Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids
Abstract
:1. Introduction
2. Methods
2.1. Animals and Viral Infections
2.2. Virus Purification
2.3. Cryo-EM Data Collection
2.4. Icosahedral Refinement
2.5. Icosahedral Subparticle Extraction and Correlative Classification
- [–vector 0 147 238–roi fivefold–supersym I1–subpart_box 400]
- and,
- [–vector 85 68 245–roi fullexpand–supersym I1–subpart_box 300]
2.6. Local Subparticle Refinement
- [‘which relion_refine_mpi‘–o Refine3D/job027/run–auto_refine–split_random_halves–i fivefoldsubparticles_subpart_PRIOR_invert.star–ref fivefold_initmodel_invert.mrc–firstiter_cc–ini_high 20–dont_combine_weights_via_disc–no_parallel_disc_io–preread_images–pool 100–pad 2–ctf–ctf_corrected_ref–particle_diameter 220–flatten_solvent–zero_mask–oversampling 1–healpix_order 5–auto_local_healpix_order 5–offset_range 3–offset_step 2–sym C5–low_resol_join_halves 40–norm–scale–j 1–gpu –dont_check_norm–sigma_ang 1.5]
- and,
- [‘which relion_refine_mpi‘–o Refine3D/job052/run–auto_refine–split_random_halves–i fullexpand_subpart_PRIOR.star–ref fullexpand_initialmodel_c1.mrc–firstiter_cc–ini_high 20–dont_combine_weights_via_disc–no_parallel_disc_io–preread_images–pool 100–pad 2–ctf–ctf_corrected_ref–particle_diameter 220–flatten_solvent–zero_mask–oversampling 1–healpix_order 5–auto_local_healpix_order 5–offset_range 3–offset_step 2–sym C1–low_resol_join_halves 40–norm–scale–j 1–gpu–dont_check_norm --sigma_ang 1.5]
2.7. Icosahedral Recombined Map
2.8. Model Building
2.9. Correlation of Locally Refined Capsomers Coordinates
3. Results
3.1. Native Papillomavirus Icosahedral Refinement Stalled at 4.4 Å Resolution
3.2. There Are Resolution Differences between Hexavalent and Pentavalent Capsomers
3.3. High Resolution Capsomers
3.4. Hexavalent Capsomers Are Asymmetric
3.5. MmuPV1 Major Capsid Protein Visualized for the First Time
3.6. Putative L2 Density Is More Prevalent in Pentavalent Environments
3.7. Capsids Have Imperfect Icosahedral Symmetry
3.8. MmuPV1, a Native Papillomavirus Is Globally Flexible, but Less So Than HPV16, Quasivirus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingle, A.; Ghim, S.; Joh, J.; Chepkoech, I.; Bennett Jenson, A.; Sundberg, J.P. Novel Laboratory Mouse Papillomavirus (MusPV) Infection. Vet. Pathol. 2011, 48, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Rector, A.; Van Ranst, M. Animal Papillomaviruses. Virology 2013, 445, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Cladel, N.M.; Budgeon, L.R.; Balogh, K.K.; Christensen, N.D. The Mouse Papillomavirus Infection Model. Viruses 2017, 9, 246. [Google Scholar] [CrossRef]
- Baker, T.S.; Newcomb, W.W.; Olson, N.H.; Cowsert, L.M.; Olson, C.; Brown, J.C. Structures of Bovine and Human Papillomaviruses. Analysis by Cryoelectron Microscopy and Three-Dimensional Image Reconstruction. Biophys. J. 1991, 60, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Biryukov, J.; Meyers, C. Papillomavirus Infectious Pathways: A Comparison of Systems. Viruses 2015, 7, 4303–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.S.; Garcea, R.L.; Goldberg, I.; Casini, G.; Harrison, S.C. Structure of Small Virus-like Particles Assembled from the L1 Protein of Human Papillomavirus 16. Mol. Cell 2000, 5, 557–567. [Google Scholar] [CrossRef]
