Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion of Studies
2.3. Data Extraction and Quality Assessment
2.4. Statistical Data Analysis
3. Results
3.1. Overview of Selected Studies
3.2. Meta-Analysis of Prevalence of Rotavirus Infection among Children under Five in South Africa
3.2.1. Meta-Analysis of the Estimate of Rotavirus Infection during the Pre-Vaccination Period
3.2.2. Meta-Analysis of the Estimate of Rotavirus Infection during the Post-Vaccination Period
3.2.3. Subgroup Analysis
3.3. Rotavirus Genotype Distribution in South Africa
Genotypes | Post-Vaccination | Pre-Vaccination | p-Values | Total Genotypes | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Common human rotavirus genotypes | |||||||
G1P[8] | 143 | 11.53 | 1014 | 43.13 | <0.0001 | 1157 | 32.21 |
G2P[4] | 263 | 21.20 | 342 | 14.55 | 0.001 | 605 | 16.85 |
G3P[8] | 8 | 0.65 | 165 | 7.02 | <0.0001 | 173 | 4.82 |
G4P[8] | 1 | 0.08 | 1 | 0.04 | 1.000 | 2 | 0.05 |
G9P[8] | 288 | 23.22 | 36 | 1.53 | <0.0001 | 324 | 9.02 |
Reassortment among common human rotavirus genotypes | |||||||
G1P[4] | 8 | 0.65 | 12 | 0.51 | 0.371 | 20 | 0.56 |
G2P[8] | 3 | 0.24 | 4 | 0.71 | 0.705 | 7 | 0.19 |
G3P[4] | 1 | 0.08 | 1 | 0.09 | 0.564 | 3 | 0.08 |
Potential zoonotic rotavirus genotypes | |||||||
G3P[3] | 43 | 3.47 | 0 | 0.00 | - | 43 | 1.19 |
G2P[6] | 0 | 0.00 | 111 | 4.72 | - | 111 | 3.09 |
G8P[6] | 0 | 0.00 | 15 | 0.65 | - | 15 | 0.42 |
G9P[6] | 10 | 0.81 | 30 | 1.27 | 0.002 | 40 | 1.11 |
G9P[10] | 1 | 0.08 | 0 | 0.00 | - | 1 | 0.02 |
Possible human-animal hybrid rotavirus genotypes | |||||||
G1P[6] | 3 | 0.24 | 130 | 5.52 | <0.0001 | 133 | 3.70 |
G2P[6] | 66 | 5.32 | 108 | 4.59 | 0.001 | 174 | 4.85 |
G4P[6] | 2 | 0.16 | 2 | 0.09 | 1.000 | 4 | 0.11 |
G8P[4] | 84 | 6.77 | 30 | 1.28 | <0.0001 | 114 | 3.17 |
G8P[8] | 28 | 2.26 | 21 | 0.89 | 0.317 | 49 | 1.36 |
G12P[4] | 6 | 0.48 | 3 | 0.13 | 0.317 | 9 | 0.25 |
G12P[6] | 9 | 0.73 | 35 | 1.49 | <0.0001 | 44 | 1.23 |
G12P[8] | 174 | 14.03 | 37 | 1.57 | <0.0001 | 211 | 5.88 |
Mixed | 37 | 2.98 | 107 | 4.55 | <0.0001 | 144 | 4.01 |
Untypable | 53 | 4.27 | 141 | 5.99 | <0.0001 | 194 | 5.40 |
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Troeger, C.; Khalil, I.A.; Rao, P.C.; Cao, S.; Blacker, B.F.; Ahmed, T.; Armah, G.; Bines, J.E.; Brewer, T.G.; Colombara, D.V.; et al. Rotavirus vaccination and the global burden of rotavirus diarrhea among children younger than 5 years. JAMA Pediatr. 2018, 172, 958–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, A.D.; Groome, M.J. Measuring Rotavirus Vaccine Impact in Sub-Saharan Africa. Clin. Infect. Dis. 2020, 70, 2314–2316. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Causes of Child Mortality: Global Health Observatory Data. Available online: https://www.who.int/gho/child_health/mortality/causes/en/ (accessed on 25 May 2019).
- Centers for Disease Control and Prevention. Rotavirus Surveillance—Worldwide, 2009. Morb. Mort. Wkly. Rep. 2011, 60, 514. [Google Scholar]
- Oppong, T.B.; Yang, H.; Amponsem-Boateng, C.; Kyere, E.K.D.; Abdulai, T.; Duan, G.; Opolot, G. Enteric pathogens associated with gastroenteritis among children under 5 years in sub-Saharan Africa: A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e64. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.C.; Vinjé, J.; Szilagyi, P.G.; Edwards, K.M.; Staat, M.A.; Weinberg, G.A.; Hall, C.B.; Chappell, J.; Bernstein, D.I.; Curns, A.T.; et al. Norovirus and medically attended gastroenteritis in U.S. children. N. Engl. J. Med. 2013, 368, 1121–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemming, M.; Räsänen, S.; Huhti, L.; Paloniemi, M.; Salminen, M.; Vesikari, T. Major reduction of rotavirus, but not norovirus, gastroenteritis in children seen in hospital after the introduction of RotaTeq vaccine into the National Immunization Programme in Finland. Eur. J. Pediatr. 2013, 172, 739–746. [Google Scholar] [CrossRef] [PubMed]
- Bucardo, F.; Reyes, Y.; Svensson, L.; Nordgren, J. Predominance of norovirus and sapovirus in Nicaragua after implementation of universal rotavirus vaccination. PLoS ONE 2014, 9, e98201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNICEF South Africa—Child and Maternal Health—Overview: Child and Maternal Health. Available online: https://www.unicef.org/southafrica/survival_devlop_343.html (accessed on 20 August 2018).
