The Molecular Epidemiology and Transmission Dynamics of HIV Type 1 in a General Population Cohort in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting, Participants and Sample Collection
2.2. Laboratory Methods
DNA Extraction, PCR Amplification and DNA Sequencing
2.3. HIV Subtyping
2.4. Phylogenetic and Transmission Network Analysis
2.5. Bayesian Phylogeographic Analysis
2.6. Quality Control and Sequence Accession Numbers
2.7. Statistical Analysis
2.8. Ethical Considerations
3. Results
3.1. Summary Characteristics of Study Populations
3.2. HIV-1 Subtyping
3.3. Transmission Networks
3.3.1. Cluster Size Distribution
3.3.2. Characteristics of Transmission Clusters
3.3.3. Factors Associated with Transmission Cluster Membership
3.4. Phylogeographic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNAIDS DATA. 2019. Available online: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf (accessed on 20 March 2020).
- Mbulaiteye, S.M.; Mahe, C.; Whitworth, J.A.G.; Ruberantwari, A.; Nakiyingi, J.S.; Ojwiya, A.; Kamali, A. Declining HIV-1 incidence and associated prevalence over 10 years in a rural population in south-west Uganda: A cohort study. Lancet 2002, 360, 41–46. [Google Scholar] [CrossRef]
- Green, E.C.; Halperin, D.T.; Nantulya, V.; Hogle, J.A. Uganda’s HIV Prevention Success: The Role of Sexual Behavior Change and the National Response. AIDS Behav. 2006, 10, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Uganda Ministry of Health and ICF International. 2011 Uganda AIDS Indicator Survey: Key Findings; MOH and ICF International: Calverton, MD, USA, 2012. [Google Scholar]
- Ministry of Health Uganda. Population-Based HIV Impact Assessement (UPHIA) 2016–2017. Summary Sheet: Preliminary Findings; Ministry of Health Uganda: Kampala, Uganda, 2017. [Google Scholar]
- Ministry of Health and Uganda AIDS Commission. Multi-Sectoral HIV Programming for MARPS in Uganda: Review of Profiles, Sizes and Programme Coverage; Review Report; Ministry of Health and Uganda AIDS Commission: Kampala, Uganda, 2014. [Google Scholar]
- Kamali, A.; Nsubuga, R.N.; Ruzagira, E.; Bahemuka, U.; Asiki, G.; Price, M.A.; Newton, R.; Kaleebu, P.; Fast, P. Heterogeneity of HIV incidence: A comparative analysis between fishing communities and in a neighbouring rural general population, Uganda, and implications for HIV control. Sex. Transm. Infect. 2016, 92, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Asiki, G.; Mpendo, J.; Abaasa, A.; Agaba, C.; Nanvubya, A.; Nielsen, L.; Seeley, J.; Kaleebu, P.; Grosskurth, H.; Kamali, A. HIV and syphilis prevalence and associated risk factors among fishing communities of Lake Victoria, Uganda. Sex. Transm. Infect. 2011, 87, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Kiwanuka, N.; Ssetaala, A.; Ssekandi, I.; Nalutaaya, A.; Kitandwe, P.K.; Ssempiira, J.; Bagaya, B.S.; Balyegisawa, A.; Kaleebu, P.; Hahn, J.; et al. Population attributable fraction of incident HIV infections associated with alcohol consumption in fishing communities around Lake Victoria, Uganda. PLoS ONE 2017, 12, e0171200. [Google Scholar] [CrossRef]
- Mazzeo, J. Dynamics of HIV/AIDS in the Fishing Communities of Benin and Uganda. Food Agric. Organ. HIV/AIDS Program 2004. Unpublished Work. [Google Scholar]
