Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Finding Evolutionary Rate Changes
3.2. Most Rate-Shift Events Are Identified in Long Branches
3.3. Different Rate-Shift Patterns Identified in Different Branches
3.4. Rate Shifts and Innate Immunity
3.5. Discussion
3.6. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hahn, B.H.; Shaw, G.M.; De Cock, K.M.; Sharp, P.M. AIDS—AIDS as a zoonosis: Scientific and public health implications. Science 2000, 287, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Heuverswyn, F.; Li, Y.; Neel, C.; Bailes, E.; Keele, B.F.; Liu, W.; Loul, S.; Butel, C.; Liegeois, F.; Bienvenue, Y.; et al. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 2006, 444, 164. [Google Scholar] [CrossRef] [PubMed]
- D’Arc, M.; Ayouba, A.; Esteban, A.; Learn, G.H.; Boue, V.; Liegeois, F.; Etienne, L.; Tagg, N.; Leendertz, F.H.; Boesch, C.; et al. Origin of the HIV-1 group O epidemic in western lowland gorillas. Proc. Natl. Acad. Sci. USA 2015, 112, E1343–E1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takehisa, J.; Kraus, M.H.; Ayouba, A.; Bailes, E.; Van Heuverswyn, F.; Decker, J.M.; Li, Y.; Rudicell, R.S.; Learn, G.H.; Neel, C.; et al. Origin and biology of simian immunodeficiency virus in wild-living western gorillas. J. Virol. 2009, 83, 1635–1648. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.M.; Bedford, T. Modern-day SIV viral diversity generated by extensive recombination and cross-species transmission. PLoS Pathog. 2017, 13, e1006466. [Google Scholar] [CrossRef] [Green Version]
- Korber, B.; Muldoon, M.; Theiler, J.; Gao, F.; Gupta, R.; Lapedes, A.; Hahn, B.H.; Wolinsky, S.; Bhattacharya, T. Timing the ancestor of the HIV-1 pandemic strains. Science 2000, 288, 1789–1796. [Google Scholar] [CrossRef] [Green Version]
- Lemey, P.; Pybus, O.G.; Rambaut, A.; Drummond, A.J.; Robertson, D.L.; Roques, P.; Worobey, M.; Vandamme, A.M. The molecular population genetics of HIV-1 group O. Genetics 2004, 167, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, J.O.; Worobey, M. Dating the Age of the SIV Lineages That Gave Rise to HIV-1 and HIV-2. PLoS Comp. Biol. 2009, 5, e1000377. [Google Scholar] [CrossRef] [Green Version]
- Bailes, E.; Gao, F.; Bibollet-Ruche, F.; Courgnaud, V.; Peeters, M.; Marx, P.A.; Hahn, B.H.; Sharp, P.M. Hybrid origin of SIV in chimpanzees. Science 2003, 300, 1713. [Google Scholar] [CrossRef] [Green Version]
- Leitner, T.; Dazza, M.C.; Ekwalanga, M.; Apetrei, C.; Saragosti, S. Sequence Diversity among Chimpanzee Simian Immunodeficiency Viruses (SIVcpz) Suggests that SIVcpz Pts Was Derived from SIVcpz Ptt through Additional Recombination Events. AIDS Res. Hum. Retrovir. 2007, 23, 1114–1118. [Google Scholar] [CrossRef]
- Li, Y.; Ndjango, J.B.; Learn, G.H.; Ramirez, M.A.; Keele, B.F.; Bibollet-Ruche, F.; Liu, W.; Easlick, J.L.; Decker, J.M.; Rudicell, R.S.; et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 2012, 86, 10776–10791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etienne, L.; Hahn, B.H.; Sharp, P.M.; Matsen, F.A.; Emerman, M. Gene loss and adaptation to hominids underlie the ancient origin of HIV-1. Cell Host Microbe 2013, 14, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longdon, B.; Brockhurst, M.A.; Russell, C.A.; Welch, J.J.; Jiggins, F.M. The evolution and genetics of virus host shifts. PLoS Pathog. 2014, 10, e1004395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saéz, A.M.; Weiss, S.; Nowak, K.; Lapeyre, V.; Zimmermann, F.; Düx, A.; Kühl, H.S.; Kaba, M.; Regnaut, S.; Merkel, K.; et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 2015, 7, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Z.; Kang, G.; Ma, F.; Lu, W.; Fan, W.; Fennessey, C.M.; Keele, B.F.; Li, Q. Recapitulating cross-species transmission of simian immunodeficiency virus SIVcpz to humans by using humanized BLT mice. J. Virol. 2016, 90, 7728–7739. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Misawa, N.; Takeuchi, J.S.; Kobayashi, T.; Izumi, T.; Aso, H.; Nagaoka, S.; Yamamoto, K.; Kimura, I.; Konno, Y.; et al. Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. J. Virol. 2018, 92, e01905–e01917. [Google Scholar] [CrossRef] [Green Version]
- Wain, L.V.; Bailes, E.; Bibollet-Ruche, F.; Decker, J.M.; Keele, B.F.; Van Heuverswyn, F.; Li, Y.; Takehisa, J.; Ngole, E.M.; Shaw, G.M.; et al. Adaptation of HIV-1 to its human host. Mol. Biol. Evol. 2007, 24, 1853–1860. [Google Scholar] [CrossRef] [Green Version]