- Seheri, L.M.; Page, N.A.; Mawela, M.P.B.; Mphahlele, M.J.; Steele, A.D. Rotavirus vaccination within the South African Expanded Programme on Immunisation. Vaccine 2012, 30, C14–C20. [Google Scholar] [CrossRef]
- Asowata, O.A.; Ashiru, O.T.; Mahomed, S.; Sturm, A.W.; Moodley, P. Influence of vaccination status and clinical, seasonal and sociodemographic factors on rotavirus prevalence in KwaZulu-Natal, South Africa. South. Afr. J. Infect. Dis. 2018, 33, 5. [Google Scholar]
- Kirkwood, C. Genetic and Antigenic Diversity of Human Rotaviruses: Potential Impact on Vaccination Programs. J. Infect. Dis. 2010, 202, S43–S48. [Google Scholar] [CrossRef]
- Seheri, L.M.; Magagula, N.B.; Peenze, I.; Rakau, K.; Ndadza, A.; Mwenda, J.M.; Mphahlele, M.J. Rotavirus strain diversity in Eastern and Southern African countries before and after vaccine introduction. Vaccine 2018, 36, 7222–7230. [Google Scholar] [CrossRef]
- Johne, R.; Tausch, S.H.; Grützke, J.; Falkenhagen, A.; Patzina-Mehling, C.; Beer, M.; Höper, D.; Ulrich, R.G. Distantly Related Rotaviruses in Common Shrews, Germany, 2004–2014. Emerg. Infect. Dis. 2019, 25, 2310–2314. [Google Scholar] [CrossRef]
- International Committee on Taxonomy of Viruses (ICTV). Updated in July 2018. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 11 November 2019).
- Estes, M.K.; Kapikian, A. Rotaviruses. In Fields Virology. Wolters Kluwer Health; Lippincott, K.D., Griffin, D., Lamb, R., Martin, M., Roizman, B., Straus, S., Eds.; Williams and Wilkins: Philadelphia, PA, USA, 2007; pp. 1917–1975. [Google Scholar]
- Steger, C.L.; Boudreaux, C.E.; LaConte, L.E.; Pease, J.B.; McDonald, S.M. Group A Rotavirus VP1 Polymerase and VP2 Core Shell Proteins: Intergenotypic Sequence Variation and In Vitro Functional Compatibility. J. Virol. 2019, 93, e01642-18. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Rotavirus Information and Surveillance Bulletin; World Health Organization: Geneva, Switzerland, 2010; Volume 4. [Google Scholar]
- Trojnar, E.; Sachsenroder, J.; Twardziok, S.; Reetz, J.; Otto, P.H.; Johne, R. Identification of an avian group A rotavirus containing a novel VP4 gene with a close relationship to those of mammalian rotaviruses. J. Gen. Virol. 2013, 94, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Delogu, R.; Ianiro, G.; Camilloni, B.; Fiore, L.; Ruggeri, F.M. Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J. Med. Virol. 2015, 87, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.F.; Fumian, T.M.; de Assis, R.M.; Fialho, A.M.; Carvalho-Costa, F.A.; da Silva Ribeiro de Andrade, J.; Leite, J.P. VP7 and VP8* genetic characterization of group A rotavirus genotype G12P[8]: Emergence and spreading in the Eastern Brazilian coast in 2014. J. Med. Virol. 2017, 89, 64–70. [Google Scholar] [CrossRef]
- Harastani, H.H.; Reslan, L.; Sabra, A.; Ali, Z.; Hammadi, M.; Ghanem, S.; Hajar, F.; Matar, G.M.; Dbaibo, G.S.; Zaraket, H. Genetic Diversity of Human Rotavirus a Among Hospitalized Children Under-5 Years in Lebanon. Front. Immunol. 2020, 11, 317. [Google Scholar] [CrossRef] [Green Version]
- Gentsch, J.R.; Hull, J.J.; Teel, E.N.; Kerin, T.K.; Freeman, M.M.; Esona, M.D.; Griffin, D.D.; Bielfelt-Krall, B.P.; Banyai, K.; Jiang, B.; et al. Collaborating laboratories of the National Rotavirus Strain Surveillance System. G and P types of circulating rotavirus strains in the United States during 1996-2005: Nine years of prevaccine data. J. Infect. Dis. 2009, 200 (Suppl. 1), S99–S105. [Google Scholar] [CrossRef] [Green Version]
- Santos, N.; Hoshino, Y. Global distribution of rotavirus serotypes/genotypes and its implication for the development and implementation of an effective rotavirus vaccine. Rev. Med. Virol. 2005, 15, 29–56. [Google Scholar] [CrossRef]
- Moure, U.A.E.; Banga-Mingo, V.; Gody, J.C.; Mwenda, J.M.; Fandema, J.; Waku-Kouomou, D.; Manengu, C.; Koyazegbe, T.D.-A.; Esona, M.D.; Bowen, M.D.; et al. Emergence of G12 and G9 rotavirus genotypes in the Central African Republic, January 2014 to February 2016. BMC Res. Notes 2018, 11, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Vaccine-Preventable Diseases Surveillance Standards. 2018. Available online: https://apps.who.int/iris/handle/10665/275754 (accessed on 20 April 2020).