- Dasgupta, J.; Bienkowska-Haba, M.; Ortega, M.E.; Patel, H.D.; Bodevin, S.; Spillmann, D.; Bishop, B.; Sapp, M.; Chen, X.S. Structural Basis of Oligosaccharide Receptor Recognition by Human Papillomavirus. J. Biol. Chem. 2011, 286, 2617–2624. [Google Scholar] [CrossRef] [Green Version]
- Cardone, G.; Moyer, A.L.; Cheng, N.; Thompson, C.D.; Dvoretzky, I.; Lowy, D.R.; Schiller, J.T.; Steven, A.C.; Buck, C.B.; Trus, B.L. Maturation of the Human Papillomavirus 16 Capsid. mBio 2014, 5, e01104-14. [Google Scholar] [CrossRef] [Green Version]
- Buck, C.B.; Cheng, N.; Thompson, C.D.; Lowy, D.R.; Steven, A.C.; Schiller, J.T.; Trus, B.L. Arrangement of L2 within the Papillomavirus Capsid. J. Virol. 2008, 82, 5190–5197. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Bywaters, S.M.; Brendle, S.A.; Lee, H.; Ashley, R.E.; Christensen, N.D.; Hafenstein, S. The U4 Antibody Epitope on Human Papillomavirus 16 Identified by Cryo-Electron Microscopy. J. Virol. 2015, 89, 12108–12117. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Brendle, S.A.; Bywaters, S.M.; Guan, J.; Ashley, R.E.; Yoder, J.D.; Makhov, A.M.; Conway, J.F.; Christensen, N.D.; Hafenstein, S. A Cryo-Electron Microscopy Study Identifies the Complete H16.V5 Epitope and Reveals Global Conformational Changes Initiated by Binding of the Neutralizing Antibody Fragment. J. Virol. 2015, 89, 1428–1438. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Bywaters, S.M.; Brendle, S.A.; Lee, H.; Ashley, R.E.; Makhov, A.M.; Conway, J.F.; Christensen, N.D.; Hafenstein, S. Structural Comparison of Four Different Antibodies Interacting with Human Papillomavirus 16 and Mechanisms of Neutralization. Virology 2015, 483, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Bywaters, S.M.; Brendle, S.A.; Ashley, R.E.; Makhov, A.M.; Conway, J.F.; Christensen, N.D.; Hafenstein, S. Cryoelectron Microscopy Maps of Human Papillomavirus 16 Reveal L2 Densities and Heparin Binding Site. Structure 2017, 25, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Wolf, M.; Garcea, R.L.; Grigorieff, N.; Harrison, S.C. Subunit Interactions in Bovine Papillomavirus. Proc. Natl. Acad. Sci. USA 2010, 107, 6298–6303. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, J.; Wang, Z.; Wang, D.; He, M.; Qian, C.; Song, S.; Chi, X.; Kong, Z.; Zheng, Q.; et al. Neutralization Sites of Human Papillomavirus-6 Relate to Virus Attachment and Entry Phase in Viral Infection. Emerg. Microbes Infect. 2019, 8, 1721–1733. [Google Scholar] [CrossRef]
- He, M.; Chi, X.; Zha, Z.; Li, Y.; Chen, J.; Huang, Y.; Huang, S.; Yu, M.; Wang, Z.; Song, S.; et al. Structural Basis for the Shared Neutralization Mechanism of Three Classes of Human Papillomavirus Type 58 Antibodies with Disparate Modes of Binding. J. Virol. 2021, 95, e01587-20. [Google Scholar] [CrossRef]
- Goetschius, D.J.; Hartmann, S.R.; Subramanian, S.; Bator, C.M.; Christensen, N.D.; Hafenstein, S.L. High Resolution Cryo EM Analysis of HPV16 Identifies Minor Structural Protein L2 and Describes Capsid Flexibility. Sci. Rep. 2021, 11, 3498. [Google Scholar] [CrossRef]
- Ilca, S.L.; Kotecha, A.; Sun, X.; Poranen, M.M.; Stuart, D.I.; Huiskonen, J.T. Localized Reconstruction of Subunits from Electron Cryomicroscopy Images of Macromolecular Complexes. Nat. Commun. 2015, 6, 8843. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Wang, X.; Fang, Q.; Etten, J.L.V.; Rossmann, M.G.; Rao, Z.; Zhang, X. Pushing the Resolution Limit by Correcting the Ewald Sphere Effect in Single-Particle Cryo-EM Reconstructions. Nat. Commun. 2018, 9, 1552. [Google Scholar] [CrossRef]
