Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Selection of Samples
2.3. Processing of Fecal Samples, RNA Library Preparation, and Sequencing
2.4. Data Analysis
2.4.1. Phylogenetic Analysis
2.4.2. Recombination Analysis
2.4.3. Linear Antigen Epitope Prediction
2.4.4. Glycosylation Analysis
3. Results and Discussion
3.1. General Features of Complete Genome sequences of East African Porcine Astroviruses
3.2. Genetic Diversity and Phylogenetic Analysis
3.3. Recombination Analysis
3.4. Prediction of Potential Linear Antigenic Epitopes
3.5. Glycosylation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bosch, A.; Guix, S.; Krishna, N.K.; Mendez, E.; Monroe, S.S.; Pantin-Jackwood, M.; Schultz-Cherry, S. Family Astroviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses (Ninth Report of the International Committee on the Taxonomy of Viruses); King, A.M.Q., Lefkowitz, E., Adams, M.J., Carstens, E.B., Eds.; Elsevier Academic Press: New York, NY, USA, 2011; pp. 953–959. [Google Scholar]
- Amimo, J.O.; El Zowalaty, M.E.; Githae, D.; Wamalwa, M.; Djikeng, A.; Nasrallah, G.K. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch. Virol. 2016, 161, 887–897. [Google Scholar] [CrossRef]
- Chu, D.K.; Poon, L.L.; Guan, Y.; Peiris, J.S. Novel astroviruses in insectivorous bats. J. Virol. 2008, 82, 9107–9114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, H.; Chan, W.M.; Tsoi, H.W.; Fan, R.Y.; Lau, C.C.; Lau, S.K.; Woo, P.C.; Yuen, K.Y. Rediscovery and genomic characterization of bovine astroviruses. J. Gen. Virol. 2011, 92 Pt 8, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.I.; Noel, J.; Mitchell, D.; Herrmann, J.E.; Blacklow, N.R.; Pickering, L.K.; Dennehy, P.; Ruiz-Palacios, G.; de Guerrero, M.L.; Monroe, S.S. The changing epidemiology of astrovirus-associated gastroenteritis: A review. Arch. Virol. Suppl. 1996, 12, 287–300. [Google Scholar] [PubMed]
- Meleg, E.; Jakab, F.; Kocsis, B.; Banyai, K.; Melegh, B.; Szucs, G. Human astroviruses in raw sewage samples in Hungary. J. Appl. Microbiol. 2006, 101, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.B.; Cox, N.; Vrey, M.A.; Grabow, W.O. The occurrence of hepatitis A and astroviruses in selected river and dam waters in South Africa. Water Res. 2001, 35, 2653–2660. [Google Scholar] [CrossRef]
- Madeley, C.R.; Cosgrove, B.P. Letter: 28 nm particles in faeces in infantile gastroenteritis. Lancet 1975, 2, 451–452. [Google Scholar] [CrossRef]
- Espinosa, A.C.; Mazari-Hiriart, M.; Espinosa, R.; Maruri-Avidal, L.; Mendez, E.; Arias, C.F. Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res. 2008, 42, 2618–2628. [Google Scholar] [CrossRef]
- Kiulia, N.M.; Mwenda, J.M.; Nyachieo, A.; Nyaundi, J.K.; Steele, A.D.; Taylor, M.B. Astrovirus infection in young Kenyan children with diarrhoea. J. Trop. Pedriatics 2007, 53, 206–209. [Google Scholar] [CrossRef] [Green Version]
- King, A.M.Q.; Adams, M.J.; Lefkowitz, E.J. Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: London, UK, 2011; Volume 9. [Google Scholar]