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- National Public Radio (NPR). Merck Pulls Out of Agreement to Supply Life-Saving Vaccine to Millions of Kids. Available online: www.npr.org/sections/goatsandsoda/2018/11/01/655844287/merck-pulls-out-of-agreement-to-supply-life-saving-vaccine-to-millions-of-kids (accessed on 2 September 2019).
- International Vaccine Access Center (IVAC), Johns Hopkins Bloomberg School of Public Health. Available online: https://view-hub.org/map/?set=current-vaccine-intro-status&group=vaccine-introduction&category=rv&who-region=afro (accessed on 30 August 2021).
- World Health Organization. Summary of Key Characteristics of Currently WHO-Pre-Qualified Rotavirus Vaccines. Available online: https://www.who.int/immunization/diseases/rotavirus/WHO_Summary_xtics_PQ’d_rota_vaccines (accessed on 19 June 2021).
- Cortese, M.M.; Parashar, U.D. Prevention of rotavirus gastroenteritis among infants and children: Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 2009, 58, 1–25. [Google Scholar]
- Nguyen, D.D. Rotavirus: Drugs, Diseases and Emergency Medicine. Available online: https://emedicine.medscape.com/article/803885-overview#a6 (accessed on 29 May 2020).
- Jonesteller, C.L.; Burnett, E.; Yen, C.; Tate, J.E.; Parashar, U.D. Effectiveness of rotavirus vaccination: A systematic review of the first decade of global postlicensure data, 2006–2016. Clin. Infect. Dis. 2017, 65, 840–850. [Google Scholar] [CrossRef]
- Mwenda, J.M.; Parashar, U.D.; Cohen, A.L.; Tate, J.E. Impact of rotavirus vaccines in sub Saharan African countries. Vaccine 2018, 36, 7119–7123. [Google Scholar] [CrossRef]
- Iyaloo, S.; Mapuroma, F.; Seheri, M.; Peenze, I.; Kruger, T.; Walaza, S.; Cohen, C.; Page, N. Rotavirus Surveillance in South Africa, 2012. Commun. Dis. Surv. Bull. 2013, 11, 37–41. [Google Scholar]
- Clarke, E.; Desselberger, U. Correlates of protection against human rotavirus disease and the factors influencing protection in lowincome settings. Mucosal Immunol. 2015, 8, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, J.A.; Rukobo, S.; Govha, M.; Lee, B.; Carmolli, M.P.; Chasekwa, B.; Prendergast, A.J. The impact of improved water, sanitation and hygiene on oral rotavirus vaccine immunogenicity in Zimbabwean infants: Sub-study of a cluster-randomized trial. Clin. Infect. Dis. 2019, 69, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Waggie, Z.; Hawkridge, A.; Hussey, G.D. Review of Rotavirus Studies in Africa: 1976–2006. J. Infect. Dis. 2010, 202, S23–S33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [Green Version]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and nonrandomized studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Downes, M.J.; Brennan, M.L.; Williams, H.C.; Dean, R.S. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016, 6, e011458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Ogunsakin, R.E.; Olugbara, O.O.; Moyo, S.; Israel, C. Meta-analysis of studies on depression prevalence among diabetes mellitus patients in Africa. Heliyon 2021, 7, e07085. [Google Scholar] [CrossRef] [PubMed]
- Ebenezer, O.; Jordaan, M.A.; Ogunsakin, R.E.; Shapi, M. Potential SARS-COV preclinical (in vivo) compounds targeting COVID-19 main protease: A meta-analysis and molecular docking studies. Hippokratia 2020, 24, 99. [Google Scholar] [PubMed]
- Page, N.; Kruger, T.; Seheri, M.; Peenze, I.; Quan, V.; Groome, M.; Madhi, S. Rotavirus Surveillance Report, South Africa, 2014-2015: A Comparison with previous Rotavirus seasons. Commun. Dis. Surv. Bull. 2016, 14, 126–136. [Google Scholar]
- Page, N.; Mapuroma, F.; Seheri, M.; Kruger, T.; Peenze, I.; Walaza, S.; Cohen, C.; Groome, M.; Madhi, S. Rotavirus Surveillance Report, South Africa, 2013. Commun. Dis. Surv. Bull. 2014, 12, 130–135. [Google Scholar]
- Tshangela, A.; Moyes, J.; Kruger, T.; Mapuroma, F.; Peenze, I.; Seheri, M.; Walaza, S.; Cohen, C.; Page, N. Rotavirus Surveillance in South Africa, 2011. Commun. Dis. Surv. Bull. 2012, 10, 42–46. [Google Scholar]
- National Institute for Communicable Diseases (NICD). Rotavirus Surveillance in South Africa, 2009. Commun. Dis. Surveil. Bull 2010, 8, 11–14. [Google Scholar]
- Seheri, L.M.; Page, N.; Dewar, J.B.; Geyer, A.; Nemarude, A.L.; Bos, P.; Esona, M.; Steele, A.D. Characterization and molecular epidemiology of rotavirus strains recovered in Northern Pretoria, South Africa during 2003–2006. J. Infect. Dis. 2010, 202, S139-47. [Google Scholar] [CrossRef] [Green Version]
