2015, 89, 9920–9931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, T.K.; Macken, C.A.; Lewis, N.S.; Scheuermann, R.H.; Van Reeth, K.; Brown, I.H.; Swenson, S.L.; Simon, G.; Saito, T.; Berhane, Y.; et al. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere 2016, 1, e00275-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madec, F.; Kobisch, M. Bilan lésionnel des poumons de porcs charcutiers à l’abattoir. J. Rech. Porc. Fr. 1982, 14, 405–412. [Google Scholar]
- Cador, C.; Herve, S.; Andraud, M.; Gorin, S.; Paboeuf, F.; Barbier, N.; Queguiner, S.; Deblanc, C.; Simon, G.; Rose, N. Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet. Res. 2016, 47, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamin, A.; Gorin, S.; Le Potier, M.F.; Kuntz-Simon, G. Characterization of conventional and plasmacytoid dendritic cells in swine secondary lymphoid organs and blood. Vet. Immunol. Immunopathol. 2006, 114, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Talker, S.C.; Koinig, H.C.; Stadler, M.; Graage, R.; Klingler, E.; Ladinig, A.; Mair, K.H.; Hammer, S.E.; Weissenbock, H.; Durrwald, R.; et al. Magnitude and kinetics of multifunctional CD4+ and CD8beta+ T cells in pigs infected with swine influenza A virus. Vet. Res. 2015, 46, 52. [Google Scholar] [CrossRef] [Green Version]
- Deblanc, C.; Herve, S.; Gorin, S.; Cador, C.; Andraud, M.; Queguiner, S.; Barbier, N.; Paboeuf, F.; Rose, N.; Simon, G. Maternally-derived antibodies do not inhibit swine influenza virus replication in piglets but decrease excreted virus infectivity and impair post-infectious immune responses. Vet. Microbiol. 2018, 216, 142–152. [Google Scholar] [CrossRef]
- Chastagner, A.; Hervé, S.; Bonin, E.; Quéguiner, S.; Hirchaud, E.; Henritzi, D.; Béven, V.; Gorin, S.; Barbier, N.; Blanchard, Y.; et al. Spatiotemporal Distribution and Evolution of the A/H1N1 2009 Pandemic Influenza Virus in Pigs in France from 2009 to 2017: Identification of a Potential Swine-Specific Lineage. J. Virol. 2018, 92, e00988-18. [Google Scholar] [CrossRef] [Green Version]
- Malaviya, R.; Laskin, J.D.; Laskin, D.L. Anti-TNFalpha therapy in inflammatory lung diseases. Pharmacol. Ther. 2017, 180, 90–98. [Google Scholar] [CrossRef]
- Deblanc, C.; Delgado-Ortega, M.; Gorin, S.; Berri, M.; Paboeuf, F.; Berthon, P.; Herrler, G.; Meurens, F.; Simon, G. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher inflammation following swine influenza virus infection. J. Gen. Virol. 2016, 97, 2501–2515. [Google Scholar] [CrossRef]