- De Benedictis, P.; Schultz-Cherry, S.; Burnham, A.; Cattoli, G. Astrovirus infections in humans and animals-molecular biology, genetic diversity, and interspecies transmissions. Infect. Genet. Evol. 2011, 11, 1529–1544. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Pintó, R.M.; Guix, S. Human Astroviruses. Clin. Microbiol. Rev. 2014, 27, 1048–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, E.; Arias, C.F. Astroviruses. In Fields’s Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2013; pp. 609–628. [Google Scholar]
- Bridger, J.C. Detection by electron microscopy of caliciviruses, astroviruses and rotavirus-like particles in the faeces of piglets with diarrhoea. Vet. Rec. 1980, 107, 532–533. [Google Scholar] [PubMed]
- Brnic, D.; Jemersic, L.; Keros, T.; Prpic, J. High prevalence and genetic heterogeneity of porcine astroviruses in domestic pigs. Vet. J. 2014, 202, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Lan, D.; Ji, W.; Shan, T.; Cui, L.; Yang, Z.; Yuan, C.; Hua, X. Molecular characterization of a porcine astrovirus strain in China. Arch. Virol. 2011, 156, 1869–1875. [Google Scholar] [CrossRef] [PubMed]
- Laurin, M.A.; Dastor, M.; L’Homme, Y. Detection and genetic characterization of a novel pig astrovirus: Relationship to other astroviruses. Arch. Virol. 2011, 156, 2095–2099. [Google Scholar] [CrossRef]
- Luo, Z.; Roi, S.P.; Dastor, M.; Gallice, E.; Laurin, M.-A.; L’Homme, Y. Multiple novel and prevalent astroviruses in pigs. Vet. Microbiol. 2011, 149, 316–323. [Google Scholar] [CrossRef]
- Andrew, M.; MJA, K.; Carstens, E. Virus Taxonomy: Ninth Report of International Committee on Tamonomy of Virus; Lefkowitz, E., Ed.; Elsevier: London, UK, 2012. [Google Scholar]
- Geyer, A.; Steele, A.D.; Peenze, I.; Lecatsas, G. Astrovirus-like particles, adenoviruses and rotaviruses associated with diarrhoea in piglets. J. South Afr. Vetetrinary Assoc. 1994, 65, 164–166. [Google Scholar]
- Shimizu, M.; Shirai, J.; Narita, M.; Yamane, T. Cytopathic astrovirus isolated from porcine acute gastroenteritis in an established cell line derived from porcine embryonic kidney. J. Clin. Microbiol. 1990, 28, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Amimo, J.O.; Okoth, E.; Junga, J.O.; Ogara, W.O.; Njahira, M.N.; Wang, Q.; Vlasova, A.N.; Saif, L.J.; Djikeng, A. Molecular detection and genetic characterization of kobuviruses and astroviruses in asymptomatic local pigs in East Africa. Arch. Virol. 2014, 159, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Mor, S.K.; Chander, Y.; Marthaler, D.; Patnayak, D.P.; Goyal, S.M. Detection and molecular characterization of Porcine astrovirus strains associated with swine diarrhea. J. Vet. Diagn. Investig. 2012, 24, 1064–1067. [Google Scholar] [CrossRef] [Green Version]
- Reuter, G.; Nemes, C.; Boros, A.; Kapusinszky, B.; Delwart, E.; Pankovics, P. Astrovirus in wild boars (Sus scrofa) in Hungary. Arch. Virol. 2012, 157, 1143–1147. [Google Scholar] [CrossRef] [PubMed]
- Reuter, G.; Pankovics, P.; Boros, A. Identification of a novel astrovirus in a domestic pig in Hungary. Arch. Virol. 2011, 156, 125–128. [Google Scholar] [CrossRef]