- Seheri, L.M.; Dewar, J.B.; van der Merwe, L.; Geyer, A.; Tumbo, J.; Zweygarth, M.; Bos, P.; Esona, M.D.; Steele, A.D.; Sommerfelt, H. Prospective hospital-based surveillance to estimate rotavirus disease burden in the Gauteng and North West Province of South Africa during 2003–2005. J. Infect. Dis. 2010, 202, S131–S138. [Google Scholar]
- Potgieter, N.; de Beer, M.C.; Taylor, M.B.; Steele, A.D. Prevalence and Diversity of Rotavirus Strains in Children with Acute Diarrhea from Rural Communities in the Limpopo Province, South Africa, from 1998 to 2000. J. Infect. Dis. 2010, 202, S148–S155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Roux, M.C.; Greyling, R.; Indjic, G.; Steele, A.D. Enteropathogens isolated from young children with diarrhoea in the Pretoria/Ga-Rankuwa region. In: Proceedings of the Joint Congress of the Infectious Diseases and STDs, Cape Town. Soc. S. Afr. 1997, 35, 2. [Google Scholar]
- Bos, P.; Mnisi, Y.N.; Steele, A.D. The molecular epidemiology of rotavirus infection in Ga-Rankuwa, Southern Africa. Cent. Afr. J. Med. 1992, 38, 286–290. [Google Scholar] [PubMed]
- Geyer, A.; Crewe-Brown, H.H.; Greeff, A.S.; Fripp, P.J.; Steele, A.D.; van Schalkwyk, T.V.; Clay, C.G. The microbial aetiology of summer paediatric gastroenteritis at Ga-Rankuwa Hospital in South Africa. E. Afr. Med. J. 1992, 70, 78–81. [Google Scholar]
- Baxter, E. Epidemiological and Aetiological Aspects of Diarrhoeal in the Eastern Cape. Master’s Thesis, Rhodes University, Rhodes, Greece, 1992. [Google Scholar]
- Griffiths, F.H.; Steele, A.D.; Alexander, J.J. The molecular epidemiology of rotavirus associated gastroenteritis in the Transkei, southern Africa. Ann. Trop. Paediatr. 1992, 12, 259–264. [Google Scholar] [CrossRef]
- Sebastian, D. A Comparative Study of Rotavirus Gastroenteritis in Hospitalised African, Indian, Coloured and White Children in Natal. Master’s Thesis, University of Natal, Natal, Brazil, 1990. [Google Scholar]
- Loening, W.E.K.; Coovadia, Y.M.; Ende, J.V.D. Aetiological factors of infantile diarrhoea: A community-based study. Ann. Trop. Paediatr. 1989, 9, 248–255. [Google Scholar] [CrossRef]
- Tiemessen, C.T.; Wegerhof, F.O.; Erasmus, M.J.; Kidd, A.H. Infection by enteric adenoviruses, rotaviruses and other agents in a rural African environment. J. Med. Virol. 1989, 28, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Steinhardt, L.S.; Steele, A.D.; Lecatsas, G. Viruses excreted in the stools of children with gastoenteritis. Med. Technol. 1989, 4, 261–265. [Google Scholar]
- Steele, A.D.; Geyer, A.; Alexander, J.J.; Crewe-Brown, H.H.; Fripp, P.J. Enteropathogens isolated from children with gastroenteritis at Ga-Rankuwa Hospital, South Africa. Ann. Trop. Paediatr. 1988, 8, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Steele, A.D.; Alexander, J.J. The Relative Frequency of Subgroup I and II Rotaviruses in Black Infants in South Africa. J. Med. Virol. 1988, 24, 321–327. [Google Scholar] [CrossRef]
- Househam, K.C.; Mann, M.D.; Bowe, M.D. Enteropathogens associated with acute infantile diarrhoea in Cape Town. S. Afr. Med. J. 1988, 73, 83–87. [Google Scholar]
- Steele, A.D.; Alexander, J.J.; Hay, I.T. Rotavirus-associated gastro-enteritis at Ga-Rankuwa Hospital. A pilot study. S. Afr. Med. J. 1986, 69, 21–22. [Google Scholar] [PubMed]
- Steele, A.D.; Alexander, J.J.; Hay, I.T. Rotavirus-associated gastroenteritis in black infants in South Africa. J. Clin. Microbiol. 1986, 23, 992–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, A.H.; Rosenblatt, A.; Besselaar, T.G.; Erasmus, M.J.; Tiesmessen, C.T.; Berkowits, F.E.; Schoub, B.D. Characterisation of rotaviruses and subgroup F adenoviruses from acute summer gastroenteritis in South Africa. J. Med. Virol. 1986, 18, 159–168. [Google Scholar] [CrossRef]
- Mackenjee, M.K.R.; Coovadia, Y.M.; Coovadia, H.M.; Hewitt, J.; Robins-Browne, R.M. Aetiology of diarrhoea in adequately nourished young African children in Durban, South Africa. Ann. Trop. Paediatr. 1984, 4, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Schoub, B.D.; Cohen, F.; Thompson, D.; Koornhof, H.J.; Miliotis, M.D.; Still, C.S.; Berkowitz, F.E.; Miller, S.; Kushlick, E. Variance in rotavirus infection rates in different urban population groups in South Africa. J. Med. Virol. 1982, 10, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Iturriza-Gómara, M.; Dallman, T.; Bányai, K.; Böttiger, B.; Buesa, J.; Diedrich, S.; Fiore, L.; Johansen, K.; Koopmans, M.; Korsun, N.; et al. Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect. Epidemiol. Infect. 2011, 139, 895–909. [Google Scholar] [CrossRef]
