A Bipartite Geminivirus with a Highly Divergent Genomic Organization Identified in Olive Trees May Represent a Novel Evolutionary Direction in the Family Geminiviridae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Protocol
2.2. RNA-Extraction and Sequencing
2.3. Bioinformatics Analysis of RNA-Sequence Data
2.4. DNA Extraction, PCR Validation, and Full-Length Amplification of Viral Genomic DNA Molecules
2.5. Sequence and Phylogenetic Analyses
2.6. Recombination Analysis
2.7. Prediction of Insect Vector through CP Analysis
3. Results
3.1. RNA-Sequence Analysis
3.2. Validation of HTS Results and OEGV-PT Presence in Olive
3.3. Genome Organization of OEGV-PT DNA-A and Its DNA-B Cognate Molecule
3.4. Phylogenetic Relationships and Pairwise Identities with Other Geminiviruses
3.5. Recombination Analysis
3.6. Specificity-Determining Positions (SDPs) in CP Amino Acid Sequences
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al Abdullah, A.; El Beaino, T.; Saponari, M.; Hallak, H.; Digiaro, M. Preliminary evaluation of the status of olive-infecting viruses in Syria. EPPO Bull. 2005, 35, 249–252. [Google Scholar] [CrossRef]
- Fadel, C.; Digiaro, M.; Choueiri, E.; El Beaino, T.; Saponari, M.; Savino, V.; Martelli, G.P. On the presence and distribution of olive viruses in Lebanon. EPPO Bull. 2005, 35, 33–36. [Google Scholar] [CrossRef]
- Faggioli, A.F.; Ferretti, L.; Albanese, G.; Sciarroni, R.; Pasquini, G.; Lumia, V.; Barba, M. Distribution of olive tree viruses in Italy as revealed by one-step RT-PCR. J. Plant Pathol. 2005, 87, 49–55. [Google Scholar]
- Varanda, C.; Cardoso, J.M.S.; do Rosário Félix, M.; Oliveira, S.; Clara, M.I. Multiplex RT-PCR for detection and identification of three necroviruses that infect olive trees. Eur. J. Plant Pathol. 2010, 127, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Luigi, M.; Godena, S.; Dermić, E.; Barba, M.; Faggioli, F. Detection of viruses in olive trees in Croatian Istria. Phytopathol. Mediterr. 2011, 50, 150–153. [Google Scholar] [CrossRef]
- Félix, M.R.; Varanda, C.M.R.; Clara, M.I. Biology and molecular characterization of necroviruses affecting Olea europaea L.: A review. Eur. J. Plant Pathol. 2012, 133, 247–259. [Google Scholar] [CrossRef]
- Zellama, M.S.; Varanda, C.M.R.; Materatski, P.; Nabi, N.; Hafsa, A.B.; Saamali, B.M.; Chaouachi, M.; Félix, M.R. An integrated approach for understanding the high infection rates of olive viruses in Tunisia. Eur. J. Plant Pathol. 2019, 153, 1043–1054. [Google Scholar] [CrossRef]
- Chiumenti, M.; Greco, C.; De Stradis, A.; Loconsole, G.; Cavalieri, V.; Altamura, G.; Zicca, S.; Saldarelli, P.; Saponari, M. Olea Europaea Geminivirus: A Novel Bipartite Geminivirid Infecting Olive Trees. Viruses 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Xylogianni, E.; Margaria, P.; Knierim, D.; Sareli, K.; Winter, S.; Chatzivassiliou, E.K. Virus Surveys in Olive Orchards in Greece Identify Olive Virus T, a Novel Member of the Genus Tepovirus. Pathogens 2021, 10, 574. [Google Scholar]
- Martelli, G.P. Infectious diseases and certification of olive: An overview. EPPO Bull. 1999, 29, 127–133. [Google Scholar] [CrossRef]
- Godena, S.; Bendini, A.; Giambanelli, E.; Cerretani, L.; Ðermić, D.; Ðermić, E. Cherry leafroll virus: Impact on olive fruit and virgin olive oil quality. Eur. J. Lipid Sci. Technol. 2012, 114, 535–541. [Google Scholar] [CrossRef]
- Alabdullah, A.; Minafra, A.; Elbeaino, T.; Saponari, M.; Savino, V.; Martelli, G.P. Complete nucleotide sequence and genome organization of Olive latent virus 3, a new putative member of the family Tymoviridae. Virus Res. 2010, 152, 10–18. [Google Scholar] [CrossRef]