- Tumwesigye, N.M.; Atuyambe, L.; Wanyenze, R.K.; Kibira, S.P.; Li, Q.; Wabwire-Mangen, F.; Wagner, G. Alcohol consumption and risky sexual behaviour in the fishing communities: Evidence from two fish landing sites on Lake Victoria in Uganda. BMC Public Health 2012, 12, 1069. [Google Scholar] [CrossRef] [Green Version]
- Vandepitte, J.; Weiss, H.A.; Bukenya, J.; Nakubulwa, S.; Mayanja, Y.; Matovu, G.; Kyakuwa, N.; Hughes, P.; Hayes, R.; Grosskurth, H. Alcohol use, mycoplasma genitalium, and other STIs associated With HIV incidence among women at high risk in Kampala, Uganda. J. Acquir. Immune Defic. Syndr. 2013, 62, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Kasamba, I.; Nash, S.; Seeley, J.; Weiss, H.A. HIV incidence among women at high risk of HIV infection attending a dedicated clinic in Kampala, Uganda: 2008–2017. Sex. Transm. Dis. 2019. [Google Scholar] [CrossRef] [Green Version]
- Vandepitte, J.; Bukenya, J.; Weiss, H.A.; Nakubulwa, S.; Francis, S.C.; Hughes, P.; Hayes, R.; Grosskurth, H. HIV and other sexually transmitted infections in a cohort of women involved in high-risk sexual behavior in Kampala, Uganda. Sex. Transm. Dis. 2011, 38, 316–323. [Google Scholar] [CrossRef]
- Kaleebu, P.; Kamali, A.; Seeley, J.; Elliott, A.M.; Katongole-Mbidde, E. The Medical Research Council (UK)/Uganda Virus Research Institute Uganda Research Unit on AIDS--’25 years of research through partnerships’. Trop. Med. Int. Health 2015, 20, E1–E10. [Google Scholar] [CrossRef] [PubMed]
- Asiki, G.; Murphy, G.; Nakiyingi-Miiro, J.; Seeley, J.; Nsubuga, R.N.; Karabarinde, A.; Waswa, L.; Biraro, S.; Kasamba, I.; Pomilla, C.; et al. The general population cohort in rural south-western Uganda: A platform for communicable and non-communicable disease studies. Int J. Epidemiol. 2013, 42, 129–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafer, L.A.; Biraro, S.; Nakiyingi-Miiro, J.; Kamali, A.; Ssematimba, D.; Ouma, J.; Ojwiya, A.; Hughes, P.; Van der Paal, L.; Whitworth, J.; et al. HIV prevalence and incidence are no longer falling in southwest Uganda: Evidence from a rural population cohort 1989–2005. AIDS 2008, 22, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Mulder, D.W.; Nunn, A.J.; Wagner, H.U.; Kamali, A.; Kengeya-Kayondo, J.F. HIV-1 incidence and HIV-1-associated mortality in a rural Ugandan population cohort. AIDS 1994, 8, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Maude, G.H.; Malamba, S.S.; Okongo, M.J.; Wagner, H.U.; Mulder, D.W.; Whitworth, J.A. HIV-1 disease progression and AIDS-defining disorders in rural Uganda. Lancet 1997, 350, 245–250. [Google Scholar] [CrossRef]
- Kapaata, A.; Lyagoba, F.; Ssemwanga, D.; Magambo, B.; Nanyonjo, M.; Levin, J.; Mayanja, B.N.; Mugasa, C.; Parry, C.M.; Kaleebu, P. HIV-1 subtype distribution trends and evidence of transmission clusters among incident cases in a rural clinical cohort in southwest Uganda, 2004–2010. AIDS Res. Hum. Retroviruses 2013, 29, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Kengeya-Kayondo, J.F.; Kamali, A.; Nunn, A.J.; Ruberantwari, A.; Wagner, H.U.; Mulder, D.W. Incidence of HIV-1 infection in adults and socio-demographic characteristics of seroconverters in a rural population in Uganda: 1990–1994. Int. J. Epidemiol. 1996, 25, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Malamba, S.S.; Wagner, H.U.; Maude, G.; Okongo, M.; Nunn, A.J.; Kengeya-Kayondo, J.F.; Mulder, D.W. Risk factors for HIV-1 infection in adults in a rural Ugandan community: A case-control study. AIDS 1994, 8, 253–257. [Google Scholar] [CrossRef]