- Yamada, E.; Nakaoka, S.; Klein, L.; Reith, E.; Langer, S.; Hopfensperger, K.; Iwami, S.; Schreiber, G.; Kirchhoff, F.; Koyanagi, Y.; et al. Human-Specific Adaptations in Vpu Conferring Anti-tetherin Activity Are Critical for Efficient Early HIV-1 Replication In Vivo. Cell Host Microbe 2018, 23, 110.e117–120.e117. [Google Scholar] [CrossRef] [Green Version]
- Neil, S.J.D.; Zang, T.; Bieniasz, P.D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008, 451, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wilson, S.J.; Landford, W.C.; Virgen, B.; Gregory, D.; Johnson, M.C.; Munch, J.; Kirchhoff, F.; Bieniasz, P.D.; Hatziioannou, T. Nef proteins from simian immunodeficiency viruses are tetherin antagonists. Cell Host Microbe 2009, 6, 54–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauter, D.; Schindler, M.; Specht, A.; Landford, W.N.; Munch, J.; Kim, K.A.; Votteler, J.; Schubert, U.; Bibollet-Ruche, F.; Keele, B.F.; et al. Tetherin-driven adaptation of Vpu and Nef function and the evolution of pandemic and nonpandemic HIV-1 strains. Cell Host Microbe 2009, 6, 409–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Damme, N.; Goff, D.; Katsura, C.; Jorgenson, R.L.; Mitchell, R.; Johnson, M.C.; Stephens, E.B.; Guatelli, J. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008, 3, 245–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, B.; Miyamoto, M.M. A likelihood ratio test for evolutionary rate shifts and functional divergence among proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 14512–14517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penn, O.; Stern, A.; Rubinstein, N.D.; Dutheil, J.; Bacharach, E.; Galtier, N.; Pupko, T. Evolutionary modeling of rate shifts reveals specificity determinants in HIV-1 subtypes. PLoS Comput. Biol. 2008, 4, e1000214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galtier, N. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. 2001, 18, 866–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, P.; Casane, D.; Philippe, H. Heterotachy, an important process of protein evolution. Mol. Biol. Evol. 2002, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.S.; Kemena, C.; Vlasov, P.K.; Notredame, C.; Kondrashov, F.A. Epistasis as the primary factor in molecular evolution. Nature 2012, 490, 535–538. [Google Scholar] [CrossRef]
- Starr, T.N.; Thornton, J.W. Epistasis in protein evolution. Protein Sci. 2016, 25, 1204–1218. [Google Scholar] [CrossRef] [Green Version]
- Bridgham, J.T.; Ortlund, E.A.; Thornton, J.W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 2009, 461, 515–519. [Google Scholar] [CrossRef]
- Pollock, D.D.; Thiltgen, G.; Goldstein, R.A. Amino acid coevolution induces an evolutionary Stokes shift. Proc. Natl. Acad. Sci. USA 2012, 109, E1352–E1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.; McCandlish, D.M.; Plotkin, J.B. Contingency and entrenchment in protein evolution under purifying selection. Proc. Natl. Acad. Sci. USA 2015, 112, E3226–E3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.C.; Thompson, A.J.; Xie, J.; Lin, C.W.; Nycholat, C.M.; Zhu, X.; Lerner, R.A.; Paulson, J.C.; Wilson, I.A. A complex epistatic network limits the mutational reversibility in the influenza hemagglutinin receptor-binding site. Nat. Commun. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Da Silva, J.; Coetzer, M.; Nedellec, R.; Pastore, C.; Mosier, D.E. Fitness epistasis and constraints on adaptation in a human immunodeficiency virus type 1 protein region. Genetics 2010, 185, 293–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddox, H.K.; Dingens, A.S.; Hilton, S.K.; Overbaugh, J.; Bloom, J.D. Mapping mutational effects along the evolutionary landscape of HIV envelope. Elife 2018, 7, e34420. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, C.; Foley, B.; Leitner, T.; Apetrei, C.; Hahn, B.; Mizrachi, I.; Mullins, J.; Rambaut, A.; Wolinsky, S.; Korber, B. HIV Sequence Compendium 2010; Los Alamos National Laboratory (LANL): Los Alamos, NM, USA, 2010. [Google Scholar]
- Loytynoja, A.; Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA 2005, 102, 10557–10562. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, A.K.; Zhang, M.; Bulla, I.; Leitner, T.; Korber, B.; Morgenstern, B.; Stanke, M. jpHMM: Improving the reliability of recombination prediction in HIV-1. Nucleic Acids Res. 2009, 37, W647–W651. [Google Scholar] [CrossRef] [Green Version]