- Rojas, M.R.; Macedo, M.A.; Maliano, M.R.; Soto-Aguilar, M.; Souza, J.O.; Briddon, R.W.; Kenyon, L.; Rivera Bustamante, R.F.; Zerbini, F.M.; Adkins, S.; et al. World Management of Geminiviruses. Annu. Rev. Phytopathol. 2015, 56, 637–677. [Google Scholar] [CrossRef]
- Zerbini, F.M.; Briddon, R.W.; Idris, A.; Martin, D.P.; Moriones, E.; Navas-Castillo, J.; Rivera-Bustamante, R.; Roumagnac, P.; Varsani, A.; Consortium, I.R. ICTV Virus Taxonomy Profile: Geminiviridae. J. Gen. Virol. 2017, 98, 131–133. [Google Scholar] [CrossRef]
- Hanley-Bowdoin, L.; Bejarano, E.R.; Robertson, D.; Mansoor, S. Geminiviruses: Masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 2013, 11, 777–788. [Google Scholar] [CrossRef] [PubMed]
- ICTV. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 2 September 2021).
- Ma, Y.; Navarro, B.; Zhang, Z.; Lu, M.; Zhou, X.; Chi, S.; Di Serio, F.; Li, S. Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. J. Gen. Virol. 2015, 96, 2421–2434. [Google Scholar] [CrossRef]
- Saunders, K.; Salim, N.; Mali, V.R.; Malathi, V.G.; Briddon, R.; Markham, P.G.; Stanley, J. Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: Evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 2002, 293, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, A.; Kvarnheden, A.; Marcenaro, D.; Valkonen, J.P.T. Sequence characterization of Tomato leaf curl Sinaloa virus and Tomato severe leaf curl virus: Phylogeny of New World begomoviruses and detection of recombination. Arch. Virol. 2005, 150, 1281–1299. [Google Scholar] [CrossRef]
- Briddon, R.W.; Patil, B.L.; Bagewadi, B.; Nawaz-Ul-Rehman, M.S.; Fauquet, C.M. Distinct evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. BMC Evol. Biol. 2010, 10, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melgarejo, T.A.; Kon, T.; Rojas, M.R.; Paz-Carrasco, L.; Zerbini, F.M.; Gilbertson, R.L. Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J. Virol. 2013, 87, 5397–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, M.A.; Albuquerque, L.C.; Maliano, M.R.; Souza, J.O.; Rojas, M.R.; Inoue-Nagata, A.K.; Gilbertson, R.L. Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil. Arch. Virol. 2018, 163, 737–743. [Google Scholar] [CrossRef]
- Fondong, V.N. Geminivirus protein structure and function. Mol. Plant Pathol. 2013, 14, 635–649. [Google Scholar] [CrossRef]
- Seal, S.E.; VandenBosch, F.; Jeger, M.J. Factors influencing begomovirus evolution and their increasing global significance: Implications for sustainable control. CRC. Crit. Rev. Plant Sci. 2006, 25, 23–46. [Google Scholar] [CrossRef]
- Padidam, M.; Beachy, R.N.; Fauquet, C.M. The Role of AV2 (“Precoat”) and Coat Protein in Viral Replication and Movement in Tomato Leaf Curl Geminivirus. Virology 1996, 224, 390–404. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, E.P. A phylogenetic and evolutionary justification for three genera of Geminiviridae. Arch. Virol. 1994, 139, 147–162. [Google Scholar] [CrossRef]
- Ha, C.; Coombs, S.; Revill, P.; Harding, R.; Vu, M.; Dale, J. Molecular characterization of begomoviruses and DNA satellites from Vietnam: Additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. J. Gen. Virol. 2008, 89, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Argüello-Astorga, G.R.; Guevara-González, R.G.; Herrera-Estrella, L.R.; Rivera-Bustamante, R.F. Geminivirus Replication Origins Have a Group-Specific Organization of Iterative Elements: A Model for Replication. Virology 1994, 203, 90–100. [Google Scholar] [CrossRef]
