BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Phage Isolation, and Growth Conditions
2.2. Host Range Determination
2.3. Genome Sequencing, Assembly, and Annotation
2.4. Electron Microscopy
2.5. Isolation of Phage-Resistant Mutants
2.6. Identification of Transposon Insertion Sites
2.7. Complementation of the Y. enterocolitica O:3 BtuB Mutant
2.8. Sequencing of the Yersinia BtuB
2.9. Phage Adsorption Assay
2.10. Sample Preparation for Mass Spectrometry
2.11. Liquid Chromatography Mass Spectrometry and Protein Identification
2.12. Mass Spectrometry Data Analysis
3. Results and Discussion
3.1. ϕR2-01 Is a T5-like Siphovirus
3.2. General Genomic Features of ϕR2-01
3.3. Comparison of ϕR2-01 to Other Closely Related Phages
3.4. Mass Spectrometric Identification of ϕR2-01 Proteins
3.5. ϕR2-01 Host Range and Growth Characteristics
3.6. BtuB Is the ϕR2-01 Host Receptor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fredriksson-Ahomaa, M.; Stolle, A.; Korkeala, H. Molecular epidemiology of Yersinia enterocolitica infections. FEMS Immunol. Med. Microbiol. 2006, 47, 315–329. [Google Scholar] [CrossRef] [Green Version]
- Bottone, E.J. Yersinia enterocolitica: Overview and epidemiologic correlates. Microbes Infect. 1999, 1, 323–333. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, J.Q.; Zhang, D.J.; Zhou, J.; Zhang, C.D.; Su, X.R.; Li, T.W. Composition and structure of microbial communities associated with different domestic sewage outfalls. Genet. Mol. Res. 2014, 13, 7542–7552. [Google Scholar] [CrossRef]
- Falcão, J.P.; Brocchi, M.; Proença-Módena, J.L.; Acrani, G.O.; Corrêa, E.F.; Falcão, D.P. Virulence characteristics and epidemiology of Yersinia enterocolitica and Yersiniae other than Y. pseudotuberculosis and Y. pestis isolated from water and sewage. J. Appl. Microbiol. 2004, 96, 1230–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurnik, M. Molecular genetics of Yersinia lipopolysaccharide. In Genetics of Bacterial Polysaccharides; Goldberg, J.B., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 23–51. [Google Scholar]
- Jun, J.W.; Park, S.C.; Wicklund, A.; Skurnik, M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Int. J. Food Microbiol. 2018, 271, 33–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, M.; Skurnik, M. Genomic characterization of sixteen Yersinia enterocolitica -infecting podoviruses of pig origin. Viruses 2018, 10, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajunen, M.; Kiljunen, S.; Skurnik, M. Bacteriophage ϕYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J. Bacteriol. 2000, 182, 5114–5120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajunen, M.I.; Kiljunen, S.J.; Söderholm, M.E.; Skurnik, M. Complete genomic sequence of the lytic bacteriophage ϕYeO3-12 of Yersinia enterocolitica serotype O:3. J. Bacteriol. 2001, 183, 1928–1937. [Google Scholar] [CrossRef] [Green Version]
- Kiljunen, S.; Vilen, H.; Pajunen, M.; Savilahti, H.; Skurnik, M. Nonessential genes of phage ϕYeO3-12 include genes involved in adaptation to growth on Yersinia enterocolitica serotype O:3. J. Bacteriol. 2005, 187, 1405–1414. [Google Scholar] [CrossRef] [Green Version]
- Skurnik, M.; Hyytiäinen, H.J.; Happonen, L.J.; Kiljunen, S.; Datta, N.; Mattinen, L.; Williamson, K.; Kristo, P.; Szeliga, M.; Kalin-Manttari, L.; et al. Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37. J. Virol. 2012, 86, 12625–12642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiljunen, S.; Hakala, K.; Pinta, E.; Huttunen, S.; Pluta, P.; Gador, A.; Lönnberg, H.; Skurnik, M. Yersiniophage ϕR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology 2005, 151, 4093–4102. [Google Scholar] [CrossRef] [Green Version]
- Leskinen, K.; Blasdel, B.G.; Lavigne, R.; Skurnik, M. RNA-sequencing reveals the progression of phage-host interactions between ϕR1-37 and Yersinia enterocolitica. Viruses 2016, 8, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon-Velarde, C.G.; Happonen, L.; Pajunen, M.; Leskinen, K.; Kropinski, A.M.; Mattinen, L.; Rajtor, M.; Zur, J.; Smith, D.; Chen, S.; et al. Yersinia enterocolitica -specific infection by bacteriophages TG1 and ϕR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl. Environ. Microbiol. 2016, 82, 5340–5353. [Google Scholar] [CrossRef] [Green Version]