- Yan, J.; Grantham, M.; Pantelic, J.; Bueno de Mesquita, P.J.; Albert, B.; Liu, F.; Ehrman, S.; Milton, D.K.; Consortium, E. Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. USA 2018, 115, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellier, R. Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 2006, 12, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.W.; Cao, P.; Heffernan, J.M.; McVernon, J.; Quinn, K.M.; La Gruta, N.L.; Laurie, K.L.; McCaw, J.M. Modelling cross-reactivity and memory in the cellular adaptive immune response to influenza infection in the host. J. Theor. Biol. 2017, 413, 34–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altenburg, A.F.; Rimmelzwaan, G.F.; de Vries, R.D. Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine 2015, 33, 500–506. [Google Scholar] [CrossRef]
- Talker, S.C.; Stadler, M.; Koinig, H.C.; Mair, K.H.; Rodriguez-Gomez, I.M.; Graage, R.; Zell, R.; Durrwald, R.; Starick, E.; Harder, T.; et al. Influenza A virus infection in pigs attracts multifunctional and cross-reactive T cells to the lung. J. Virol. 2016, 90, 9364–9382. [Google Scholar] [CrossRef] [Green Version]
- de Graaf, M.; Fouchier, R.A. Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO J. 2014, 33, 823–841. [Google Scholar] [CrossRef] [Green Version]
- Rajao, D.S.; Perez, D.R. Universal Vaccines and Vaccine Platforms to Protect against Influenza Viruses in Humans and Agriculture. Front. Microbiol. 2018, 9, 123. [Google Scholar] [CrossRef]
- Platt, R.; Vincent, A.L.; Gauger, P.C.; Loving, C.L.; Zanella, E.L.; Lager, K.M.; Kehrli, M.E., Jr.; Kimura, K.; Roth, J.A. Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet. Immunol. Immunopathol. 2011, 142, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Sandbulte, M.R.; Spickler, A.R.; Zaabel, P.K.; Roth, J.A. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines 2015, 3, 22–73. [Google Scholar] [CrossRef]
- Henry, C.; Palm, A.E.; Krammer, F.; Wilson, P.C. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol. 2018, 39, 70–79. [Google Scholar] [CrossRef]
- Van Reeth, K.; Gregory, V.; Hay, A.; Pensaert, M. Protection against a European H1N2 swine influenza virus in pigs previously infected with H1N1 and/or H3N2 subtypes. Vaccine 2003, 21, 1375–1381. [Google Scholar] [CrossRef]
- Van Reeth, K.; Gracia, J.C.M.; Trus, I.; Sys, L.; Claes, G.; Versnaeyen, H.; Cox, E.; Krammer, F.; Qiu, Y. Heterologous prime-boost vaccination with H3N2 influenza viruses of swine favors cross-clade antibody responses and protection. NPJ Vaccines 2017, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Public Assesment Report EMEA/V/C/000153. 2010. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/respiporc-flu3 (accessed on 16 September 2020).
- de Jong, J.C.; Smith, D.J.; Lapedes, A.S.; Donatelli, I.; Campitelli, L.; Barigazzi, G.; Van Reeth, K.; Jones, T.C.; Rimmelzwaan, G.F.; Osterhaus, A.D.; et al. Antigenic and genetic evolution of swine influenza A (H3N2) viruses in Europe. J. Virol. 2007, 81, 4315–4322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henritzi, D.; Petric, P.P.; Lewis, N.S.; Graaf, A.; Pessia, A.; Starick, E.; Breithaupt, A.; Strebelow, G.; Luttermann, C.; Parker, L.M.K.; et al. Surveillance of European Domestic Pig Populations Identifies an Emerging Reservoir of Potentially Zoonotic Swine Influenza A Viruses. Cell Host Microbe 2020, 28, 614–627.e6. [Google Scholar] [CrossRef] [PubMed]