- Fontes, E.P.B.; Gladfelter, H.J.; Schaffer, R.L.; Petty, I.T.D.; Hanley-Bowdoin, L. Geminivirus replication origins have a modular organization. Plant Cell 1994, 6, 405–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, E.P.B.; Eagle, P.A.; Sipe, P.S.; Luckow, V.A.; Hanley-Bowdoin, L. Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J. Biol. Chem. 1994, 269, 8459–8465. [Google Scholar] [CrossRef]
- Singh, J. Role of DNA replication in establishment and propagation of epigenetic states of chromatin. Semin. Cell Dev. Biol. 2014, 30, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Briddon, R.O.B.W.; Bedford, I.A.N.D.; Tsai, J.H.; Markham, P.G. Analysis of the Nucleotide Sequence of the Treehopper-Transmitted Geminivirus, Tomato Pseudo-Curly Top Virus, Suggests a Recombinant Origin. Virology 1996, 219, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2013, 41, D36–D42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.; Appel, R.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; Volume 52, pp. 571–607. [Google Scholar]
- Muhire, B.M.; Varsani, A.; Martin, D.P. SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 2014, 9, e0108277. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, A.; Mandloi, S.; Lanczycki, C.J.; Panchenko, A.R.; Chakrabarti, S. SPEER-SERVER: A web server for prediction of protein specificity determining sites. Nucleic Acids Res. 2012, 40, W242–W248. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.P.; Krishnamurthy, N.; Sjölander, K. Automated protein subfamily identification and classification. PLoS Comput. Biol. 2007, 3, e160. [Google Scholar] [CrossRef] [Green Version]
- Alabi, O.J.; Diaz-Lara, A.; Erickson, T.M.; Al Rwahnih, M. Olea europaea geminivirus is present in a germplasm repository and in California and Texas olive (Olea europaea L.) groves. Arch. Virol. 2021, 1–6. [Google Scholar] [CrossRef]
- Harrison, B.D.; Swanson, M.M.; Fargette, D. Begomovirus coat protein: Serology, variation and functions. Physiol. Mol. Plant Pathol. 2002, 60, 257–271. [Google Scholar] [CrossRef]
- Wylie, S.J.; Li, H.; Saqib, M.; Jones, M.G.K. The Global Trade in Fresh Produce and the Vagility of Plant Viruses: A Case Study in Garlic. PLoS ONE 2014, 9, e105044. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Choi, H.; Kim, S.-M.; Kim, S.-L.; Lee, B.C.; Cho, W.K. The pepper virome: Natural co-infection of diverse viruses and their quasispecies. BMC Genom. 2017, 18, 453. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, B.; Freeborough, M.-J.; Maree, H.J.; Celton, J.-M.; Rees, D.J.G.; Burger, J.T. Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology 2010, 400, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Choi, H.; Kyong Cho, J.; Yoon, J.-Y.; Choi, S.-K.; Kyong Cho, W. In silico approach to reveal viral populations in grapevine cultivar Tannat using transcriptome data. Sci. Rep. 2015, 5, 15841. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, E.E.; Coletta-Filho, H.D.; Nouri, S.; Falk, B.W.; Nerva, L.; Oliveira, T.S.; Dorta, S.O.; Machado, M.A. Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses. Viruses 2017, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Torres-Herrera, S.I.; Romero-Osorio, A.; Moreno-Valenzuela, O.; Pastor-Palacios, G.; Cardenas-Conejo, Y.; Ramírez-Prado, J.H.; Riego-Ruiz, L.; Minero-García, Y.; Ambriz-Granados, S. A lineage of begomoviruses encode rep and AC4 proteins of enigmatic ancestry: Hints on the evolution of geminiviruses in the newworld. Viruses 2019, 11, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, E.S.; Kuchie, J.; Duffy, S. Bioinformatic analysis reveals genome size reduction and the emergence of tyrosine phosphorylation site in the movement protein of new world bipartite begomoviruses. PLoS ONE 2014, 9, e111957. [Google Scholar] [CrossRef] [PubMed]