- Bbosa, N.; Ssemwanga, D.; Nsubuga, R.N.; Salazar-Gonzalez, J.F.; Salazar, M.G.; Nanyonjo, M.; Kuteesa, M.; Seeley, J.; Kiwanuka, N.; Bagaya, B.S.; et al. Phylogeography of HIV-1 suggests that Ugandan fishing communities are a sink for, not a source of, virus from general populations. Sci. Rep. 2019, 9, 1051. [Google Scholar] [CrossRef] [Green Version]
- Bbosa, N.; Ssemwanga, D.; Ssekagiri, A.; Xi, X.; Mayanja, Y.; Bahemuka, U.; Seeley, J.; Pillay, D.; Abeler-Dörner, L.; Golubchik, T.; et al. Phylogenetic and Demographic Characterization of Directed HIV-1 Transmission Using Deep Sequences from High-Risk and General Population Cohorts/Groups in Uganda. Viruses 2020, 12, 331. [Google Scholar] [CrossRef] [Green Version]
- Kaleebu, P.; Kirungi, W.; Watera, C.; Asio, J.; Lyagoba, F.; Lutalo, T.; Kapaata, A.A.; Nanyonga, F.; Parry, C.M.; Magambo, B.; et al. Virological Response and Antiretroviral Drug Resistance Emerging during Antiretroviral Therapy at Three Treatment Centers in Uganda. PLoS ONE 2015, 10, e0145536. [Google Scholar] [CrossRef]
- Ndembi, N.; Hamers, R.L.; Sigaloff, K.C.E.; Lyagoba, F.; Magambo, B.; Nanteza, B.; Watera, C.; Kaleebu, P.; Rinke de Wit, T.F. Transmitted antiretroviral drug resistance among newly HIV-1 diagnosed young individuals in Kampala. AIDS 2011, 25, 905–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndembi, N.; Ndembi, N.; Goodall, R.L.; Dunn, D.T.; McCormick, A.; Burke, A.; Lyagoba, F.; Munderi, P.; Katundu, P.; Kityo, C.; et al. Viral rebound and emergence of drug resistance in the absence of viral load testing: A randomized comparison between zidovudine-lamivudine plus Nevirapine and zidovudine-lamivudine plus Abacavir. J. Infect. Dis. 2010, 201, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, C.K.; Brumme, C.J.; Liu, T.F.; Chui, C.K.S.; Chu, A.L.; Wynhoven, B.; Hall, T.A.; Trevino, C.; Shafer, R.W.; Harrigan, P.R. Automating HIV Drug Resistance Genotyping with RECall, a Freely Accessible Sequence Analysis Tool. J. Clin. Microbiol. 2012, 50, 1936–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Struck, D.; Lawyer, G.; Ternes, A.-M.; Schmit, J.-C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef]
- Pineda-Peña, A.-C.; Faria, N.R.; Imbrechts, S.; Libin, P.; Abecasis, A.B.; Deforche, K.; Gómez-López, A.; Camacho, R.J.; de Oliveira, T.; Vandamme, A.-M. Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: Performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. 2013, 19, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Los Alamos National Laboratory (LANL). HIV Sequence Database Main Page. Available online: https://www.hiv.lanl.gov/content/sequence/HIV/mainpage.html (accessed on 12 April 2020).
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Nickle, D.C.; Learn, G.H.; Maust, B.; Mullins, J.I. ViroBLAST: A stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 2007, 23, 2334–2336. [Google Scholar] [CrossRef]
- ElimDupes. Available online: https://www.hiv.lanl.gov/content/sequence/ELIMDUPES/elimdupes.html (accessed on 15 February 2020).