- Filik, K.; Szermer-Olearnik, B.; Wernecki, M.; Happonen, L.J.; Pajunen, M.I.; Nawaz, A.; Qasim, M.S.; Jun, J.W.; Mattinen, L.; Skurnik, M.; et al. The podovirus ϕ80-18 targets the pathogenic american biotype 1B strains of Yersinia enterocolitica. Front. Microbiol. 2020, 11, 1356. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Y.; Vincent, M.; Sun, Y.; Yu, H.; Wang, J.; Bao, Q.; Kong, H.; Hu, S. Complete genome sequence of bacteriophage T5. Virology 2005, 332, 45–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zivanovic, Y.; Confalonieri, F.; Ponchon, L.; Lurz, R.; Chami, M.; Flayhan, A.; Renouard, M.; Huet, A.; Decottignies, P.; Davidson, A.R.; et al. Insights into bacteriophage T5 structure from analysis of its morphogenesis genes and protein components. J. Virol. 2014, 88, 1162–1174. [Google Scholar] [CrossRef] [Green Version]
- McCorquodale, D.J.; Shaw, A.R.; Shaw, P.K.; Chinnadurai, G. Pre-early polypeptides of bacteriophages T5 and BF23. J. Virol. 1977, 22, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, K.; Braun, V. Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J. Bacteriol. 1979, 139, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Heller, K.; Braun, V. Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol. 1982, 41, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212–213, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Orquera, S.; Gölz, G.; Hertwig, S.; Hammerl, J.; Sparborth, D.; Joldic, A.; Alter, T. Control of Campylobacter spp. and Yersinia enterocolitica by virulent bacteriophages. J. Mol. Genet. Med. 2012, 6, 273–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwak, K.M.; Choi, I.Y.; Lee, J.; Oh, J.H.; Park, M.K. Isolation and characterization of a lytic and highly specific phage against Yersinia enterocolitica as a novel biocontrol agent. J. Microbiol. Biotechnol. 2018, 28, 1946–1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maura, D.; Debarbieux, L. Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl. Microbiol. Biotechnol. 2011, 90, 851–859. [Google Scholar] [CrossRef]
- Leon-Velarde, C.G.; Jun, J.W.; Skurnik, M. Yersinia phages and food safety. Viruses 2019, 11, 1105. [Google Scholar] [CrossRef] [Green Version]
- Oertelt, C.; Lindner, B.; Skurnik, M.; Holst, O. Isolation and structural characterization of an R-form lipopolysaccharide from Yersinia enterocolitica serotype O:8. Eur. J. Biochem. 2001, 268, 554–564. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.W. Molecular Cloning, A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Portnoy, D.A.; Falkow, S. Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J. Bacteriol. 1981, 148, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Radziejewska-Lebrecht, J.; Krajewska-Pietrasik, D.; Toivanen, P.; Skurnik, M. Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. Mol. Microbiol. 1997, 23, 63–76. [Google Scholar] [CrossRef]
- Skurnik, M. Lack of correlation between the presence of plasmids and fimbriae in Yersinia enterocolitica and Yersinia pseudotuberculosis. J. Appl. Bacteriol. 1984, 56, 355–363. [Google Scholar] [CrossRef]
- Al-Hendy, A.; Toivanen, P.; Skurnik, M. Lipopolysaccharide O side chain of Yersinia enterocolitica O:3 is an essential virulence factor in an orally infected murine model. Infect. Immun. 1992, 60, 870–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedzka-Sarek, M.; Venho, R.; Skurnik, M. Role of YadA, Ail, and Lipopolysaccharide in Serum Resistance of Yersinia enterocolitica Serotype O:3. Infect. Immun. 2005, 73, 2232–2244. [Google Scholar] [CrossRef] [Green Version]