- Damtie, D.; Melku, M.; Tessema, B.; Vlasova, A.N. Prevalence and Genetic Diversity of Rotaviruses among under-Five Children in Ethiopia: A Systematic Review and Meta-Analysis. Viruses 2020, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Santos, V.S.; Marques, D.P.; Martins-Filho, P.R.S.; Cuevas, L.E.; Gurgel, R.Q. Effectiveness of rotavirus vaccines against rotavirus infection and hospitalization in Latin America: Systematic review and metaanalysis. Infect. Dis. Poverty 2016, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, O.; Zhang, W.; Amponsem-Boateng, C.; Bonney-Oppong, T.; Zhao, Q.; Li, D. Evidence of rotavirus vaccine impact in sub-Saharan Africa: Systematic review and meta-analysis. PLoS ONE 2020, 15, e0232113. [Google Scholar] [CrossRef]
- Burns, H.E.; Collins, A.M.; Fallon, U.B.; Marsden, P.V.; Shuilleabhain, C.M.N. Rotavirus vaccination impact, Ireland, implications for vaccine confidence and screening European. J. Pub. Health 2020, 30, 281–285. [Google Scholar]
- World Health Organization/United Nations Childrens Fund. WHO and UNICEF Estimates of Immunization Coverage in South Africa: 2019 Revision. Available online: https://www.who.int/immunization/monitoring_surveillance/data/zaf.pdf (accessed on 11 March 2020).
- United Nations South Africa. 2021. Available online: https://southafrica.un.org/en/125678-uneven-routine-immunization-coverage-threatens-health-south-africas-youngest-children (accessed on 1 September 2021).
- Aung, Y.Y.; Dlamini, R.N. Section A: Immunisation. Pg 118–129. Available online: https://www.hst.org.za/publications/District%20Health%20Barometers/8%20(Section%20A)%20Immunisation.pdf (accessed on 1 September 2021).
- Tate, J.E.; Haynes, A.; Payne, D.C.; Cortese, M.M.; Lopman, B.A.; Patel, M.M.; Parashar, U.D. Trends in national rotavirus activity before and after introduction of rotavirus vaccine into the national immunization program in the United States, 2000 to 2012. Pediatr. Infect. Dis. J. 2013, 32, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Groome, M.J.; Page, N.; Cortese, M.M.; Moyes, J.; Zar, H.J.; Kapongo, C.N.; Mulligan, C.; Diedericks, R.; Cohen, C.; Fleming, J.A.; et al. Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: A case-control study. Lancet Infect. Dis. 2014, 14, 1096–1104. [Google Scholar] [CrossRef]
- World Health Organization. South Africa: WHO and UNICEF Estimates of Immunization Coverage: 2015 Revision. WHO. Available online: http://www.who.int/immunization/monitoring_surveillance/data/zaf.pdf (accessed on 11 July 2021).
- Hungerford, D.; Smith, K.; Tucker, A.; Iturriza-Gómara, M.; Vivancos, R.; McLeonard, C.; Cunliffe, N.A.; French, N. Population effectiveness of the pentavalent and monovalent rotavirus vaccines: A systematic review and meta-analysis of observational studies. BMC Infect. Dis. 2017, 17, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Steele, A.D.; Madhi, S.A.; Cunliffe, N.A.; Vesikari, T.; Phua, K.B.; Lim, F.S.; Nelson, A.S.; Lau, Y.-L.; Huang, L.M.; Karkada, N.; et al. Incidence of rotavirus gastroenteritis by age in African, Asian and European children: Relevance for timing of rotavirus vaccination. Hum. Vaccines Immunother. 2016, 12, 2406–2412. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.; Pollock, L.; Jere, K.C.; Pitzer, V.E.; Parashar, U.; Tate, J.E.; Heyderman, R.S.; Mwansambo, C.; French, N.; Nakagomi, O.; et al. Direct and possible indirect effects of vaccination on rotavirus hospitalisations among children in Malawi four years after programmatic introduction. Vaccine 2018, 36, 7142–7148. [Google Scholar] [CrossRef]
- Ngabo, F.; Tate, J.E.; Gatera, M.; Rugambwa, C.; Donnen, P.; Lepage, P.; Mwenda, J.M.; Binagwaho, A.; Parashar, U.D. Effect of pentavalent rotavirus vaccine introduction on hospital admissions for diarrhoea and rotavirus in children in Rwanda: A time-series analysis. Lancet Glob. Health 2016, 4, e129–e136. [Google Scholar] [CrossRef] [Green Version]