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Ragonnet-Cronin, M.; Hodcroft, E.; Hué, S.; Fearnhill, E.; Delpech, V.; Brown, A.J.L.; Lycett, S. UK HIV Drug Resistance Database Automated analysis of phylogenetic clusters. BMC Bioinf. 2013, 14, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosakovsky Pond, S.L.; Weaver, S.; Leigh Brown, A.J.; Wertheim, J.O. HIV-TRACE (TRAnsmission Cluster Engine): A Tool for Large Scale Molecular Epidemiology of HIV-1 and Other Rapidly Evolving Pathogens. Mol. Biol. Evol. 2018, 35, 1812–1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiwuwa-Muyingo, S.; Nazziwa, J.; Ssemwanga, D.; Ilmonen, P.; Njai, H.; Ndembi, N.; Parry, C.; Kitandwe, P.K.; Gershim, A.; Mpendo, J.; et al. HIV-1 transmission networks in high risk fishing communities on the shores of Lake Victoria in Uganda: A phylogenetic and epidemiological approach. PLoS ONE 2017, 12, e0185818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yebra, G.; Ragonnet-Cronin, M.; Ssemwanga, D.; Parry, C.M.; Logue, C.H.; Cane, P.A.; Kaleebu, P.; Brown, A.J.L. Analysis of the history and spread of HIV-1 in Uganda using phylodynamics. J. Gen. Virol. 2015, 96, 1890–1898. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Baele, G.; Li, W.L.S.; Drummond, A.J.; Suchard, M.A.; Lemey, P. Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. Mol. Biol. Evol. 2013, 30, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, B.; Rambaut, A.; Drummond, A.J. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 2006, 23, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. Maximum-Likelihood Models for Combined Analyses of Multiple Sequence Data. J. Mol. Evol. 1996, 42, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Gill, M.S.; Lemey, P.; Faria, N.R.; Rambaut, A.; Shapiro, B.; Suchard, M.A. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 2013, 30, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.D.; Woolhouse, M.E.J.; Rambaut, A. The effects of sampling strategy on the quality of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods: A simulation study. Virus Evol. 2016, 2, vew003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minin, V.N.; Bloomquist, E.W.; Suchard, M.A. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 2008, 25, 1459–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.S.Y.; Ho, S.Y.W. Molecular clocks. Curr. Biol. 2016, 26, R399–R402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoder, A.D.; Yang, Z. Estimation of primate speciation dates using local molecular clocks. Mol. Biol. Evol. 2000, 17, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Tracer Is a Program for Analysing the Trace Files Generated by Bayesian MCMC Runs (that Is, the Continuous Parameter Values Sampled from the Chain). Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 30 May 2020).
- Bayesian Evolutionary Analysis Sampling Trees. Available online: http://beast.bio.ed.ac.uk/TreeAnnotator/ (accessed on 30 May 2020).
- FigTree Is Designed as a Graphical Viewer of Phylogenetic Trees and as a Program for Producing Publication-Ready Figures. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 31 May 2020).
- Bielejec, F.; Rambaut, A.; Suchard, M.A.; Lemey, P. SPREAD: Spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 2011, 27, 2910–2912. [Google Scholar] [CrossRef] [Green Version]