- Li, M.; Beard, P.; Estes, P.A.; Lyon, M.K.; Garcea, R.L. Intercapsomeric Disulfide Bonds in Papillomavirus Assembly and Disassembly. J. Virol. 1998, 72, 2160–2167. [Google Scholar] [CrossRef] [Green Version]
- Sapp, M.; Fligge, C.; Petzak, I.; Harris, J.R.; Streeck, R.E. Papillomavirus Assembly Requires Trimerization of the Major Capsid Protein by Disulfides between Two Highly Conserved Cysteines. J. Virol. 1998, 72, 6186–6189. [Google Scholar] [CrossRef] [Green Version]
- Cladel, N.M.; Jiang, P.; Li, J.J.; Peng, X.; Cooper, T.K.; Majerciak, V.; Balogh, K.K.; Meyer, T.J.; Brendle, S.A.; Budgeon, L.R.; et al. Papillomavirus Can Be Transmitted through the Blood and Produce Infections in Blood Recipients: Evidence from Two Animal Models. Emerg. Microbes Infect. 2019, 8, 1108–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheres, S.H.W. RELION: Implementation of a Bayesian Approach to Cryo-EM Structure Determination. J. Struct. Biol. 2012, 180, 519–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punjani, A.; Rubinstein, J.L.; Fleet, D.J.; Brubaker, M.A. CryoSPARC: Algorithms for Rapid Unsupervised Cryo-EM Structure Determination. Nat. Methods 2017, 14, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Rohou, A.; Grigorieff, N. CTFFIND4: Fast and Accurate Defocus Estimation from Electron Micrographs. J. Struct. Biol. 2015, 192, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Goetschius, D.J.; Hartmann, S.R.; Organtini, L.J.; Callaway, H.; Huang, K.; Bator, C.M.; Ashley, R.E.; Makhov, A.M.; Conway, J.F.; Parrish, C.R.; et al. High-Resolution Asymmetric Structure of a Fab-Virus Complex Reveals Overlap with the Receptor Binding Site. Proc. Natl. Acad. Sci. USA 2021, 118, e2025452118. [Google Scholar] [CrossRef] [PubMed]
- Abrishami, V.; Ilca, S.L.; Gomez-Blanco, J.; Rissanen, I.; de la Rosa-Trevín, J.M.; Reddy, V.S.; Carazo, J.-M.; Huiskonen, J.T. Localized Reconstruction in Scipion Expedites the Analysis of Symmetry Mismatches in Cryo-EM Data. Prog. Biophys. Mol. Biol. 2020, 160, 43–52. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Di Tommaso, P.; Moretti, S.; Xenarios, I.; Orobitg, M.; Montanyola, A.; Chang, J.-M.; Taly, J.-F.; Notredame, C. T-Coffee: A Web Server for the Multiple Sequence Alignment of Protein and RNA Sequences Using Structural Information and Homology Extension. Nucleic Acids Res. 2011, 39, W13–W17. [Google Scholar] [CrossRef]
- Notredame, C.; Higgins, D.G.; Heringa, J. T-Coffee: A Novel Method for Fast and Accurate Multiple Sequence Alignment. J. Mol. Biol. 2000, 302, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.-W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Campos, S.K.; Ozbun, M.A. Two Highly Conserved Cysteine Residues in HPV16 L2 Form an Intramolecular Disulfide Bond and Are Critical for Infectivity in Human Keratinocytes. PLoS ONE 2009, 4, e4463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; He, M.; Ning, T.; Nie, J.; Zhang, F.; Zheng, Q.; Zhang, R.; Xu, Y.; Gu, Y.; Li, S.; et al. Structural Characterization of a Neutralizing MAb H16.001, a Potent Candidate for a Common Potency Assay for Various HPV16 VLPs. NPJ Vaccines 2020, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Cruz, L.; Biryukov, J.; Conway, M.J.; Meyers, C. Cleavage of the HPV16 Minor Capsid Protein L2 during Virion Morphogenesis Ablates the Requirement for Cellular Furin during De Novo Infection. Viruses 2015, 7, 5813–5830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roden, R.B.; Day, P.M.; Bronzo, B.K.; Yutzy, W.H.; Yang, Y.; Lowy, D.R.; Schiller, J.T. Positively Charged Termini of the L2 Minor Capsid Protein Are Necessary for Papillomavirus Infection. J. Virol. 2001, 75, 10493–10497. [Google Scholar] [CrossRef] [Green Version]