- Bonkoungou, I.J.O.; Aliabadi, N.; Leshem, E.; Kam, M.; Nezien, D.; Drabo, M.K.; Nikiema, M.; Ouedraogo, B.; Medah, I.; Konaté, S.; et al. Impact and effectiveness of pentavalent rotavirus vaccine in children <5 years of age in Burkina Faso. Vaccine 2018, 36, 7170–7178. [Google Scholar] [CrossRef] [PubMed]
- Enweronu-Laryea, C.C.; Armah, G.; Sagoe, K.W.; Ansong, D.; Addo-Yobo, E.; Diamenu, S.K.; Mwenda, J.M.; Parashar, U.D.; Tate, J.E. Sustained impact of rotavirus vaccine introduction on rotavirus gastroenteritis hospitalizations in children <5 years of age, Ghana, 2009–2016. Vaccine 2018, 12, 7131–7134. [Google Scholar] [CrossRef]
- Karafillakis, E.; Hassounah, S.; Atchison, C. Effectiveness and impact of rotavirus vaccines in Europe, 2006–2014. Vaccine 2015, 33, 2097–2107. [Google Scholar] [CrossRef] [Green Version]
- Roczo-Farkas, S.; Kirkwood, C.D.; Cowley, D.; Barnes, G.L.; Bishop, R.F.; Bogdanovic-Sakran, N.; Boniface, K.; Donato, C.M.; Bines, J.E. The Impact of Rotavirus Vaccines on Genotype Diversity: A Comprehensive Analysis of 2 Decades of Australian Surveillance Data. J. Infect. Dis. 2018, 218, 546–554. [Google Scholar] [CrossRef]
- Simwaka, J.C.; Mpabalwani, E.M.; Seheri, M.; Peenze, I.; Monze, M.; Matapo, B.; Parashar, U.D.; Mufunda, J.; Mphahlele, J.M.; Tate, J.E.; et al. Diversity of rotavirus strains circulating in children under 5 years of age who presented with acute gastroenteritis before and after rotavirus vaccine introduction, University Teaching Hospital, Lusaka, Zambia, 2008–2015. Vaccine 2018, 12, 7243–7247. [Google Scholar] [CrossRef]
- Ruiz-Palacios, G.M.; Pérez-Schael, I.; Velázquez, F.R.; Abate, H.; Breuer, T.; Clemens, S.C.; Cheuvart, B.; Espinoza, F.; Gillard, P.; Innis, B.L.; et al. Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N. Engl. J. Med. 2006, 354, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Carvalho-Costa, F.A.; de Assis, R.M.S.; Fialho, A.M.; Araujo, I.T.; Silva, M.F.; Gomez, M.M.; Andrade, J.S.; Rose, T.L.; Fumian, T.M.; Volotão, E.M.; et al. The evolving epidemiology of rotavirus A infection in Brazil a decade after the introduction of universal vaccination with Rotarix. BMC Pediatr. 2019, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- Vizzi, E.; Piñeros, O.A.; Oropeza, M.D.; Naranjo, L.; Suárez, J.A.; Fernández, R.; Zambrano, J.L.; Celis, A.; Liprandi, F. Human rotavirus strains circulating in Venezuela after vaccine introduction: Predominance of G2P[4] and reemergence of G1P[8]. Virol. J. 2017, 14, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, V.E.; Bilcke, J.; Heylen, E.; Crawford, F.W.; Callens, M.; De Smet, F.; Ranst, M.V.; Zeller, M.; Matthijnssens, J. Did large-scale vaccination drive changes in the circulating rotavirus population in Belgium? Sci. Rep. 2015, 5, 18585. [Google Scholar] [CrossRef] [Green Version]
- Yen, C.; Figueroa, J.R.; Uribe, E.S.; Carmen-Hernández, L.D.; Tate, J.E.; Parashar, U.D.; Tate, J.E.; Parashar, U.D.; Patel, M.M.; López-Collado, R.V. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico. J. Infect. Dis. 2011, 204, 783–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leshem, E.; Lopman, B.; Glass, R.; Gentsch, J.; Bányai, K.; Parashar, U.; Patel, M. Distribution of rotavirus strains and strain-specific effectiveness of the rotavirus vaccine after its introduction: A systematic review and metaanalysis. Lancet Infect. Dis. 2014, 14, 847–856. [Google Scholar] [CrossRef]
- Santos, V.S.; Berezin, E.N.; Gurgel, R.Q. Rotavirus in Latin America: Current Situation and Perspectives. J. Pediatr. Infect. Dis. Soc. 2017, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Zeller, M.; Rahman, M.; Heylen, E.; De Coster, S.; de Vos, S.; Arijs, I.; Novo, L.; Verstappen, N.; Van Ranst, M.; Matthijnssens, J. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine 2010, 28, 7507–7513. [Google Scholar] [CrossRef]
- Gastanaduy, P.A.; Steenhoff, A.P.; Mokomane, M.; Esona, M.D.; Bowen, M.D.; Jibril, H.; Pernica, J.M.; Mazhani, L.; Smieja, M.; Tate, J.E.; et al. Effectiveness of monovalent rotavirus vaccine after programmatic implementation in Botswana: A multisite prospective case-control study. Clin. Infect. Dis. 2016, 62, S161–S167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoa-Trana, T.N.; Nakagomib, T.; Vua, H.M.; Nguyena, T.T.T.; Takemurac, T.; Hasebec, F.; Daoa, A.T.H.; Anhc, P.H.Q.; Nguyena, A.T.; Dange, A.D.; et al. Detection of three independently-generated DS-1-like G9P[8] reassortant rotavirus A strains during the G9P[8] dominance in Vietnam, 2016–2018. Infect. Genet. Evol. 2020, 80, 104194. [Google Scholar] [CrossRef] [PubMed]