- Shan, T.; Li, L.; Simmonds, P.; Wang, C.; Moeser, A.; Delwart, E. The Fecal Virome of Pigs on a High-Density Farm. J. Virol. 2011, 85, 11697–11708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez, V.; Freiden, P.; Gu, Z.; Adderson, E.; Hayden, R.; Schultz-Cherry, S. Persistent Infections with Diverse Co-Circulating Astroviruses in Pediatric Oncology Patients, Memphis, Tennessee, USA. Emerg. Infect. Dis. 2017, 23, 288–290. [Google Scholar] [CrossRef]
- Janowski, A.B.; Bauer, I.K.; Holtz, L.R.; Wang, D. Propagation of Astrovirus VA1, a Neurotropic Human Astrovirus, in Cell Culture. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Amimo, J.O.; Junga, J.O.; Ogara, W.O.; Vlasova, A.N.; Njahira, M.N.; Maina, S.; Okoth, E.A.; Bishop, R.P.; Saif, L.J.; Djikeng, A. Detection and genetic characterization of porcine group A rotaviruses in asymptomatic pigs in smallholder farms in East Africa: Predominance of P[8] genotype resembling human strains. Vet. Microbiol. 2015, 175, 195–210. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Roux, S.; Tournayre, J.; Mahul, A.; Debroas, D.; Enault, F. Metavir 2: New tools for viral metagenome comparison and assembled virome analysis. BMC Bioinform. 2014, 15, 76. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1, vev003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, B.; Zhang, L.; Liang, S.; Zhang, C. SVMTriP: A method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS ONE 2012, 7, e45152. [Google Scholar] [CrossRef] [Green Version]
- Ingale, S.; Gach, J.S.; Zwick, M.B.; Dawson, P.E. Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J. Pept. Sci. 2010, 16, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990, 276, 172–174. [Google Scholar] [CrossRef] [Green Version]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. Bmc Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 2008, 9, 514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Jung, E.; Brunak, S. Prediction of N-Glycosylation Sites in Human Proteins. In Preparation 2004. Available online: https://www.researchgate.net/publication/290163207_Prediction_of_N-glycosylation_sites_in_human_proteins (accessed on 15 June 2020).
- Xiao, C.-T.; Giménez-Lirola, L.G.; Gerber, P.F.; Jiang, Y.-H.; Halbur, P.G.; Opriessnig, T. Identification and characterization of novel porcine astroviruses (PAstVs) with high prevalence and frequent co-infection of individual pigs with multiple PAstV types. J. Gen. Virol. 2013, 94, 570–582. [Google Scholar] [CrossRef] [PubMed]
- Kamer, G.; Argos, P. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 1984, 12, 7269–7282. [Google Scholar] [CrossRef]
- Poch, O.; Sauvaget, I.; Delarue, M.; Tordo, N. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 1989, 8, 3867–3874. [Google Scholar] [CrossRef]
- Walter, J.E.; Briggs, J.; Guerrero, M.L.; Matson, D.O.; Pickering, L.K.; Ruiz-Palacios, G.; Berke, T.; Mitchell, D.K. Molecular characterization of a novel recombinant strain of human astrovirus associated with gastroenteritis in children. Arch. Virol. 2001, 146, 2357–2367. [Google Scholar] [CrossRef]
