ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. ZIKV Virus Induces Cytopathology in Caco-2 with Increased Viral Titer
3.2. ZIKV Induces Proteomics Dysregulation of Caco-2 Host Proteins
3.3. ZIKV Infection Results in Numerous Diseases and Alters Biofunctions
3.4. Proteomic Prediction of ZIKV Activation of DNA Damage Response
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao-Lormeau, V.M.; Blake, A.; Mons, S.; Lastere, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, L.; Teissier, A.; Larre, P.; et al. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. Lancet 2016, 387, 1531–1539. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, T.V.B.; Ximenes, R.A.D.A.; Miranda, D.D.; Souza, W.V.; Montarroyos, U.R.; de Melo, A.P.L.; Valongueiro, S.; de Albuquerque, M.D.P.M.; Braga, C.; Brandao, S.P.; et al. Association between microcephaly, Zika virus infection, and other risk factors in Brazil: Final report of a case-control study. Lancet Infect. Dis. 2018, 18, 328–336. [Google Scholar] [CrossRef] [Green Version]
- WHO. Countries and Territories with Current or Previous Zika Virus Transmission. 2019. Available online: https://www.who.int/emergencies/diseases/zika/countries-with-zika-and-vectors-table.pdf (accessed on 6 May 2020).
- Vetter, P.; Dayer, J.A.; Schibler, M.; Allegranzi, B.; Brown, D.; Calmy, A.; Christie, D.; Eremin, S.; Hagon, O.; Henderson, D.; et al. The 2014–2015 Ebola outbreak in West Africa: Hands on. Antimicrob. Resist. Infect. Control 2016, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- WHO. Region of the Americas/Pan American Health Organization. PLISA Health Information Platform for the Americas: Cases of Zika Virus Disease, by Country or Territory. 2019. Available online: http://www.paho.org/data/index.php/en/mnu-topics/zika/524-zika-weekly-en.htm (accessed on 6 May 2020).
- Duffy, M.R.; Chen, T.H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef] [PubMed]
- Rawal, G.; Yadav, S.; Kumar, R. Zika virus: An overview. J. Fam. Med. Prim. Care 2016, 5, 523–527. [Google Scholar] [CrossRef]
- Bachiller-Luque, P.; Gonzalez, M.D.G.; Alvarez-Manzanares, J.; Vazquez, A.; De Ory, F.; Farinas, M.P.S.S. First case of imported Zika virus infection in Spain. Enferm. Infec. Micr. Clin. 2016, 34, 243–246. [Google Scholar] [CrossRef]
- Barrera-Cruz, A.; Diaz-Ramos, R.D.; Lopez-Morales, A.B.; Grajales-Muniz, C.; Viniegra-Osirio, A.; Zaldivar-Cervera, J.A.; Arriaga-Davila, J.J. Technical guidelines for the prevention, diagnosis and treatment of Zika virus infection. Rev. Med. Inst. Mex. Seguro Soc. 2016, 54, 211–224. [Google Scholar]
- Murray, J.S. Understanding Zika virus. J. Spec. Pediatr. Nurs. 2017, 22, e12164. [Google Scholar] [CrossRef]
- Garcell, H.G.; Garcia, F.G.; Nodal, M.R.; Lozano, A.R.; Diaz, C.R.P.; Valdes, A.G.; Alvareza, L.G. Clinical relevance of Zika symptoms in the context of a Zika Dengue epidemic. J. Infect. Public Health 2020, 13, 173–176. [Google Scholar] [CrossRef]