- Desselberger, U. Differences of rotavirus vaccine effectiveness by country: Likely causes and contributing factors. Pathogens 2017, 6, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibera, G.L.; Chen, J.; Pereira, P.; Benninghoff, B. Dynamics of G2P[4] strain evolution and rotavirus vaccination: A review of evidence for Rotarix. Vaccine 2020, 31, 5591–5600. [Google Scholar] [CrossRef] [PubMed]
- Burnett, E.; Yen, C.; Tate, J.E.; Parashar, U.D. Rotavirus vaccines: Current global impact and future perspectives. Future Virol. 2016, 11, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Agbla, J.M.; Esona, M.D.; Agbankpe, A.J.; Capo-Chichi, A.; Gautam, R.; Dougnon, T.V.; Razack, O.; Bowen, M.D.; Bankole, H.S. Molecular characteristics of rotavirus genotypes circulating in the south of Benin, 2016–2018. BMC Res. Notes 2020, 13, 485. [Google Scholar] [CrossRef]
Author | Year of Publication | Vaccination era | Province | Study Setting | Design | Duration /Period | Sample size | Assay Method | Age Band | No. (%) of Rotavirus Positive Cases | “Quality Score (A = 9–12) (B = 5–8) (C = 1–4)” | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Asowata et al. | 2018 | Post-vaccine | Kwazulu-Natal | Outpatients | Cross-sectional | 2014–2015 | 365 | ELISA, RT-PCR | <5 years | 83 (23) | B | [11] |
Page et al. | 2016 | Post-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2014–2015 | 816 | IDEIA, RT-PCR | <5 years | 201 (24.6) | A | [45] |
Page et al. | 2016 | Post-vaccine | Western Cape | Hospitalized | Sentinel surveillance | 2014–2015 | 432 | IDEIA, RT-PCR | <5 years | 70 (16.2) | A | [45] |
Page et al. | 2016 | Post-vaccine | Mpumalanga | Hospitalized | Sentinel surveillance | 2014–2015 | 220 | IDEIA, RT-PCR | <5 years | 48 (21.8) | A | [45] |
Page et al. | 2016 | Post-vaccine | Kwazulu-Natal | Hospitalized | Sentinel surveillance | 2014–2015 | 96 | IDEIA, RT-PCR | <5 years | 34 (35.4) | A | [45] |
Page et al. | 2016 | Post-vaccine | Free state | Hospitalized | Sentinel surveillance | April–Dec., 2015 | 113 | IDEIA, RT-PCR | <5 years | 17 (15.0) | A | [45] |
Page et al. | 2016 | Post-vaccine | Northern Cape | Hospitalized | Sentinel surveillance | April–Dec., 2015 | 55 | IDEIA, RT-PCR | <5 years | 13 (23.6) | B | [45] |
Page et al. | 2016 | Post-vaccine | Limpopo | Hospitalized | Sentinel surveillance | April–Dec., 2015 | 32 | IDEIA, RT-PCR | <5 years | 2 (6.3) | B | [45] |
Page et al. | 2014 | Post-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2013 (12 months) | 401 | ELISA, RT-PCR | <5 years | 113 (28.2) | A | [46] |
Page et al. | 2014 | Post-vaccine | Western Cape | Hospitalized | Sentinel surveillance | 2013 (12 months) | 432 | ELISA, RT-PCR | <5 years | 149 (34.3) | A | [46] |
Page et al. | 2014 | Post-vaccine | Mpumalanga | Hospitalized | Sentinel surveillance | 2013 (12 months) | 191 | ELISA, RT-PCR | <5 years | 45 (23.6) | A | [46] |
Page et al. | 2014 | Post-vaccine | Kwazulu-Natal | Hospitalized | Sentinel surveillance | 2013 (12 months) | 73 | ELISA, RT-PCR | <5 years | 23 (31.5) | B | [46] |
Iyaloo et al. | 2013 | Post-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2012 (12 months) | 369 | ELISA, RT-PCR | <5 years | 66 (17.9) | A | [35] |
Iyaloo et al. | 2013 | Post-vaccine | Western Cape | Hospitalized | Sentinel surveillance | 2012 (12 months) | 359 | ELISA, RT-PCR | <5 years | 70 (19.5) | A | [35] |
Iyaloo et al. | 2013 | Post-vaccine | Mpumalanga | Hospitalized | Sentinel surveillance | 2012 (12 months) | 209 | ELISA, RT-PCR | <5 years | 41 (19.6) | A | [35] |
Iyaloo et al. | 2013 | Post-vaccine | Kwazulu-Natal | Hospitalized | Sentinel surveillance | 2012 (12 months) | 57 | ELISA, RT-PCR | <5 years | 13 (22.8) | B | [35] |
Tshangela et al. | 2012 | Post-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2011 (12 months) | 486 | ELISA, RT-PCR | <5 years | 90 (18.5) | A | [47] |
Tshangela et al. | 2012 | Post-vaccine | Western Cape | Hospitalized | Sentinel surveillance | 2011 (12 months) | 497 | ELISA, RT-PCR | <5 years | 152 (30.6) | A | [47] |
Tshangela et al. | 2012 | Post-vaccine | Mpumalanga | Hospitalized | Sentinel surveillance | 2011 (12 months) | 147 | ELISA, RT-PCR | <5 years | 32 (21.8) | A | [47] |