- Ito, M.; Kuroda, M.; Masuda, T.; Akagami, M.; Haga, K.; Tsuchiaka, S.; Kishimoto, M.; Naoi, Y.; Sano, K.; Omatsu, T.; et al. Whole genome analysis of porcine astroviruses detected in Japanese pigs reveals genetic diversity and possible intra-genotypic recombination. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2017, 50, 38–48. [Google Scholar] [CrossRef] [PubMed]
- van Hemert, F.J.; Berkhout, B.; Lukashov, V.V. Host-related nucleotide composition and codon usage as driving forces in the recent evolution of the Astroviridae. Virology 2007, 361, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bull, R.A.; Tanaka, M.M.; White, P.A. Norovirus recombination. J. Gen. Virol. 2007, 88 Pt 12, 3347–3359. [Google Scholar] [CrossRef] [PubMed]
- Medici, M.C.; Tummolo, F.; Martella, V.; Banyai, K.; Bonerba, E.; Chezzi, C.; Arcangeletti, M.C.; De Conto, F.; Calderaro, A. Genetic heterogeneity and recombination in type-3 human astroviruses. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2015, 32, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Yan, N.; Ji, C.; Wang, M.; Zhang, B.; Yue, H.; Tang, C. Prevalence and genome characteristics of canine astrovirus in southwest China. J. Gen. Virol. 2018, 99, 880–889. [Google Scholar] [CrossRef]
- Martella, V.; Medici, M.C.; Terio, V.; Catella, C.; Bozzo, G.; Tummolo, F.; Calderaro, A.; Bonura, F.; Di Franco, M.; Banyai, K.; et al. Lineage diversification and recombination in type-4 human astroviruses. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013, 20, 330–335. [Google Scholar] [CrossRef] [Green Version]
- Kauer, R.V.; Koch, M.C.; Hierweger, M.M.; Werder, S.; Boujon, C.L.; Seuberlich, T. Discovery of novel astrovirus genotype species in small ruminants. PeerJ 2019, 7, e7338. [Google Scholar] [CrossRef]
- Pantin-Jackwood, M.J.; Spackman, E.; Woolcock, P.R. Phylogenetic analysis of Turkey astroviruses reveals evidence of recombination. Virus Genes 2006, 32, 187–192. [Google Scholar] [CrossRef]
- Ulloa, J.C.; Gutiérrez, M.F. Genomic analysis of two ORF2 segments of new porcine astrovirus isolates and their close relationship with human astroviruses. Can. J. Microbiol. 2010, 56, 569–577. [Google Scholar] [CrossRef]
- Wolfaardt, M.; Kiulia, N.M.; Mwenda, J.M.; Taylor, M.B. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J. Clin. Microbiol. 2011, 49, 728–731. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 2006, 7, 217–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossenta, M.; Marchese, S.; Poggianella, M.; Slon Campos, J.L.; Burrone, O.R. Role of N-glycosylation on Zika virus E protein secretion, viral assembly and infectivity. Biochem. Biophys. Res. Commun. 2017, 492, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Behrens, A.J.; Vasiljevic, S.; Pritchard, L.K.; Harvey, D.J.; Andev, R.S.; Krumm, S.A.; Struwe, W.B.; Cupo, A.; Kumar, A.; Zitzmann, N.; et al. Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Rep. 2016, 14, 2695–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walls, A.C.; Tortorici, M.A.; Frenz, B.; Snijder, J.; Li, W.; Rey, F.A.; DiMaio, F.; Bosch, B.J.; Veesler, D. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat. Struct. Mol. Biol. 2016, 23, 899–905. [Google Scholar] [CrossRef]