- Lea, T. Caco-2 cell line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Slavov, S.; Matsuno, A.; Yamamoto, A.; Otaguiri, K.; Cervi, M.; Covas, D.; Kashima, S. Zika virus infection in a pediatric patient with acute gastrointestinal involvement. Pediatric Rep. 2017, 9, 78–80. [Google Scholar] [CrossRef]
- Chan, J.F.W.; Yip, C.C.Y.; Tsang, J.O.L.; Tee, K.M.; Cai, J.P.; Chik, K.K.H.; Zhu, Z.; Chan, C.C.S.; Choi, G.K.Y.; Sridhar, S.; et al. Differential cell line susceptibility to the emerging Zika virus: Implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg. Microbes Infect. 2016, 5, e93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glover, K.K.M.; Gao, A.; Coombs, K.M. Vero cell proteomic changes induced by Zika virus infection. Proteomics 2019, 19, e1800309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, A.A.; Glover, K.K.M.; Coombs, K.M. Zika virus infection disrupts astrocytic proteins involved in synapse control and axon guidance. Front. Microbiol. 2019, 10, 596. [Google Scholar] [CrossRef] [Green Version]
- Rashid, M.U.; Zahedi-Amiri, A.; Glover, K.K.M.; Ang, G.; Nickol, M.E.; Kindrachuk, J.; Wilkins, J.A.; Coombs, K.M. Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on blood-testes tight junctions. PLoS Neg. Trop. Dis. 2019, 24, e93. [Google Scholar]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.X.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef] [Green Version]
- Cuadrado, A.; Nebreda, A.R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 2010, 429, 403–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Knaut, H. Chemokine signaling in development and disease. Development 2014, 141, 4199–4205. [Google Scholar] [CrossRef] [Green Version]
- Dalod, M.; Chelbi, R.; Malissen, B.; Lawrence, T. Dendritic cell maturation: Functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014, 33, 1104–1116. [Google Scholar] [CrossRef]
- Hillmer, E.J.; Zhang, H.Y.; Li, H.S.; Watowich, S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016, 31, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, M.; Shenk, T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc. Natl. Acad. Sci. USA 2006, 103, 2821–2826. [Google Scholar] [CrossRef] [Green Version]
- Chaurushiya, M.S.; Weitzman, M.D. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair 2009, 8, 1166–1176. [Google Scholar] [CrossRef] [Green Version]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef]
- Chen, J.; He, W.W.; Hu, X.; Shen, Y.W.; Cao, J.Y.; Wei, Z.D.; Luan, Y.F.; He, L.; Jiang, F.D.; Tao, Y.M. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov. 2017, 3, 17044. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Li, J.; Song, Y.S.; Li, Y.; Jia, Y.H.; Zhao, H.D. Cdk5 links with DNA damage response and cancer. Mol. Cancer 2017, 16, 60. [Google Scholar] [CrossRef] [Green Version]
