An Overview of the Application of Viruses to Biotechnology
Abstract
:1. Introduction
2. Special Issue Overview
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jones, R.A.C. Global plant virus disease pandemics and epidemics. Plants 2021, 10, 233. [Google Scholar] [CrossRef]
- Materatski, P.; Jones, S.; Patanita, M.; Campos, M.D.; Dias, A.B.; Felix, M.R.; Varanda, C.M.R. A bipartite geminivirus with a highly divergent genomic organization identified in olive trees may represent a novel evolutionary direction in the family Geminiviridae. Viruses 2021, 13, 2035. [Google Scholar] [CrossRef]
- Fermin, G.; Tennant, P. Chapter 1—Introduction: A Short History of Virology. In Viruses: Molecular Biology, Host Interactions, and Applications to Biotechnology, 1st ed.; Tennant, P., Fermin, G., Foster, J.E.B.T.-V., Eds.; Academic Press: New York, NY, USA, 2018; pp. 1–16. ISBN 978-0-12-811257-1. [Google Scholar]
- Turner, J.S.; O’Halloran, J.A.; Kalaidina, E.; Kim, W.; Schmitz, A.J.; Zhou, J.Q.; Lei, T.; Thapa, M.; Chen, R.E.; Case, J.B.; et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature 2021, 596, 109–113. [Google Scholar] [CrossRef]
- Uyhazi, K.E.; Bennett, J. A CRISPR view of the 2020 nobel prize in chemistry. J. Clin. Investig. 2021, 131, 1–3. [Google Scholar] [CrossRef]
- Ul Haq, I.; Chaudhry, W.N.; Akhtar, M.N.; Andleeb, S.; Qadri, I. Bacteriophages and their implications on future biotechnology: A review. Virol. J. 2012, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.S.E.A.; Mansoor, S. Viral vectors for plant genome engineering. Front. Plant Sci. 2017, 8, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varanda, C.M.R.; Materatski, P.; Campos, M.D.; Clara, M.I.E.; Nolasco, G.; Félix, M.D.R. Olive mild mosaic virus coat protein and P6 are suppressors of RNA silencing, and their silencing confers resistance against OMMV. Viruses 2018, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Dale, R.M.K.; McClure, B.A.; Houchins, J.P. A rapid single-stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: Application to sequencing the corn mitochondrial 18 S rDNA. Plasmid 1985, 13, 31–40. [Google Scholar] [CrossRef]
- Doherty, A.J.; Ashford, S.R.; Subramanya, H.S.; Wigley, D.B. Bacteriophage T7 DNA Ligase: Overexpression, purification, crystallization, and characterization (∗). J. Biol. Chem. 1996, 271, 11083–11089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsin, H.; Jasilionis, A.; Dahle, H.; Sandaa, R.A.; Stokke, R.; Nordberg Karlsson, E.; Steen, I.H. Exploring codon adjustment strategies towards escherichia coli-based production of viral proteins encoded by hth1, a novel prophage of the marine bacterium hypnocyclicus thermotrophus. Viruses 2021, 13, 1215. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.; Tremblay, D.M.; Delaquis, P.; Goodridge, L.; Levesque, R.C.; Moineau, S.; Suttle, C.A.; Wang, S. Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses 2019, 11, 854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.L.; Chow, N.S.M.; Bridle, B.W.; Wootton, S.K. Macrophage Depletion via Clodronate Pretreatment Reduces Transgene Expression from AAV Vectors in Vivo. Viruses 2021, 13, 2002. [Google Scholar] [CrossRef]
- Yu, D.L.; Chow, N.; Wootton, S.K. Jsrv intragenic enhancer element increases expression from a heterologous promoter and promotes high level aav-mediated transgene expression in the lung and liver of mice. Viruses 2020, 12, 1266. [Google Scholar] [CrossRef]
- Pijlman, G.P.; Grose, C.; Hick, T.A.H.; Breukink, H.E.; van den Braak, R.; Abbo, S.R.; Geertsema, C.; van Oers, M.M.; Martens, D.E.; Esposito, D. Relocation of the atttn7 transgene insertion site in bacmid dna enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses 2020, 12, 1448. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, M.H.; Chang, H.W.; Wu, T.Y.; Chang, Y.C. Parenterally Administered Porcine Epidemic Diarrhea. Viruses 2020, 12, 1122. [Google Scholar] [CrossRef]
- Jørgensen, C.M.; Vrang, A.; Madsen, S.M. Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol. Lett. 2014, 351, 170–178. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Mi, J.; Wang, Y.; Wang, T.; Qi, X.; Li, K.; Pan, Q.; Gao, Y.; Gao, L.; Liu, C.; et al. Recombinant lactococcus expressing a novel variant of infectious bursal disease virus vp2 protein can induce unique specific neutralizing antibodies in chickens and provide complete protection. Viruses 2020, 12, 1350. [Google Scholar] [CrossRef] [PubMed]
- Bashir Bello, M.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Hassan Jibril, A.; Peeters, B.P.H.; Rahman Omar, A. Exploring the prospects of engineered Newcastle disease virus in modern vaccinology. Viruses 2020, 12, 451. [Google Scholar] [CrossRef]
- Maeda, K.; Kikuchi, T.; Kasajima, I.; Li, C.; Yamagishi, N.; Yamashita, H.; Yoshikawa, N. Virus-induced flowering by apple latent spherical virus vector: Effective use to accelerate breeding of grapevine. Viruses 2020, 12, 70. [Google Scholar] [CrossRef] [Green Version]
- Lundstrom, K. Application of viral vectors for vaccine development with a special emphasis on COVID-19. Viruses 2020, 12, 1324. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garcia, L.; Pacios, O.; González-Bardanca, M.; Blasco, L.; Bleriot, I.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Viral related tools against SARS-CoV-2. Viruses 2020, 12, 1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gao, S.; Zeng, W.; Yang, Y.; Ma, J.; Wang, Y. Plant virology delivers diverse toolsets for biotechnology. Viruses 2020, 12, 1338. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, S.; Hefferon, K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021, 13, 1697. [Google Scholar] [CrossRef]
- Varanda, C.M.R.; Félix, M.D.R.; Campos, M.D.; Patanita, M.; Materatski, P. Plant viruses: From targets to tools for crispr. Viruses 2021, 13, 141. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varanda, C.; Félix, M.d.R.; Campos, M.D.; Materatski, P. An Overview of the Application of Viruses to Biotechnology. Viruses 2021, 13, 2073. https://doi.org/10.3390/v13102073
Varanda C, Félix MdR, Campos MD, Materatski P. An Overview of the Application of Viruses to Biotechnology. Viruses. 2021; 13(10):2073. https://doi.org/10.3390/v13102073
Chicago/Turabian StyleVaranda, Carla, Maria do Rosário Félix, Maria Doroteia Campos, and Patrick Materatski. 2021. "An Overview of the Application of Viruses to Biotechnology" Viruses 13, no. 10: 2073. https://doi.org/10.3390/v13102073
APA StyleVaranda, C., Félix, M. d. R., Campos, M. D., & Materatski, P. (2021). An Overview of the Application of Viruses to Biotechnology. Viruses, 13(10), 2073. https://doi.org/10.3390/v13102073