- Gram, G.J.; Hemming, A.; Bolmstedt, A.; Jansson, B.; Olofsson, S.; Akerblom, L.; Nielsen, J.O.; Hansen, J.E. Identification of an N-linked glycan in the V1-loop of HIV-1 gp120 influencing neutralization by anti-V3 antibodies and soluble CD4. Arch. Virol. 1994, 139, 253–261. [Google Scholar] [CrossRef]
Genotype | Strains | Accession No. | 5′UTR | ORF1a | ORF1ab | ORF2 | 3′UTR | Total Length | Source |
---|---|---|---|---|---|---|---|---|---|
PoAstV2 | U083 | KY940077 | 18 | 2475 | 4053 | 2325 | 162 | 6434 | Samia, Uganda |
K321 | KY940076 | 27 | 2475 | 4056 | 2328 | 63 | 6347 | Budalangi, Kenya | |
PoAstV3 | U460 (Partial ORF1a) | KY933399 | - | 1616 | 3208 | 2148 | - | 5281 | Budama, Uganda |
PoAstV4 | K456 | KY933398 | 85 | 2550 | 3995 | 2511 | 67 | 6649 | Funyula, Kenya |
K451 | KY940075 | - | 2602 | 4138 | 2541 | 55 | 6634 | Funyula, Kenya | |
K366 | MT451917 | 87 | 2550 | 3995 | 2469 | 76 | 6618 | Funyula, Kenya | |
K062 | MT451918 | 87 | 2550 | 3995 | 2481 | 75 | 6629 | Amukura, Kenya |
Method | Event 1 in K062 | Event 2 in K366 | Event 3 in K456 |
---|---|---|---|
RDP | 2.811 × 10−13 | 1.522 × 10−13 | 2.744 × 10−16 |
GENECONV | 2.747 × 10−17 | 1.099 × 10−2 | 1.816 × 10−3 |
BootScan | 2.199 × 10−15 | 4.858 × 10−5 | 1.518 × 10−16 |
MaxChi | 2.377 × 10−21 | 9.780 × 10−13 | 4.161 × 10−5 |
Chimaera | 2.805 × 10−13 | 2.604 × 10−12 | 5.516 × 10−9 |
Siscan | 4.626 × 10−2 | 1.434 × 10−7 | 2.183 × 10−13 |
Phylpro | 4.612 × 10−9 | 1.165 × 10−14 | 2.642 × 10−13 |
LARD | 1.219 × 10−71 | 1.267 × 10−76 | 2.947 × 10−22 |
3Seq | 4.612 × 10−5 | 1.165 × 10−14 | 2.642 × 10−12 |
Strains | Amino Acid Position 126–161 | Amino Acid Position 219–241 | Amino Acid Position 332–363 | ||||||
---|---|---|---|---|---|---|---|---|---|
U083 | FKMTKCELVLKPLVGDSAVSGTVVRASWNPTAT | IGKTMSTYQSRAFEGGLFLAELTT | RAANAPVRTGETTFDIYASISDARSDSPCVST | ||||||
K321 | YKMTRCVVTLKPIVGDSAVAGTVTRVSWNPTSS | CHTFGKTTSTYRNEPFKGGLFLAE | VKRAAGAPVRANDNEIRFDIYASISDARSNTP | ||||||
U460 | WRLTNLKIKCTPLVGPSAVTGSVYRVSLNLTQS | MIEIHGLGKTSSTYKDEPWVGDLF | PFQWLIKGGWWFVKKALGRSMNSDEVYYVYAS | ||||||
K456 | WRVQYLDIKLTPLVGASAVSGTVIRTSLNLAAQ | TLGKTMSTYKSDIFDGPLFLAEVT | QWLIKAGWWFLKRIANKKKSGDHIDGQPDANE | ||||||
K451 | WRVDNILIKLTPLVGASAVSGTAVRVSLNNAAT | TLGQTMSTYQAKVFTGPLFLCEMT | LFQAGWWFVKRIANKKKVGGSVDGEPDPGEVT | ||||||
K366 | WRVKNMIIKLTPLVGGSAVSGTAVRTSLNLSGQ | TYGKTVSTYRNDPFTGPLFLAELT | LFKAGWWFVKKIANKSQNRNRPGEPDPGELTF | ||||||
K062 | WRARDIIVKLTPLVGGSAVSGTAIRTSLNLSAQ | TLGKTLSTYKNEDFTGPLFLAELT | LFKAGWWFVKKIANKKTSGNAPGEPAPGELTF | ||||||
Strains | SVMTriP Web-Based Tool | Immune-Medicine Group Tool | IEDB: Ellipro Software | VaxiJen Software | |||||
Position | Score | Position | Score | Position | Score | Position | Antigenicity * | ||
U083 | PoAstV2 | 127–146 | 1.000 | 129–151 | 1.215 | 136–148 | 0.804 | 126–158 | 0.6357 |
K321 | 130–149 | 0.777 | 130–153 | 1.200 | 139–151 | 0.810 | 129–161 | 0.7207 | |
U460 | PoAstV3 | - | - | 135–161 | 1.150 | 142–154 | 0.809 | 132–164 | 1.0511 |