- Ryt-Hansen, P.; Pedersen, G.A.; Larsen, I.; Kristensen, S.C.; Krog, S.J.; Wacheck, S.; Larsen, E.L. Substantial Antigenic Drift in the Hemagglutinin Protein of Swine Influenza A Viruses. Viruses 2020, 12, 248. [Google Scholar] [CrossRef] [Green Version]
- Zell, R.; Groth, M.; Krumbholz, A.; Lange, J.; Philipps, A.; Dürrwald, R. Displacement of the Gent/1999 human-like swine H1N2 influenza A virus lineage by novel H1N2 reassortants in Germany. Arch. Virol. 2020, 165, 55–67. [Google Scholar] [CrossRef]
Strain | GenBank Accession Number of the HA Gene 1 | H1 Clade | Used as |
---|---|---|---|
A/Sw/Bakum/1832/2000 (Bakum/00) | GQ161104 | 1B.1.2.1 | vaccine antigen |
A/Sw/France/Ille et Vilaine-0415/2011 (415/11) | KR699790 | 1B.1.2.3 | challenge strain (H1huN2) |
A/Sw/France/22-130212/2013 (212/13) | KJ128323 | 1B.1.2.3 Δ146–147 | challenge strain (H1huN2Δ146–147) |
A/Sw/Scotland/410440/94 (Scotland/94) | AF085413 | 1B.1 | reference strain for HI test |
A/Sw/Cotes d’Armor/0214/06 (214/06) | AM777812 | 1B.1.1 | reference strain for HI test |
A/Sw/Cotes d’Armor/0113/06 (113/06) | AM503902 | 1B.1.2.3 | reference strain for HI test |
Group ID | Vaccination with Respiporc Flu®3 at 5 and 8 Weeks of Age (D-28 and D-7, Respectively) | Virus Strain Intra-Tracheally Inoculated at 9 Weeks of Age (D0) |
---|---|---|
H1N2 | no | 415/11 1 |
H1N2var | no | 212/13 2 |
Control | no | EMEM 3 |
V+H1N2 | yes | 415/11 1 |
V+H1N2var | yes | 212/13 2 |
V+Control | yes | EMEM 3 |
H1N2 Virus Strains | ||||||
---|---|---|---|---|---|---|
Reference Antigens | Challenged Strains | |||||
Serum | A/Sw/Scotland/410440/94 (H1huN2—Clade 1.B.1) | A/Sw/Cotes d’Armor/0214/06 (H1huN2—Clade 1B.1.1) | A/Sw/Cotes d’Armor/0113/06 (H1huN2—Clade 1B.1.2.3) | A/Sw/France/Ille et Vilaine-0415/2011 (H1huN2—Clade 1B.1.2.3) | A/Sw/France/22-130212/2013 (H1huN2Δ14–147—Clade 1B.1.2.3 Δ14–147) | |
Reference Sera | A/Sw/Scotland/410440/94 (H1huN2) | 640 | 640 | 640 | 1280 | 20 |
A/Sw/Cotes d’Armor/0214/06 (H1huN2) | 20 | 1280 | 320 | 640 | 80 | |
A/Sw/Cotes d’Armor/0113/06 (H1huN2) | 10 | 80 | 320 | 160 | 10 | |
A/Sw/France/22-130212/2013 (H1huN2 Δ14–147) | 10 | 160 | 80 | 160 | 640 | |
Serum from a vaccinated sow [15] | 40 | 160 | 80 | 160 | 40 | |
H1N2 group | 6.3 a (<10–10) | 80.0 b (40–160) | 91.9 b (40–160) | 422.2 c (320–640) | 20.0 d (10–40) | |
H1N2var group | 1.0 e (<10) | 45.9 f (20–80) | 13.2 g (10–20) | 40.0 f (20–80) | 211.1 h (160–320) | |
V+Control group | 1.0 e,i (<10) | 20.0 j (10–40) | 9.6 g,j (<10–40) | 26.4 f,j (20–40) | 1.0 i (<10) | |
V+H1N2 group | 26.4 k (10–40) | 278.6 l (160–640) | 242.5 l (80–320) | 367.6 c,l (160–640) | 45.9 k (20–80) | |
V+H1N2var group | 91.9 m (80–160) | 2228.6 n (1280-≥5120) | 844.5 n,o (320–2560) | 1280.0 n,o (640–2560) | 422.2 h,m,o (160–1280) |