- Hammack, C.; Ogden, S.C.; Madden, J.C.; Medina, A.; Xu, C.C.; Phillips, E.; Son, Y.N.; Cone, A.; Giovinazzi, S.; Didier, R.A.; et al. Zika virus infection induces DNA damage response in human neural progenitors that enhances viral replication. J. Virol. 2019, 93, e00638-19. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.F.; McCorrister, S.; Hu, P.Z.; Chong, P.; Silaghi, A.; Westmacott, G.; Coombs, K.M.; Kobasa, D. Highly pathogenic H5N1 and novel H7N9 influenza A viruses induce more profound proteomic host responses than seasonal and pandemic H1N1 strains. J. Proteome Res. 2015, 14, 4511–4523. [Google Scholar] [CrossRef]
- Zhou, B.B.S.; Elledge, S.J. The DNA damage response: Putting checkpoints in perspective. Nature 2000, 408, 433–439. [Google Scholar] [CrossRef]
- Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 2001, 15, 2177–2196. [Google Scholar] [CrossRef] [Green Version]
- Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature 2004, 432, 316–323. [Google Scholar] [CrossRef]
- Ciccia, A.; Elledge, S.J. The DNA damage response: Making it safe to play with knives. Mol. Cell 2010, 40, 179–204. [Google Scholar] [CrossRef] [Green Version]
- Lindholm, D.; Pham, D.D.; Cascone, A.; Eriksson, O.; Wennerberg, K.; Saarma, M. c-Abl inhibitors enable insights into the pathophysiology and neuroprotection in Parkinson’s Disease. Front. Aging Neurosci. 2016, 8, 254. [Google Scholar] [CrossRef]
- Dahl, J.; You, J.; Benjamin, T.L. Induction and utilization of an ATM signaling pathway by polyomavirus. J. Virol. 2005, 79, 13007–13017. [Google Scholar] [CrossRef] [Green Version]
- Lilley, C.E.; Carson, C.T.; Muotri, A.R.; Gage, F.H.; Weitzman, M.D. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc. Natl. Acad. Sci. USA 2005, 102, 5844–5849. [Google Scholar] [CrossRef] [Green Version]
- Kudoh, A.; Fujita, M.; Zhang, L.M.; Shirata, N.; Daikoku, T.; Sugaya, Y.; Isomura, H.; Nishiyama, Y.; Tsurumi, T. Epstein-Barr virus lytic replication elicits ATM checkpoint signal transduction while providing an S-phase-like cellular environment. J. Biol. Chem. 2005, 280, 8156–8163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirata, N.; Kudoh, A.; Daikoku, T.; Tatsumi, Y.; Fujita, M.; Kiyono, T.; Sugaya, Y.; Isomura, H.; Ishizaki, K.; Tsurumi, T. Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J. Biol. Chem. 2005, 280, 30336–30341. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Madden-Fuentes, R.J.; Lou, B.X.; Pipas, J.M.; Gerhardt, J.; Rigell, C.J.; Fanning, E. Ataxia telangiectasia-mutated damage-signaling kinase- and proteasome-dependent destruction of Mre11-Rad50-Nbs1 Subunits in simian virus 40-infected primate cells. J. Virol. 2008, 82, 5316–5328. [Google Scholar] [CrossRef] [Green Version]
- Dhavan, R.; Tsai, L.H. A decade of CDK5. Nat. Rev. Mol. Cell Biol. 2001, 2, 749–759. [Google Scholar] [CrossRef]