- Hipp, K.; Rau, P.; Schäfer, B.; Pfannstiel, J.; Jeske, H. Translation, modification and cellular distribution of two AC4 variants of African cassava mosaic virus in yeast and their pathogenic potential in plants. Virology 2016, 498, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, A.V.; Prigigallo, M.I.; Rosas-Diaz, T.; Lozano-Duran, R.; Stavolone, L. S-acylation mediates Mungbean yellow mosaic virus AC4 localization to the plasma membrane and in turns gene silencing suppression. PLOS Pathog. 2018, 14, e1007207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fondong, V.N.; Reddy, R.V.C.; Lu, C.; Hankoua, B.; Felton, C.; Czymmek, K.; Achenjang, F. The Consensus N-Myristoylation Motif of a Geminivirus AC4 Protein Is Required for Membrane Binding and Pathogenicity. Mol. Plant-Microbe Interact. 2007, 20, 380–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills-Lujan, K.; Deom, C.M. Geminivirus C4 protein alters Arabidopsis development. Protoplasma 2010, 239, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Wang, Y.; Hu, T.; Yang, X.; Lozano-Duran, R.; Sunter, G.; Zhou, X. Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. Mol. Plant 2018, 11, 1466–1481. [Google Scholar] [CrossRef] [Green Version]
- Módena, N.A.; Zelada, A.M.; Conte, F.; Mentaberry, A. Phosphorylation of the TGBp1 movement protein of Potato virus X by a Nicotiana tabacum CK2-like activity. Virus Res. 2008, 137, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Rothenstein, D.; Krenz, B.; Selchow, O.; Jeske, H. Tissue and cell tropism of Indian cassava mosaic virus (ICMV) and its AV2 (precoat) gene product. Virology 2007, 359, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Glick, E.; Zrachya, A.; Levy, Y.; Mett, A.; Gidoni, D.; Belausov, E.; Citovsky, V.; Gafni, Y. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc. Natl. Acad. Sci. USA 2008, 105, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.-R.; Stenger, D.C. The Strain-Specificcis-Acting Element of Beet Curly Top Geminivirus DNA Replication Maps to the Directly Repeated Motif of theOri. Virology 1996, 226, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Chatterji, A.; Chatterji, U.; Beachy, R.N.; Fauquet, C.M. Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of tomato leaf curl virus-New Delhi. Virology 2000, 273, 341–350. [Google Scholar] [CrossRef] [Green Version]
- Sudarshana, M.R.; Wang, H.L.; Lucas, W.J.; Gilbertson, R.L. Dynamics of bean dwarf mosaic geminivirus cell-to-cell and long-distance movement in Phaseolus vulgaris revealed, using the green fluorescent protein. Mol. Plant-Microbe Interact. 1998, 11, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Rojas, M.R.; Jiang, H.; Salati, R.; Xoconostle-Cázares, B.; Sudarshana, M.R.; Lucas, W.J.; Gilbertson, R.L. Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 2001, 291, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Andrew; Lucy, P.; Davies, J.W.; Boulton, M.I. A single amino acid change in the coat protein of Maize streak virus abolishes systemic infection, but not interaction with viral DNA or movement protein. Mol. Plant Pathol. 