Excretion | Haptoglobin | IL-6 | TNF-α | IFN-α | Granulocytes D1 | Macrophages D1 | Granulocytes D7 | Macrophages D7 | IFNγ-SC D21 | H1huN2-Specific NA D21 | H1huN2Δ14–147-Specific NA D21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
clinical score | 0.38 | 0.41 | 0.28 | 0.41 | 0.53 | 0.52 | −0.41 | 0.52 | −0.29 | 0.41 | 0.25 | na |
excretion | 0.87 | 0.73 | 0.69 | 0.77 | 0.58 | −0.40 | 0.73 | −0.77 | 0.85 | 0.91 | na | |
haptoglobin | 0.83 | 0.55 | 0.54 | 0.64 | −0.26 | 0.57 | −0.81 | 0.79 | 0.71 | na | ||
IL-6 | 0.54 | 0.44 | 0.62 | −0.47 | 0.68 | −0.95 | 0.75 | 0.65 | na | |||
TNF-α | 0.76 | 0.82 | −0.81 | 0.69 | −0.62 | 0.77 | 0.84 | na | ||||
IFN-α | 0.69 | −0.69 | 0.92 | −0.60 | 0.81 | 0.83 | na | |||||
granulocytes D1 | −0.79 | 0.71 | −0.64 | 0.84 | 0.70 | na | ||||||
macrophages D1 | −0.71 | 0.47 | −0.71 | −0.62 | na | |||||||
granulocytes D7 | −0.77 | 0.82 | 0.79 | na | ||||||||
macrophages D7 | −0.80 | −0.72 | na | |||||||||
IFNγ-SC D21 | 0.87 | na | ||||||||||
H1huN2-specific NA D21 | na |
Excretion | Haptoglobin | IL-6 | TNF-α | IFN-α | Granulocytes D1 | Macrophages D1 | Granulocytes D7 | Macrophages D7 | IFNγ-SC D21 | H1huN2-Specific NA D21 | H1huN2Δ146-147-Specific NA D21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
clinical score | 0.76 | 0.59 | 0.61 | 0.75 | 0.67 | 0.77 | −0.83 | 0.83 | −0.84 | 0.65 | 0.69 | 0.80 |
excretion | 0.90 | 0.83 | 0.83 | 0.73 | 0.90 | −0.87 | 0.87 | −0.80 | 0.78 | 0.93 | 0.84 | |
haptoglobin | 0.74 | 0.83 | 0.61 | 0.90 | −0.71 | 0.67 | −0.68 | 0.72 | 0.79 | 0.79 | ||
IL-6 | 0.82 | 0.65 | 0.66 | −0.65 | 0.64 | −0.87 | 0.89 | 0.83 | 0.68 | |||
TNF-α | 0.79 | 0.76 | −0.77 | 0.61 | −0.82 | 0.73 | 0.66 | 0.75 | ||||
IFN-α | 0.54 | −0.60 | 0.69 | −0.70 | 0.66 | 0.59 | 0.68 | |||||
granulocytes D1 | −0.88 | 0.81 | −0.79 | 0.74 | 0.85 | 0.80 | ||||||
macrophages D1 | −0.89 | 0.81 | −0.74 | −0.84 | −0.84 | |||||||
granulocytes D7 | −0.82 | 0.73 | 0.84 | 0.84 | ||||||||
macrophages D7 | −0.93 | −0.82 | −0.80 | |||||||||
IFNγ-SC D21 | 0.85 | 0.79 | ||||||||||
H1huN2-specific NA D21 | 0.76 |
Excretion | Haptoglobin | IL-6 | TNF-α | IFN-α | Granulocytes D1 | Macrophages D1 | Granulocytes D7 | Macrophages D7 | IFNγ-SC D0 | H1huN2-Specific NA D0 | IFNγ-SC D21 | H1huN2-Specific NA D21 | H1huN2Δ146-147-Specific NA D21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
clinical score | 0.37 | 0.41 | 0.29 | 0.23 | 0.52 | 0.52 | −0.41 | 0.52 | −0.29 | −0.41 | −0.31 | −0.06 | −0.24 | −0.26 |
excretion | 0.87 | 0.74 | 0.25 | 0.73 | 0.28 | −0.41 | 0.15 | −0.72 | −0.62 | −0.93 | −0.49 | −0.31 | −0.75 | |
haptoglobin | 0.92 | 0.17 | 0.52 | 0.16 | −0.31 | 0.14 | −0.70 | −0.73 | −0.83 | −0.52 | −0.65 | −0.88 | ||
IL-6 | 0.13 | 0.41 | 0.20 | −0.37 | 0.22 | −0.76 | −0.68 | −0.82 | −0.50 | −0.61 | −0.86 | |||
TNF-α | 0.72 | 0.32 | −0.37 | 0.67 | −0.18 | 0.07 | −0.16 | −0.46 | −0.17 | −0.43 | ||||