- Nazziwa, J.; Faria, N.R.; Chaplin, B.; Rawizza, H.; Kanki, P.; Dakum, P.; Abimiku, A.; Charurat, M.; Ndembi, N.; Esbjörnsson, J. Characterisation of HIV-1 Molecular Epidemiology in Nigeria: Origin, Diversity, Demography and Geographic Spread. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kouyos, R.D.; von Wyl, V.; Yerly, S.; Böni, J.; Taffé, P.; Shah, C.; Börgisser, P.; Klimkait, T.; Weber, R.; Hirschel, B.; et al. Molecular Epidemiology Reveals Long-Term Changes in HIV Type 1 Subtype B Transmission in Switzerland. J. Infect. Dis. 2010, 201, 1488–1497. [Google Scholar] [CrossRef]
- Leigh Brown, A.J.; Lycett, S.J.; Weinert, L.; Hughes, G.J.; Fearnhill, E.; Dunn, D.T. UK HIV Drug Resistance Collaboration Transmission network parameters estimated from HIV sequences for a nationwide epidemic. J. Infect. Dis. 2011, 204, 1463–1469. [Google Scholar] [CrossRef] [Green Version]
- Faria, N.R.; Suchard, M.A.; Rambaut, A.; Lemey, P. Toward a quantitative understanding of viral phylogeography. Curr. Opin. Virol. 2011, 1, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Lycett, S.J.; Leigh Brown, A.J. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico. PLoS ONE 2014, 9, e107330. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.J.; Baggs, J.; Downing, R.G.; Pieniazek, D.; Dorn, J.; Fridlund, C.; Biryahwaho, B.; Sempala, S.D.; Rayfield, M.A.; Dondero, T.J.; et al. Predominance of HIV-1 subtype A and D infections in Uganda. Emerg. Infect. Dis. 2000, 6, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ssemwanga, D.; Ndembi, N.; Lyagoba, F.; Bukenya, J.; Seeley, J.; Vandepitte, J.; Grosskurth, H.; Kaleebu, P. HIV type 1 subtype distribution, multiple infections, sexual networks, and partnership histories in female sex workers in Kampala, Uganda. AIDS Res. Hum. Retroviruses 2012, 28, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Kaleebu, P.; Whitworth, J.; Hamilton, L.; Rutebemberwa, A.; Lyagoba, F.; Morgan, D.; Duffield, M.; Biryahwaho, B.; Magambo, B.; Oram, J. Molecular epidemiology of HIV type 1 in a rural community in southwest Uganda. AIDS Res. Hum. Retroviruses 2000, 16, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Collinson-Streng, A.N.; Redd, A.D.; Sewankambo, N.K.; Serwadda, D.; Rezapour, M.; Lamers, S.L.; Gray, R.H.; Wawer, M.J.; Quinn, T.C.; Laeyendecker, O. Geographic HIV Type 1 Subtype Distribution in Rakai District, Uganda. AIDS Res. Hum. Retroviruses 2009, 25, 1045–1048. [Google Scholar] [CrossRef]
- Bulage, L.; Ssewanyana, I.; Nankabirwa, V.; Nsubuga, F.; Kihembo, C.; Pande, G.; Ario, A.R.; Matovu, J.K.; Wanyenze, R.K.; Kiyaga, C. Factors Associated with Virological Non-suppression among HIV-Positive Patients on Antiretroviral Therapy in Uganda, August 2014–July 2015. BMC Infect. Dis. 2017, 17, 326. [Google Scholar] [CrossRef] [PubMed]
- Schuyler, A.C.; Edelstein, Z.R.; Mathur, S.; Sekasanvu, J.; Nalugoda, F.; Gray, R.; Wawer, M.J.; Serwadda, D.M.; Santelli, J.S. Mobility among youth in Rakai, Uganda: Trends, characteristics, and associations with behavioural risk factors for HIV. Glob. Public Health 2017, 12, 1033–1050. [Google Scholar] [CrossRef] [Green Version]
- Ratmann, O.; Kagaayi, J.; Hall, M.; Golubchick, T.; Kigozi, G.; Xi, X.; Wymant, C.; Nakigozi, G.; Abeler-Dörner, L.; Bonsall, D.; et al. Quantifying HIV transmission flow between high-prevalence hotspots and surrounding communities: A population-based study in Rakai, Uganda. Lancet HIV 2020. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.Q.; Bangsberg, D.R.; Mo, T.; Lachowski, C.; Brumme, C.J.; Zhang, W.; Lima, V.D.; Boum, Y.; Mwebesa, B.B.; Muzoora, C.; et al. Prevalence and clinical impacts of HIV-1 intersubtype recombinants in Uganda revealed by near-full-genome population and deep sequencing approaches. AIDS 2017, 31, 2345–2354. [Google Scholar] [CrossRef]