2001, 2, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Varanda, C.M.R.; Nolasco, G.; Clara, M.I.; Félix, M.R. Genetic diversity of the coat protein of olive latent virus 1 isolates. Arch. Virol. 2014, 159, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Varanda, C.M.R.; Machado, M.; Martel, P.; Nolasco, G.; Clara, M.I.E.; Félix, M.R. Genetic diversity of the coat protein of olive mild mosaic virus (OMMV) and tobacco necrosis virus D (TNV-D) isolates and its structural implications. PLoS ONE 2014, 9, e110941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varanda, C.M.R.; Materatski, P.; Campos, M.D.; Clara, M.I.E.; Nolasco, G.; Félix, M.D.R. Olive mild mosaic virus coat protein and P6 are suppressors of RNA silencing, and their silencing confers resistance against OMMV. Viruses 2018, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulton, M.I.; King, D.I.; Markham, P.G.; Pinner, M.S.; Davies, J.W. Host range and symptoms are determined by specific domains of the maize streak virus genome. Virology 1991, 181, 312–318. [Google Scholar] [CrossRef]
- Varanda, C.; Félix, M.d.R.; Soares, C.M.; Oliveira, S.; Clara, M.I. Specific amino acids of Olive mild mosaic virus coat protein are involved in transmission by Olpidium brassicae. J. Gen. Virol. 2011, 92, 2209–2213. [Google Scholar] [CrossRef]
- Varanda, C.M.R.; Silva, M.S.M.R.; Félix, M.D.R.F.; Clara, M.I.E. Evidence of olive mild mosaic virus transmission by Olpidium brassicae. Eur. J. Plant Pathol. 2011, 130, 165–172. [Google Scholar] [CrossRef]
- Rosario, K.; Seah, Y.M.; Marr, C.; Varsani, A.; Kraberger, S.; Stainton, D.; Moriones, E.; Polston, J.E.; Duffy, S.; Breitbart, M. Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds. Viruses 2015, 7, 5553–5570. [Google Scholar] [CrossRef] [Green Version]
- Inoue-Nagata, A.K.; Lima, M.F.; Gilbertson, R.L. A review of geminivirus diseases in vegetables and other crops in Brazil: Current status and approaches for management. Hortic. Bras. 2016, 34, 8–18. [Google Scholar] [CrossRef] [Green Version]
(1) | (2) | (3) | (4) | (5) | (6) | ||
---|---|---|---|---|---|---|---|
Sites | Sample ID | Raw | Trimmed | Nonhost | Host | >200 bp | >2500 bp |
Reads | Reads | Reads | reAds (%) | Contigs | Contigs | ||
Site A | GM1 | 1,439,571 | 1,354,917 | 718,728 | 47. 0 | 3.433 | 1 |
CM2 | 1,829,542 | 1,734,121 | 943,211 | 45. 6 | 2.803 | 1 | |
PM3 | 882,313 | 833,859 | 479,347 | 42. 5 | 743 | 1 | |
AM4 | 1,218,856 | 1,125,962 | 621,743 | 44. 8 | 11.968 | 5 | |
Site B | GF13 | 1,234,906 | 1,166,501 | 632,432 | 45. 8 | 4.572 | 10 |
CF14 | 1,567,086 | 1,480,478 | 786,043 | 46. 9 | 5.106 | 8 | |
PF15 | 1,267,441 | 1,197,144 | 670,079 | 44. 0 | 4.759 | 1 | |
AF16 | 1,612,115 | 1,527,259 | 771,328 | 49. 5 | 14.093 | 39 | |
Site C | GL9 | 1,744,076 | 1,644,553 | 897,574 | 45. 4 | 8.116 | 23 |
CL10 | 1,022,113 | 953,274 | 533,379 | 44. 0 | 529 | 3 | |
PL11 | 1,897,805 | 1,804,294 | 883,768 | 51. 0 | 21.911 | 67 | |
AL12 | 1,461,607 | 1,376,263 | 733,076 | 46. 7 | 3.404 | 0 | |
Site D | GS5 | 825,863 | 750,849 | 43,448 | 42. 1 | 3.426 | 2 |
CS6 | 2,073,509 | 1,974,815 | 1,074,547 | 45. 6 | 7.887 | 5 | |
PS7 | 1,796,210 | 1,699,435 | 914,666 | 46. 2 | 2.667 | 1 | |
AS8 | 1,311,804 | 1,249,506 | 675,575 | 45. 9 | 1.748 | 1 |
Groups | Genera | Species | Vectors | Amino Acids and Positions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
102 | 120 | 137 | 144 | 244 | 247 | 253 | 256 | 268 | ||||
1 | Citlodavirus | CCDaV | unknown | M | I | N | N | F | H | V | T | S |
unassigned | MMDAV0 | H | I | N | H | Y | H | L | V | S | ||