- Karanam, B.; Jagu, S.; Huh, W.K.; Roden, R.B.S. Developing Vaccines against Minor Capsid Antigen L2 to Prevent Papillomavirus Infection. Immunol. Cell Biol. 2009, 87, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Bonnez, W.; Rose, R.C.; Borkhuis, C.; Da Rin, C.; Reichman, R.C. Evaluation of Temperature Sensitivity of Human Papillomavirus Type 11 by Using the Human Xenograft Severe Combined Immunodeficiency Mouse Model. J. Clin. Microbiol. 1994, 32, 1575–1577. [Google Scholar] [CrossRef] [Green Version]
- Cladel, N.M.; Budgeon, L.R.; Cooper, T.K.; Balogh, K.K.; Christensen, N.D.; Myers, R.; Majerciak, V.; Gotte, D.; Zheng, Z.-M.; Hu, J. Mouse Papillomavirus Infections Spread to Cutaneous Sites with Progression to Malignancy. J. Gen. Virol. 2017, 98, 2520–2529. [Google Scholar] [CrossRef]
- Clarke, M.A.; Rodriguez, A.C.; Gage, J.C.; Herrero, R.; Hildesheim, A.; Wacholder, S.; Burk, R.; Schiffman, M. A Large, Population-Based Study of Age-Related Associations between Vaginal PH and Human Papillomavirus Infection. BMC Infect. Dis. 2012, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, A.; MacIntyre, D.A.; Marchesi, J.R.; Lee, Y.S.; Bennett, P.R.; Kyrgiou, M. The Vaginal Microbiota, Human Papillomavirus Infection and Cervical Intraepithelial Neoplasia: What Do We Know and Where Are We Going Next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, P.; Gottschalk, E.Y.; Meneses, P.I. HPV Entry into Cells. Mutat. Res. Rev. Mutat. Res. 2017, 772, 13–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florin, L.; Sapp, M.; Spoden, G.A. Host-Cell Factors Involved in Papillomavirus Entry. Med. Microbiol. Immunol. 2012, 201, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Surviladze, Z.; Sterk, R.T.; DeHaro, S.A.; Ozbun, M.A. Cellular Entry of Human Papillomavirus Type 16 Involves Activation of the Phosphatidylinositol 3-Kinase/Akt/MTOR Pathway and Inhibition of Autophagy. J. Virol. 2013, 87, 2508–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, C.; Schiller, J.T. Papillomavirus Assembly: An Overview and Perspectives. Virus Res. 2017, 231, 103–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, S.R.; Goetschius, D.J.; Hu, J.; Graff, J.J.; Bator, C.M.; Christensen, N.D.; Hafenstein, S.L. Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids. Viruses 2021, 13, 2023. https://doi.org/10.3390/v13102023
Hartmann SR, Goetschius DJ, Hu J, Graff JJ, Bator CM, Christensen ND, Hafenstein SL. Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids. Viruses. 2021; 13(10):2023. https://doi.org/10.3390/v13102023
Chicago/Turabian StyleHartmann, Samantha R., Daniel J. Goetschius, Jiafen Hu, Joshua J. Graff, Carol M. Bator, Neil D. Christensen, and Susan L. Hafenstein. 2021. "Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids" Viruses 13, no. 10: 2023. https://doi.org/10.3390/v13102023
APA StyleHartmann, S. R., Goetschius, D. J., Hu, J., Graff, J. J., Bator, C. M., Christensen, N. D., & Hafenstein, S. L. (2021). Cryo EM Analysis Reveals Inherent Flexibility of Authentic Murine Papillomavirus Capsids. Viruses, 13(10), 2023. https://doi.org/10.3390/v13102023