- Bbosa, N.; Kaleebu, P.; Ssemwanga, D. HIV subtype diversity worldwide. Curr. Opin. HIV AIDS 2019, 14, 153–160. [Google Scholar] [CrossRef]
- Quinn, C.; Kadengye, D.T.; Johnson, C.C.; Baggaley, R.; Dalal, S. Who are the missing men? Characterising men who never tested for HIV from population-based surveys in six sub-Saharan African countries. J. Int. AIDS Soc. 2019, 22, e25398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camlin, C.S.; Ssemmondo, E.; Chamie, G.; El Ayadi, A.M.; Kwarisiima, D.; Sang, N.; Kabami, J.; Charlebois, E.; Petersen, M.; Clark, T.D.; et al. Men “missing” from population-based HIV testing: Insights from qualitative research. AIDS Care 2016, 28 (Suppl. S3), 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posada, D.; Crandall, K.A. The effect of recombination on the accuracy of phylogeny estimation. J. Mol. Evol. 2002, 54, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Leigh Brown, A.J.; Lycett, S.J. Quantifying predictors for the spatial diffusion of avian influenza virus in China. BMC Evol. Biol. 2017, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchatel, F.; de Bronsvoort, B.M.C.; Lycett, S. Phylogeographic Analysis and Identification of Factors Impacting the Diffusion of Foot-and-Mouth Disease Virus in Africa. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Olawore, O.; Tobian, A.A.R.; Kagaayi, J.; Bazaale, J.M.; Nantume, B.; Kigozi, G.; Nankinga, J.; Nalugoda, F.; Nakigozi, G.; Kigozi, G.; et al. Migration and risk of HIV acquisition in Rakai, Uganda: A population-based cohort study. Lancet HIV 2018, 5, e181–e189. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Non-Clustered n = 2598 N (%) | Clustered n = 1198 N (%) | Overall n = 3796 N (%) | p-Value |
---|---|---|---|---|
Study Location | <0.001 | |||
Central | 851 (32.8) | 159 (13.3) | 1010 (26.6) | |
East | 125 (4.8) | 20 (1.7) | 145 (3.8) | |
GPC | 848 (32.6) | 570 (47.5) | 1418 (37.4) | |
Non-GPC | 774 (29.8) | 449 (37.5) | 1223 (32.2) | |
Sex | 0.8101 | |||
Male | 1190 (54.1) | 655 (54.7) | 1733 (45.7) | |
Female | 1408 (45.9) | 543 (45.3) | 2063 (54.3) | |
ART | <0.001 | |||
Naïve | 178 (6.9) | 791 (66.0) | 970 (25.5) | |
On ART | 2419 (93.1) | 406 (34.0) | 2825 (74.5) | |
Unknown | 1 (0.04) | 1 (0.1) | 2 (0.1) | |
Age | 0.9847 | |||
15–24 | 589 (22.7) | 271 (22.6) | 860 (22.7) | |
25–34 | 728 (28.0) | 339 (28.2) | 1067 (28.1) | |
35–44 | 747 (28.8) | 335 (28.0) | 1082 (28.5) | |
45–54 | 308 (11.9) | 148 (12.4) | 456 (12.0) | |
>54 | 226 (8.7) | 104 (8.7) | 330 (8.7) | |
Subtype | <0.001 | |||
A1 | 1138 (43.8) | 452 (37.7) | 1590 (41.9) | |
C | 187 (7.2) | 214 (17.9) | 401 (10.6) | |
D | 917 (35.3) | 396 (33.1) | 1313 (34.6) | |
G | 4 (0.2) | 0 (0.0) | 4 (0.1) | |
Inter-subtype recombinants and other unknown HIV variants | 352 (13.5) | 136 (11.4) | 488 (12.9) |
Location | ||||
---|---|---|---|---|
HIV Variants | GPC Catchment Area (GPC/non-GPC) | Central | East | Total |
A1 | 1050 (39.8%) | 464 (45.9%) | 76 (52.4%) | 1590 |
D | 907 (34.3%) | 368 (36.4%) | 38 (26.2%) | 1313 |
C | 349 (13.2%) | 47 (4.7%) | 5 (3.4%) | 401 |
G | 2 (0.1%) | 2 (0.2%) | -- | 4 |
Inter-subtype Recombinants/unknown | 333 (12.6%) | 129 (12.8%) | 26 (17.9%) | 488 |
All | 2641 | 1010 | 145 | 3796 |
Cluster Size | No. of Clusters | Proportion (%) | Gender | |||
---|---|---|---|---|---|---|
F-F (%) | M-F (%) | M-M (%) | M:F Ratio | |||
2 | 409 | 78.1 | 84 (20.5) | 287 (70.2) | 38 (9.3) | 362:455 |
3 | 94 | 17.9 | 3 (3.2) | 90 (95.7) | 1 (1.1) | 137:145 |