2 | Maldovirus | AGV | H | I | Q | V | Q | N | W | L | V | |
GGV-A | Y | I | N | I | G | D | Y | I | I | |||
3 | Grablovirus | PrGV-A | F | L | V | H | K | D | R | V | A | |
GRBV | S. festinus | F | L | V | H | K | D | R | V | A | ||
4 | Eragrovirus | ECSV00 | leafhopper | L | T | T | V | W | S | I | I | R |
Mastrevirus | MSV | L | T | S | G | W | N | V | I | G | ||
CpCAV | L | T | M | F | W | N | V | I | A | |||
TYDV-A | L | T | M | F | W | N | V | I | G | |||
5 | Capulavirus | EcmLV | A. tirucallis | H | I | A | Y | F | S | Y | T | Q |
ALCV | A. craccivora | H | I | A | W | F | S | Y | T | Q | ||
FBSLCV | unknown | H | I | Q | W | F | S | Y | T | Q | ||
PLLV00 | H | V | G | V | F | S | Y | T | Q | |||
6 | Turncurtovirus | TCTV | C. haematoceps | M | T | F | M | W | D | Y | L | D |
TLRV00-1 | M | T | F | M | W | D | Y | L | D | |||
TLRV00-2 | M | T | F | M | W | D | Y | L | D | |||
7 | Curtovirus | PeYDV | C. tenellus | M | T | F | M | W | D | Y | V | D |
BCTV | M | T | F | M | W | D | Y | V | D | |||
HrCTV | unknown | M | T | F | M | W | D | Y | V | D | ||
SSCTV | M | T | F | M | W | D | Y | V | D | |||
Becurtovirus | SCTV00 | M | T | F | M | W | D | Y | V | D | ||
BCTIV | C. haematoceps | M | T | F | M | W | D | Y | V | D | ||
8 | Begomovirus | EuMV | B. tabaci | C | F | I | N | Y | H | Y | H | T |
SMLCV0 | C | F | I | N | Y | H | Y | H | T | |||
SLCV | C | F | I | N | Y | H | Y | H | T | |||
PepGMV | C | F | I | N | Y | H | Y | H | T | |||
MCLCuV | C | F | I | N | Y | H | Y | H | T | |||
AbMV | C | F | I | N | Y | H | Y | H | T | |||
COYSV0 | C | F | I | N | Y | H | Y | H | T | |||
TGMV | C | F | I | N | Y | H | Y | H | T | |||
BGYMV | C | F | I | N | Y | H | Y | H | T | |||
JacYMV | C | F | I | N | Y | H | Y | H | T | |||
CoGMV | C | F | I | N | Y | H | Y | H | T | |||
HGYMV0 | C | F | I | N | Y | H | Y | H | T | |||
SACMV | C | F | I | N | Y | H | Y | H | T | |||
ACMV | V | F | I | N | Y | H | Y | H | T | |||
ICMV | C | F | I | N | Y | Q | Y | H | T | |||
- | unassigned | OEGV-PT | unknown | C | V | A | Q | F | D | V | M | F |
- | Topocuvirus | TPCTV0 | Y | E | A | Y | Y | D | I | I | D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Materatski, P.; Jones, S.; Patanita, M.; Campos, M.D.; Dias, A.B.; Félix, M.d.R.; Varanda, C.M.R. A Bipartite Geminivirus with a Highly Divergent Genomic Organization Identified in Olive Trees May Represent a Novel Evolutionary Direction in the Family Geminiviridae. Viruses 2021, 13, 2035. https://doi.org/10.3390/v13102035
Materatski P, Jones S, Patanita M, Campos MD, Dias AB, Félix MdR, Varanda CMR. A Bipartite Geminivirus with a Highly Divergent Genomic Organization Identified in Olive Trees May Represent a Novel Evolutionary Direction in the Family Geminiviridae. Viruses. 2021; 13(10):2035. https://doi.org/10.3390/v13102035
Chicago/Turabian StyleMateratski, Patrick, Susan Jones, Mariana Patanita, Maria Doroteia Campos, António Bento Dias, Maria do Rosário Félix, and Carla M. R. Varanda. 2021. "A Bipartite Geminivirus with a Highly Divergent Genomic Organization Identified in Olive Trees May Represent a Novel Evolutionary Direction in the Family Geminiviridae" Viruses 13, no. 10: 2035. https://doi.org/10.3390/v13102035
APA StyleMateratski, P., Jones, S., Patanita, M., Campos, M. D., Dias, A. B., Félix, M. d. R., & Varanda, C. M. R. (2021). A Bipartite Geminivirus with a Highly Divergent Genomic Organization Identified in Olive Trees May Represent a Novel Evolutionary Direction in the Family Geminiviridae. Viruses, 13(10), 2035. https://doi.org/10.3390/v13102035