- Tian, B.; Yang, Q.A.; Mao, Z.X. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat. Cell Biol. 2009, 11, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Qu, D.A.B.; Zhang, Y.; Venderova, K.; Haque, M.E.; Rousseaux, M.W.C.; Slack, R.S.; Woulfe, J.M.; Park, D.S. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat. Cell Biol. 2010, 12, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.M.; Doyle, J.D.; Wetzel, J.D.; McClung, R.P.; Katunuma, N.; Chappell, J.D.; Washington, M.K.; Dermody, T.S. Genetic and pharmacologic alteration of cathepsin expression influences reovirus pathogenesis. J. Virol. 2009, 83, 9630–9640. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Mazumdar, B.; Bose, S.K.; Meyer, K.; Di Bisceglie, A.M.; Hoft, D.F.; Ray, R. Hepatitis C virus-mediated inhibition of cathepsin S increases invariant-chain expression on hepatocyte surface. J. Virol. 2012, 86, 9919–9928. [Google Scholar] [CrossRef] [Green Version]
- Khaiboullina, S.; Uppal, T.; Kletenkov, K.; St Jeor, S.C.; Garanina, E.; Rizvanov, A.; Verma, S.C. Transcriptome profiling reveals pro-inflammatory cytokines and matrix metalloproteinase activation in Zika virus infected human umbilical vein endothelial cells. Front. Pharm. 2019, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.R.; Lee, S.W.; Topalkara, K.; Qiu, J.H.; Xu, J.; Zhou, Z.P.; Moskowitz, M.A. Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor proliferation. Stroke 2009, 40, 3618–3626. [Google Scholar] [CrossRef] [Green Version]
- Heaton, N.S.; Randall, G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe 2010, 8, 422–432. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Cuervo, A.M. Lipophagy: Connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 2102, 282041. [Google Scholar] [CrossRef]
- Iranpour, M.; Moghadam, A.R.; Yazdi, M.; Ande, S.R.; Alizadeh, J.; Wiechec, E.; Lindsay, R.; Drebot, M.; Coombs, K.M.; Ghavami, S. Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis. Expert Rev. Mol. Med. 2016, 18, e1. [Google Scholar] [CrossRef]
- Zhang, J.S.; Lan, Y.; Li, M.Y.; Lamers, M.M.; Fusade-Boyer, M.; Klemm, E.; Thiele, C.; Ashour, J.; Sanyal, S. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production. Cell Host Microbe 2018, 23, 819–831. [Google Scholar] [CrossRef] [Green Version]
- Yamane, D.; Zahoor, M.A.; Mohamed, Y.M.; Azab, W.; Kato, K.; Tohya, Y.; Akashi, H. Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J. Biol. Chem. 2009, 284, 13648–13659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, Y.J.; Pritzl, C.J.; Vijayan, M.; Bomb, K.; McClain, M.E.; Alexander, S.; Hahm, B. Sphingosine kinase 1 serves as a pro-viral factor by regulating viral RNA synthesis and nuclear export of viral ribonucleoprotein complex upon influenza virus infection. PLoS ONE 2013, 8, e75005. [Google Scholar] [CrossRef]
- Vijayan, M.; Seo, Y.J.; Pritzl, C.J.; Squires, S.A.; Alexander, S.; Hahm, B. Sphingosine kinase 1 regulates measles virus replication. Virology 2014, 450, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.P.; Wasinger, V.C.; Leong, R.W. Current application of proteomics in biomarker discovery for inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2016, 15, 27–37. [Google Scholar] [CrossRef] [PubMed]