Tshangela et al. | 2012 | Post-vaccine | Kwazulu-Natal | Hospitalized | Sentinel surveillance | 2011 (12 months) | 93 | ELISA, RT-PCR | <5 years | 28 (30.1) | B | [47] |
NICD | 2010 | Pre-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2009 (7 months) | 641 | ELISA, RT-PCR | <5 years | 307 (47.9) | A | [48] |
NICD | 2010 | Pre-vaccine | Mpumalanga | Hospitalized | Sentinel surveillance | 2009 (7 months) | 189 | ELISA, RT-PCR | <5 years | 91 (48.1) | A | [48] |
Seheri et al. | 2010a | Pre-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2003–2006 | 3191 | IDEIA, RT-PCR | <5 years | 729 (22.8) | A | [49] |
Seheri et al. | 2010b | Pre-vaccine | Gauteng | Hospitalized | Sentinel surveillance | 2003–2005 | 1870 | IDEIA RT-PCR | <5 years | 436 (23.3) | A | [50] |
Seheri et al. | 2010b | Pre-vaccine | North West | Hospitalized | Sentinel surveillance | 2004–2005 | 450 | IDEIA RT-PCR | <5 years | 82 (18.2) | A | [50] |
Potgieter et al. | 2010 | Pre-vaccine | Limpopo | Outpatients | Cross-sectional | 1998–2000 | 420 | ELISA, PAGE, RT-PCR | <5 years | 111 (26.4) | A | [51] |
Le Roux et al. | 1997 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1996–1997 | 335 | ELISA | <2 years | 47 (14) | B | [52] |
Bos et al. | 1992 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1989 (12 months) | 292 | ELISA | <3 years | 96 (33) | A | [53] |
Geyer et al. | 1992 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1988 (6 months) | 108 | ELISA | <3 years | 14 (13) | B | [54] |
Baxter et al. | 1992 | Pre-vaccine | Eastern Cape | Hospitalized | Cross-sectional | 1989–1990 | 803 | ELISA | <2 years | 104 (13) | A | [55] |
Griffiths et al. | 1992 | Pre-vaccine | Eastern Cape | Outpatients | Cross-sectional | 1988–1989 | 216 | IDEIA, PAGE, EM | <5 years | 71 (32.9) | A | [56] |
Sebastian | 1990 | Pre-vaccine | Kwazulu-Natal | Hospitalized | Cross-sectional | 1984–1985 | 3630 | ELISA | <2 years | 799 (22) | B | [57] |
Loening et al. | 1989 | Pre-vaccine | Kwazulu-Natal | Community-based | Cross-sectional | 1985–1986 | 324 | ELISA | <5 years | 50 (15.4) | A | [58] |
Tiemessen et al. | 1989 | Pre-vaccine | Mpumalanga | Outpatients | Cross-sectional | 1985–1986 | 310 | ELISA, EM | <2 years | 44 (14.2) | A | [59] |
Steinhardt et al. | 1989 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1984–1985 | 455 | EM | <4 years | 118 (26) | C | [60] |
Steele et al., | 1988 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1983–1986 | 1316 | ELISA, EM | <5 years | 320 (24.3) | A | [61] |
Steele and Alexander | 1988 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1983–1986 | 1571 | ELISA | <5 years | 398 (25) | A | [62] |
Househam et al. | 1988 | Pre-vaccine | Western Cape | Hospitalized | Cross-sectional | 1981–1982 | 545 | ELISA | <2 years | 98 (18) | B | [63] |
Steele et al. | 1986a | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1982 (10 months) | 256 | ELISA | <3 years | 92 (36.0) | B | [64] |
Steele et al., | 1986b | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1983–1985 | 788 | ELISA | <3 years | 181 (23) | A | [65] |
Kidd et al. | 1986 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1982–1983 | 616 | ELISA | <2 years | 85 (13.8) | B | [66] |
Mackenjee et al. | 1984 | Pre-vaccine | Kwazulu-Natal | Outpatients | Cross-sectional | 1982–1983 | 221 | ELISA | <2 years | 57 (25.8) | B | [67] |
Schoub et al. | 1982 | Pre-vaccine | Gauteng | Hospitalized | Cross-sectional | 1981 (1 year) | 114 | ELISA, EM | <2 years | 39 (34.2) | B | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omatola, C.A.; Ogunsakin, R.E.; Olaniran, A.O. Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis. Viruses 2021, 13, 1905. https://doi.org/10.3390/v13101905
Omatola CA, Ogunsakin RE, Olaniran AO. Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis. Viruses. 2021; 13(10):1905. https://doi.org/10.3390/v13101905
Chicago/Turabian StyleOmatola, Cornelius A., Ropo E. Ogunsakin, and Ademola O. Olaniran. 2021. "Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis" Viruses 13, no. 10: 1905. https://doi.org/10.3390/v13101905
APA StyleOmatola, C. A., Ogunsakin, R. E., & Olaniran, A. O. (2021). Prevalence, Pattern and Genetic Diversity of Rotaviruses among Children under 5 Years of Age with Acute Gastroenteritis in South Africa: A Systematic Review and Meta-Analysis. Viruses, 13(10), 1905. https://doi.org/10.3390/v13101905