4 | 13 | 2.5 | -- | 13 (100) | -- | 22:30 |
5 | 4 | 0.8 | -- | 4 (100) | -- | 8:12 |
6 | 2 | 0.4 | -- | 2 (100) | -- | 8:4 |
7 | 2 | 0.4 | -- | 2 (100) | -- | 5:9 |
Total | 524 | 100 | 87 | 398 | 39 |
Cluster ID | Size | Age, Median (IQR) | Gender (M:F) | ART (Naïve: on ART) | Location (%) | Subtype (%) |
---|---|---|---|---|---|---|
C290 | 7 | 41.0 (26.0–50.0) | 3:4 | 4:3 | Central (14.3) | D (100) |
East (28.6) | ||||||
GPC (42.9) | ||||||
Non-GPC (14.3) | ||||||
C93 | 7 | 40.0 (36.0–44.0) | 2:5 | 2:5 | GPC (100) | A1 (100) |
C272 | 6 | 22.5 (21.3–30.5) | 4:2 | 6:0 | GPC (83.3) | ISR (83.3) |
Non-GPC (16.7) | D (16.7) | |||||
C97 | 6 | 38.0 (35.5–40.5) | 4:2 | 1:5 | Central (16.7) | A1 (100) |
GPC (66.7) | ||||||
Non-GPC (16.7) | ||||||
C448 | 5 | 43.0 (40.0–46.0) | 2:3 | 0:5 | GPC (100) | D (100) |
C287 | 5 | 44.0 (30.0–55.0) | 1:4 | 2:3 | GPC (80) | D (100) |
Non-GPC (20) | ||||||
C281 | 5 | 29.0 (25.0–36.0) | 3:2 | 2:3 | GPC (20) | D (100) |
Non-GPC (80) | ||||||
C70 | 5 | 22.0 (19.0–26.0) | 2:3 | 5:0 | GPC (40) | A1 (100) |
Non-GPC (60) |
Covariate | Unadjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value |
---|---|---|---|---|
Study location | ||||
Central | 1 | |||
East | 0.86 (0.54–1.38) | 0.5410 | 1.29 (0.66–2.40) | 0.4415 |
GPC | 3.59 (2.94–4.39) | <0.001 | 6.90 (5.22–9.21) | <0.001 |
Non-GPC | 3.10 (2.53–3.81) | <0.001 | 5.12 (3.86–6.85) | <0.001 |
Gender | ||||
Male | 1 | |||
Female | 1.21 (0.89–1.17) | 0.7720 | 1.28 (1.06–1.54) | 0.0102 |
Age | ||||
15–24 | 1 | |||
25–34 | 1.01 (0.84–1.23) | 0.8920 | 1.52 (1.16–2.0) | 0.0024 |
35–44 | 0.97 (0.80–1.18) | 0.7950 | 1.47 (1.12–1.93) | 0.0050 |
45–54 | 1.04 (0.82–1.33) | 0.7260 | 2.22 (1.61–3.08) | <0.001 |
>54 | 0.99 (0.75–1.30) | 0.9460 | 1.60 (1.11–2.31) | 0.0111 |
ART | ||||
Naïve | 1 | |||
On ART | 0.04 (0.03–0.05) | <0.001 | 0.025 (0.020–0.032) | <0.001 |
Subtype | ||||
A1 | 1 | |||
C | 2.89 (2.31–3.62) | <0.001 | 0.91 (0.65–1.26) | 0.5638 |
D | 1.09 (0.93–1.28) | 0.2890 | 1.18 (0.96–1.45) | 0.1246 |
G | -- | -- | -- | -- |
Intersubtype recombinants and other unknown HIV variants | 0.97 (0.78–1.22) | 0.8260 | 0.68 (0.49–0.92) | 0.0139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ssemwanga, D.; Bbosa, N.; Nsubuga, R.N.; Ssekagiri, A.; Kapaata, A.; Nannyonjo, M.; Nassolo, F.; Karabarinde, A.; Mugisha, J.; Seeley, J.; et al. The Molecular Epidemiology and Transmission Dynamics of HIV Type 1 in a General Population Cohort in Uganda. Viruses 2020, 12, 1283. https://doi.org/10.3390/v12111283
Ssemwanga D, Bbosa N, Nsubuga RN, Ssekagiri A, Kapaata A, Nannyonjo M, Nassolo F, Karabarinde A, Mugisha J, Seeley J, et al. The Molecular Epidemiology and Transmission Dynamics of HIV Type 1 in a General Population Cohort in Uganda. Viruses. 2020; 12(11):1283. https://doi.org/10.3390/v12111283
Chicago/Turabian StyleSsemwanga, Deogratius, Nicholas Bbosa, Rebecca N. Nsubuga, Alfred Ssekagiri, Anne Kapaata, Maria Nannyonjo, Faridah Nassolo, Alex Karabarinde, Joseph Mugisha, Janet Seeley, and et al. 2020. "The Molecular Epidemiology and Transmission Dynamics of HIV Type 1 in a General Population Cohort in Uganda" Viruses 12, no. 11: 1283. https://doi.org/10.3390/v12111283
APA StyleSsemwanga, D., Bbosa, N., Nsubuga, R. N., Ssekagiri, A., Kapaata, A., Nannyonjo, M., Nassolo, F., Karabarinde, A., Mugisha, J., Seeley, J., Yebra, G., Leigh Brown, A., & Kaleebu, P. (2020). The Molecular Epidemiology and Transmission Dynamics of HIV Type 1 in a General Population Cohort in Uganda. Viruses, 12(11), 1283. https://doi.org/10.3390/v12111283