Number That Are Significant | Total Unique | 12 Hpi | 24 Hpi | 48 Hpi |
---|---|---|---|---|
and fold-change > 1.000 | 439 | 252 | 52 | 150 |
and fold-change < 0.9999 | 4 | 0 | 4 | |
and fold-change > 1.100 | 407 | 252 | 46 | 128 |
and fold-change < 0.9091 | 0 | 0 | 4 | |
and fold-change > 1.250 | 261 | 230 | 23 | 6 |
and fold-change < 0.8000 | 0 | 0 | 3 | |
and fold-change > 1.333 | 122 | 100 | 16 | 3 |
and fold-change < 0.7500 | 0 | 0 | 3 | |
and fold-change > 1.375 | 71 | 52 | 15 | 2 |
and fold-change < 0.7273 | 0 | 0 | 2 | |
and fold-change > 1.500 | 23 | 10 | 9 | 2 |
and fold-change < 0.6667 | 0 | 0 | 2 | |
and fold-change > 2.000 | 2 | 0 | 2 | 0 |
and fold-change < 0.5000 | 0 | 0 | 0 |
12 Hpi | 24 Hpi | 48 Hpi | |||||
---|---|---|---|---|---|---|---|
Gene | Swissprot | Fold Change | p-Value | Fold Change | p-Value | Fold Change | p-Value |
Upregulated Proteins | |||||||
EIF4G2 | P78344 | 2.23 | 0.001 | 2.02 | 1.62 × 10−5 | 1.49 | 0.62 |
NTF3 | P20783 | 2.06 | 0.005 | 0.81 | 0.50 | 0.90 | 0.04 |
UNC5D | Q6UXZ4 | 1.93 | 0.01 | 1.09 | 0.50 | 0.95 | 0.51 |
AK1 | P00568 | 1.72 | 0.007 | 1.44 | 0.25 | 1.41 | 0.49 |
MAPK9 | P45984 | 1.69 | 0.002 | 1.16 | 0.47 | 2.05 | 0.34 |
LAG3 | P18627 | 1.66 | 0.01 | 1.03 | 0.94 | 1.06 | 0.03 |
NME2 | P22392 | 1.61 | 0.02 | 1.36 | 0.21 | 1.16 | 0.13 |
HPX | P02790 | 1.60 | 0.003 | 1.14 | 0.46 | 0.98 | 0.89 |
FABP3 | P05413 | 1.56 | 0.002 | 1.16 | 0.55 | 1.30 | 0.47 |
MAPK13 | O15264 | 1.51 | 0.04 | 1.18 | 0.20 | 1.21 | 0.74 |
NTN1 | O95631 | 1.51 | 0.03 | 1.16 | 0.54 | 1.08 | 0.09 |
FER | P16591 | 1.51 | 0.04 | 1.09 | 0.69 | 1.25 | 0.32 |
IL7 | P13232 | 1.50 | 0.04 | 1.01 | 0.97 | 0.99 | 0.11 |
RPS6KA5 | O75582 | 1.49 | 0.02 | 1.12 | 0.77 | 1.06 | 0.89 |
PPIF | P30405 | 1.49 | 0.01 | 1.20 | 0.34 | 1.03 | 0.96 |
CA13 | Q8N1Q1 | 1.49 | 0.03 | 1.23 | 0.16 | 1.45 | 0.21 |
MST1 | P26927 | 1.48 | 0.01 | 0.71 | 0.46 | 1.05 | 0.52 |
TIMP3 | P35625 | 1.48 | 0.03 | 1.24 | 0.31 | 0.98 | 0.23 |
SHH | Q15465 | 1.48 | 0.04 | 1.10 | 0.68 | 1.13 | 0.94 |
FCGR3B | O75015 | 1.46 | 0.04 | 1.03 | 0.93 | 1.12 | 0.34 |
RSPO4 | Q2I0M5 | 1.46 | 0.02 | 1.10 | 0.76 | 1.09 | 0.78 |
L1CAM | P32004 | 1.44 | 0.03 | 1.06 | 0.76 | 1.16 | 0.43 |
LCN2 | P80188 | 1.43 | 0.048 | 1.17 | 0.22 | 1.11 | 0.74 |
CCL4L1 | Q8NHW4 | 1.43 | 0.04 | 1.03 | 0.79 | 1.08 | 0.58 |
CA6 | P23280 | 1.43 | 0.01 | 1.02 | 0.90 | 1.03 | 0.93 |
ARTN | Q5T4W7 | 1.42 | 0.04 | 1.16 | 0.40 | 1.10 | 0.30 |
TNFRSF1A | P19438 | 1.42 | 0.04 | 1.21 | 0.10 | 1.08 | 0.09 |
DPT | Q07507 | 1.42 | 0.03 | 1.11 | 0.50 | 1.09 | 0.25 |
IL3RA | P26951 | 1.42 | 0.047 | 1.21 | 0.36 | 1.11 | 0.44 |
NID1 | P14543 | 1.42 | 0.02 | 1.23 | 0.52 | 0.97 | 0.06 |
GPC2 | Q8N158 | 1.41 | 0.03 | 1.07 | 0.49 | 1.20 | 0.31 |
FGF7 | P21781 | 1.41 | 0.04 | 1.12 | 0.46 | 1.13 | 0.47 |
TNFRSF19 | Q9NS68 | 1.41 | 0.04 | 1.20 | 0.57 | 1.08 | 0.04 |