- McNatt, M.W.; Zang, T.; Hatziioannou, T.; Bartlett, M.; Fofana, I.B.; Johnson, W.E.; Neil, S.J.; Bieniasz, P.D. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants. PLoS Pathog. 2009, 5, e1000300. [Google Scholar] [CrossRef]
- Evans, D.T.; Serra-Moreno, R.; Singh, R.K.; Guatelli, J.C. BST-2/tetherin: A new component of the innate immune response to enveloped viruses. Trends Microbiol. 2010, 18, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.S.; Malik, H.S.; Emerman, M. Ancient adaptive evolution of tetherin shaped the functions of Vpu and Nef in human immunodeficiency virus and primate lentiviruses. J. Virol. 2010, 84, 7124–7134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.J.; Lopez, L.A.; Exline, C.M.; Haworth, K.G.; Cannon, P.M. Lack of adaptation to human tetherin in HIV-1 group O and P. Retrovirology 2011, 8, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geyer, M.; Peterlin, B.M. Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS Lett. 2001, 496, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Mangeat, B.; Turelli, P.; Caron, G.; Friedli, M.; Perrin, L.; Trono, D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003, 424, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Sheehy, A.M.; Gaddis, N.C.; Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 2003, 9, 1404. [Google Scholar] [CrossRef] [PubMed]
- Russell, R.A.; Smith, J.; Barr, R.; Bhattacharyya, D.; Pathak, V.K. Distinct Domains within APOBEC3G and APOBEC3F Interact with Separate Regions of Human Immunodeficiency Virus Type 1 Vif. J. Virol. 2009, 83, 1992–2003. [Google Scholar] [CrossRef] [Green Version]
- Compton, A.A.; Emerman, M. Convergence and divergence in the evolution of the APOBEC3G-Vif interaction reveal ancient origins of simian immunodeficiency viruses. PLoS Pathog. 2013, 9, e1003135. [Google Scholar] [CrossRef] [Green Version]
- Letko, M.; Silvestri, G.; Hahn, B.H.; Bibollet-Ruche, F.; Gokcumen, O.; Simon, V.; Ooms, M. Vif Proteins from Diverse Primate Lentiviral Lineages Use the Same Binding Site in APOBEC3G. J. Virol. 2013, 87, 11861–11871. [Google Scholar] [CrossRef] [Green Version]
- Peeters, M.; Gueye, A.; Mboup, S.; Bibollet-Ruche, F.; Ekaza, E.; Mulanga, C.; Ouedrago, R.; Gandji, R.; Mpele, P.; Dibanga, G.; et al. Geographical distribution of HIV-1 group O viruses in Africa. AIDS 1997, 11, 493–498. [Google Scholar] [CrossRef]
- Leoz, M.; Feyertag, F.; Kfutwah, A.; Mauclere, P.; Lachenal, G.; Damond, F.; De Oliveira, F.; Lemee, V.; Simon, F.; Robertson, D.L.; et al. The Two-Phase Emergence of Non Pandemic HIV-1 Group O in Cameroon. PLoS Pathog. 2015, 11, e1005029. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Ruvolo, M. Molecular phylogeny of the hominoids: Inferences from multiple independent DNA sequence data sets. Mol. Biol. Evol. 1997, 14, 248–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charleston, M.A.; Robertson, D.L. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst. Biol. 2002, 51, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Structural Proteins | Regulatory Proteins | Accessory Proteins | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
DEC Branch/Protein | Env | Gag | Pol | Rev | Tat | Nef | Vif | Vpr | Vpu | Total Number of Rate Shifts |
Group M | 1% | 1% | 1% | 1% | 0% | 0% | 0% | 0% | 5% | |
Group O | 2% | 1% | 0% | 8% | 0% | 1% | 1% | 1% | 4% | |
SIVgor + P + O | 0% | 0% | 0% | 0% | 0% | 2% | 1% | 0% | 0% | |
SIVcpzpts | 1% | 1% | 0% | 0% | 0% | 3% | 2% | 1% | 5% | |
ACC Branch/Protein | Env | Gag | Pol | Rev | Tat | Nef | Vif | Vpr | Vpu | Total Number of Rate Shifts |
Group M | 1% | 1% | 0% | 0% | 1% | 1% | 1% | 1% | 1% | |
Group O | 3% | 2% | 1% | 3% | 0% | 1% | 2% | 0% | 1% | |
SIVgor + P + O | 0% | 0% | 0% | 0% | 0% | 2% | 0% | 1% | 1% | |
SIVcpzpts | 1% | 1% | 0% | 0% | 0% | 3% | 1% | 2% | 5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelbart, M.; Stern, A. Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV. Viruses 2020, 12, 1312. https://doi.org/10.3390/v12111312
Gelbart M, Stern A. Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV. Viruses. 2020; 12(11):1312. https://doi.org/10.3390/v12111312
Chicago/Turabian StyleGelbart, Maoz, and Adi Stern. 2020. "Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV" Viruses 12, no. 11: 1312. https://doi.org/10.3390/v12111312
APA StyleGelbart, M., & Stern, A. (2020). Site-Specific Evolutionary Rate Shifts in HIV-1 and SIV. Viruses, 12(11), 1312. https://doi.org/10.3390/v12111312