K456 | PoAstV4 | 127–146 | 1.000 | 125–159 | 1.150 | 135–149 | 0.765 | 127–159 | 1.1882 |
K451 | 128–147 | 0.994 | 129–154 | 1.150 | 135–149 | 0.765 | 127–159 | 0.7063 | |
K366 | 128–147 | 0.836 | 134–156 | 1.150 | 135–149 | 0.751 | 127–159 | 0.7977 | |
Ko62 | 128–147 | 0.836 | 130–147 | 1.175 | 135–149 | 0.767 | 127–159 | 0.9112 |
Name | Position | Sequence | Potential † | Jury Agreement | N Glycosylated | Name | Position | Sequence | Potential † | Jury Agreement | N Glycosylated |
---|---|---|---|---|---|---|---|---|---|---|---|
U083 | 12 | NTTN | 0.734 | (9/9) | ++ | U460 | 160 | NLTQ | 0.750 | (9/9) | +++ |
20 | NGSS | 0.513 | (5/9) | + | 306 | NATT | 0.597 | (6/9) | + | ||
55 | NKTV | 0.764 | (9/9) | +++ | 625 | NYTF | 0.646 | (8/9) | + | ||
86 | NGSE | 0.691 | (9/9) | ++ | K451 | 274 | NATP | 0.110 | (9/9) | --- | |
154 | NPTA | 0.697 | (9/9) | ++* | 398 | NITQ | 0.681 | (9/9) | ++ | ||
297 | NKTI | 0.752 | (9/9) | +++ | 573 | NYTM | 0.731 | (9/9) | ++ | ||
439 | NYTT | 0.648 | (9/9) | ++ | 658 | NTTP | 0.110 | (9/9) | --- | ||
542 | NGTG | 0.735 | (9/9) | ++ | K456 | 251 | NPTP | 0.271 | (8/9) | -- | |
557 | NRTN | 0.618 | (7/9) | + | 391 | NITG | 0.631 | (9/9) | ++ | ||
611 | NNTM | 0.406 | (8/9) | - | 521 | NPTL | 0.643 | (8/9) | +* | ||
K321 | 13 | NTTN | 0.746 | (9/9) | ++ | 601 | NGTL | 0.698 | (9/9) | ++ | |
21 | NGSS | 0.505 | (6/9) | + | 655 | NLTA | 0.644 | (9/9) | ++ | ||
41 | NRTR | 0.749 | (9/9) | ++ | K366 | 123 | NYSL | 0.738 | (9/9) | ++ | |
56 | NQSQ | 0.560 | (6/9) | + | 155 | NLSG | 0.670 | (9/9) | ++ | ||
80 | NTTL | 0.625 | (9/9) | ++ | 287 | NGSL | 0.573 | (7/9) | + | ||
89 | NESG | 0.557 | (6/9) | + | 345 | NKSQ | 0.677 | (8/9) | + | ||
157 | NPTS | 0.714 | (9/9) | ++* | 502 | NYTP | 0.197 | (9/9) | --- | ||
412 | NPTR | 0.729 | (9/9) | ++* | 559 | NPTR | 0.580 | (8/9) | +* | ||
457 | NGTK | 0.685 | (9/9) | ++ | 565 | NFTQ | 0.584 | (7/9) | + | ||
493 | NNTT | 0.547 | (6/9) | + | K062 | 123 | NYSL | 0.709 | (9/9) | ++ | |
494 | NTTA | 0.609 | (7/9) | + | 155 | NLSA | 0.627 | (8/9) | + | ||
511 | NESP | 0.129 | (9/9) | --- | 287 | NSSS | 0.497 | (4/9) | - | ||
560 | NNSN | 0.377 | (9/9) | -- | 615 | NQTV | 0.607 | (7/9) | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amimo, J.O.; Machuka, E.M.; Abworo, E.O.; Vlasova, A.N.; Pelle, R. Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms. Viruses 2020, 12, 1262. https://doi.org/10.3390/v12111262
Amimo JO, Machuka EM, Abworo EO, Vlasova AN, Pelle R. Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms. Viruses. 2020; 12(11):1262. https://doi.org/10.3390/v12111262
Chicago/Turabian StyleAmimo, Joshua O., Eunice M. Machuka, Edward O. Abworo, Anastasia N. Vlasova, and Roger Pelle. 2020. "Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms" Viruses 12, no. 11: 1262. https://doi.org/10.3390/v12111262
APA StyleAmimo, J. O., Machuka, E. M., Abworo, E. O., Vlasova, A. N., & Pelle, R. (2020). Whole Genome Sequence Analysis of Porcine Astroviruses Reveals Novel Genetically Diverse Strains Circulating in East African Smallholder Pig Farms. Viruses, 12(11), 1262. https://doi.org/10.3390/v12111262