IFNL2 | Q8IZJ0 | 1.41 | 0.01 | 1.16 | 0.48 | 1.20 | 0.21 |
FGF16 | O43320 | 1.40 | 0.03 | 1.15 | 0.38 | 1.18 | 0.26 |
TIMP2 | P16035 | 1.40 | 0.03 | 1.17 | 0.13 | 0.74 | 0.33 |
POSTN | Q15063 | 1.40 | 0.01 | 1.15 | 0.19 | 1.22 | 0.72 |
SEZ6L2 | Q6UXD5 | 1.40 | 0.04 | 1.20 | 0.33 | 1.17 | 0.08 |
CHST15 | Q7LFX5 | 1.40 | 0.02 | 1.05 | 0.80 | 0.94 | 0.65 |
B2M | P61769 | 1.40 | 0.04 | 1.18 | 0.13 | 0.82 | 0.29 |
ABL1 | P00519 | 1.39 | 0.03 | 1.19 | 0.48 | 1.06 | 0.61 |
CST7 | O76096 | 1.39 | 0.04 | 1.15 | 0.13 | 1.13 | 0.12 |
DLL4 | Q9NR61 | 1.39 | 0.04 | 1.14 | 0.41 | 1.14 | 0.14 |
SIGLEC14 | Q08ET2 | 1.39 | 0.04 | 1.10 | 0.56 | 1.06 | 0.12 |
MAPK12 | P53778 | 1.39 | 0.04 | 1.15 | 0.42 | 1.16 | 0.11 |
BCAN | Q96GW7 | 1.38 | 0.02 | 1.34 | 0.33 | 1.12 | 0.39 |
PDE7A | Q13946 | 1.38 | 0.04 | 1.16 | 0.37 | 1.14 | 0.25 |
SPHK1 | Q9NYA1 | 1.38 | 0.045 | 1.32 | 0.24 | 1.19 | 0.69 |
TIMP1 | P01033 | 1.38 | 0.02 | 0.99 | 0.94 | 1.10 | 0.24 |
CFI | P05156 | 1.38 | 0.02 | 1.03 | 0.92 | 1.07 | 0.61 |
CD40LG | P29965 | 1.38 | 0.03 | 1.07 | 0.77 | 1.14 | 0.31 |
SFRP1 | Q8N474 | 1.38 | 0.03 | 1.11 | 0.59 | 1.20 | 0.33 |
CSK | P41240 | 2.85 | 0.13 | 2.54 | 0.03 | 1.73 | 0.45 |
RNASEH1 | O60930 | 2.04 | 0.46 | 1.93 | 8.44 × 10−5 | 2.32 | 0.22 |
CFL1 | P23528 | 1.21 | 0.41 | 1.87 | 0.003 | 1.38 | 0.38 |
HAT1 | O14929 | 1.34 | 0.48 | 1.79 | 0.001 | 1.14 | 0.80 |
SBDS | Q9Y3A5 | 1.63 | 0.12 | 1.64 | 0.03 | 1.41 | 0.74 |
WNK3 | Q9BYP7 | 1.80 | 0.14 | 1.58 | 0.01 | 1.25 | 0.48 |
HK2 | P52789 | 1.46 | 0.08 | 1.57 | 0.01 | 1.12 | 0.88 |
EIF4A3 | P38919 | 1.67 | 0.15 | 1.57 | 0.02 | 1.27 | 0.60 |
DNAJB1 | P25685 | 1.72 | 0.12 | 1.56 | 0.047 | 1.28 | 0.54 |
STAT1 | P42224 | 1.52 | 0.29 | 1.47 | 0.008 | 1.43 | 0.24 |
MAP2K1 | Q02750 | 1.42 | 0.20 | 1.47 | 0.04 | 1.31 | 0.06 |
MAPK8 | P45983 | 1.79 | 0.09 | 1.43 | 0.04 | 1.22 | 0.18 |
IDE | P14735 | 1.37 | 0.26 | 1.41 | 0.006 | 1.29 | 0.27 |
LYZ | P61626 | 1.40 | 0.21 | 1.38 | 0.03 | 1.35 | 0.36 |
DCTPP1 | Q9H773 | 1.64 | 0.19 | 1.51 | 0.08 | 1.82 | 0.005 |
IL1RL1 | Q01638 | 2.05 | 0.27 | 1.18 | 0.57 | 1.52 | 0.02 |
Downregulated Proteins | |||||||
CTSV | O60911 | 1.44 | 0.09 | 1.07 | 0.48 | 0.606 | 0.04 |
ANG | P03950 | 1.44 | 0.34 | 0.92 | 0.54 | 0.651 | 0.02 |
FSTL3 | O95633 | 1.28 | 0.18 | 0.87 | 0.67 | 0.734 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glover, K.; Coombs, K.M. ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses 2020, 12, 771. https://doi.org/10.3390/v12070771
Glover K, Coombs KM. ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses. 2020; 12(7):771. https://doi.org/10.3390/v12070771
Chicago/Turabian StyleGlover, Kathleen, and Kevin M. Coombs. 2020. "ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells" Viruses 12, no. 7: 771. https://doi.org/10.3390/v12070771
APA StyleGlover, K., & Coombs, K. M. (2020). ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses, 12(7), 771. https://doi.org/10.3390/v12070771