IFN-α | 0.46 | −0.56 | 0.61 | −0.53 | −0.35 | −0.63 | −0.44 | −0.09 | −0.52 | |||||
granulocytes D1 | −0.94 | 0.49 | −0.39 | 0.15 | −0.36 | 0.08 | −0.12 | −0.19 | ||||||
macrophages D1 | −0.52 | 0.47 | −0.05 | 0.48 | −0.04 | 0.18 | 0.36 | |||||||
granulocytes D7 | −0.37 | −0.29 | −0.28 | −0.32 | 0.07 | −0.21 | ||||||||
macrophages D7 | 0.58 | 0.85 | 0.72 | 0.35 | 0.49 | |||||||||
IFNγ-SC D0 | 0.69 | 0.47 | 0.17 | 0.48 | ||||||||||
H1huN2-specific NA D0 | 0.52 | 0.22 | 0.70 | |||||||||||
IFNγ-SC D21 | 0.35 | 0.44 | ||||||||||||
H1huN2-specific NA D21 | 0.65 |
Excretion | Haptoglobin | IL-6 | TNF-α | IFN-α | Granulocytes D1 | Macrophages D1 | Granulocytes D7 | Macrophages D7 | IFNγ-SC D0 | H1huN2-Specific NA D0 | IFNγ-SC D21 | H1huN2-Specific NA D21 | H1huN2Δ146-147-Specific NA D21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
clinical score | 0.71 | 0.19 | 0.61 | 0.42 | 0.23 | 0.39 | −0.75 | 0.77 | −0.84 | −0.75 | −0.73 | −0.68 | −0.73 | −0.63 |
excretion | 0.50 | 0.88 | 0.46 | 0.31 | 0.54 | −0.75 | 0.81 | −0.82 | −0.75 | −0.81 | −0.75 | −0.79 | −0.83 | |
haptoglobin | 0.41 | 0.07 | 0.18 | 0.27 | −0.12 | 0.54 | −0.02 | −0.46 | −0.60 | −0.73 | −0.53 | −0.55 | ||
IL-6 | 0.57 | 0.48 | 0.16 | −0.40 | 0.63 | −0.87 | −0.81 | −0.77 | −0.55 | −0.76 | −0.81 | |||
TNF-α | 0.91 | 0.10 | −0.36 | 0.27 | −0.51 | −0.23 | −0.28 | −0.26 | −0.29 | −0.15 | ||||
IFN-α | 0.13 | −0.24 | 0.22 | −0.30 | −0.17 | −0.17 | −0.15 | −0.18 | 0.01 | |||||
granulocytes D1 | −0.90 | 0.68 | −0.31 | −0.14 | −0.24 | −0.45 | −0.30 | −0.26 | ||||||
macrophages D1 | −1.00 | 0.64 | 0.55 | 0.63 | 0.69 | 0.48 | 0.47 | |||||||
granulocytes D7 | −0.70 | −0.74 | −0.70 | −0.72 | −0.63 | −0.67 | ||||||||
macrophages D7 | 0.87 | 0.79 | 0.52 | 0.72 | 0.71 | |||||||||
IFNγ-SC D0 | 0.93 | 0.71 | 0.76 | 0.81 | ||||||||||
H1huN2-specific NA D0 | 0.90 | 0.84 | 0.81 | |||||||||||
IFNγ-SC D21 | 0.72 | 0.70 | ||||||||||||
H1huN2-specific NA D21 | 0.76 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deblanc, C.; Quéguiner, S.; Gorin, S.; Chastagner, A.; Hervé, S.; Paboeuf, F.; Simon, G. Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses 2020, 12, 1155. https://doi.org/10.3390/v12101155
Deblanc C, Quéguiner S, Gorin S, Chastagner A, Hervé S, Paboeuf F, Simon G. Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses. 2020; 12(10):1155. https://doi.org/10.3390/v12101155
Chicago/Turabian StyleDeblanc, Céline, Stéphane Quéguiner, Stéphane Gorin, Amélie Chastagner, Séverine Hervé, Frédéric Paboeuf, and Gaëlle Simon. 2020. "Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus" Viruses 12, no. 10: 1155. https://doi.org/10.3390/v12101155
APA StyleDeblanc, C., Quéguiner, S., Gorin, S., Chastagner, A., Hervé, S., Paboeuf, F., & Simon, G. (2020). Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses, 12(10), 1155. https://doi.org/10.3390/v12101155