- Noszczynska, M.; Kasperkiewicz, K.; Duda, K.A.; Podhorodecka, J.; Rabsztyn, K.; Gwizdala, K.; Swierzko, A.S.; Radziejewska-Lebrecht, J.; Holst, O.; Skurnik, M. Serological characterization of the enterobacterial common antigen substitution of the lipopolysaccharide of Yersinia enterocolitica O:3. Microbiology 2015, 161, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Babic, A.; Guérout, A.M.; Mazel, D. Construction of an improved RP4 (RK2)-based conjugative system. Res. Microbiol. 2008, 159, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Michiels, T.; Cornelis, G.R. Secretion of hybrid proteins by the Yersinia Yop export system. J. Bacteriol. 1991, 173, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Demarre, G.; Guérout, A.M.; Matsumoto-Mashimo, C.; Rowe-Magnus, D.A.; Marlière, P.; Mazel, D. A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. Res. Microbiol. 2005, 156, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Staden, R.; Beal, K.F.; Bonfield, J.K. The Staden package, 1998. Methods Mol. Biol. 2000, 132, 115–130. [Google Scholar] [PubMed]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, K.; Parkhill, J.; Crook, J.; Horsnell, T.; Rice, P.; Rajandream, M.A.; Barrell, B. Artemis: Sequence visualization and annotation. Bioinformatics 2000, 16, 944–945. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Cowley, A.; Uludag, M.; Gur, T.; McWilliam, H.; Squizzato, S.; Park, Y.M.; Buso, N.; Lopez, R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015, 43, W580–W584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skurnik, M.; Jaakkola, S.; Mattinen, L.; von Ossowski, L.; Nawaz, A.; Pajunen, M.I.; Happonen, L.J. Bacteriophages fEV-1 and fD1 Infect Yersinia pestis. Viruses 2021, 13, 1384. [Google Scholar] [CrossRef]
- Pinta, E.; Li, Z.; Batzilla, J.; Pajunen, M.; Kasanen, T.; Rabsztyn, K.; Rakin, A.; Skurnik, M. Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. Mol. Microbiol. 2012, 83, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Teleman, J.; Dowsey, A.W.; Gonzalez-Galarza, F.F.; Perkins, S.; Pratt, B.; Röst, H.L.; Malmström, L.; Malmström, J.; Jones, A.R.; Deutsch, E.W.; et al. Numerical compression schemes for proteomics mass spectrometry data. Mol. Cell Proteom. 2014, 13, 1537–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.; et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.; Beavis, R.C. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun. Mass Spectrom. 2003, 17, 2310–2316. [Google Scholar] [CrossRef]
- Keller, A.; Nesvizhskii, A.I.; Kolker, E.; Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383–5392. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef]
- Teleman, J.; Hauri, S.; Malmström, J. Improvements in mass spectrometry assay library generation for targeted proteomics. J. Proteome Res. 2017, 16, 2384–2392. [Google Scholar] [CrossRef]
- Effantin, G.; Boulanger, P.; Neumann, E.; Letellier, L.; Conway, J.F. Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J. Mol. Biol. 2006, 361, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Thomson, N.R.; Howard, S.; Wren, B.W.; Holden, M.T.; Crossman, L.; Challis, G.L.; Churcher, C.; Mungall, K.; Brooks, K.; Chillingworth, T.; et al. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet. 2006, 2, e206. [Google Scholar] [CrossRef] [Green Version]
- Flayhan, A.; Vellieux, F.M.; Lurz, R.; Maury, O.; Contreras-Martel, C.; Girard, E.; Boulanger, P.; Breyton, C. Crystal structure of pb9, the distal tail protein of bacteriophage T5: A conserved structural motif among all siphophages. J. Virol. 2014, 88, 820–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, J.M.; Luna, A.J.; Wood, T.L.; Chamakura, K.R.; Kuty Everett, G.F. Complete genome of Salmonella enterica serovar Typhimurium T5-like siphophage Stitch. Genome Announc. 2015, 3, e01435-14. [Google Scholar] [CrossRef] [Green Version]
- Piya, D.; Xie, Y.; Hernandez Morales, A.C.; Kuty Everett, G.F. Complete genome sequence of Salmonella enterica serovar Typhimurium siphophage Shivani. Genome Announc. 2015, 3, e01443-14. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Pan, Y.; Harman, N.J.; Ebner, P.D. Complete genome sequences of two Escherichia coli O157:H7 phages effective in limiting contamination of food products. Genome Announc. 2014, 2, e00519-14. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Abdelhamid, A.G.; Xu, Y.; Yousef, A.E. Draft genome sequence of the lytic Salmonella phage OSY-STA, which infects multiple Salmonella serovars. Microbiol. Resour. Announc. 2020, 9, e00868-20. [Google Scholar] [CrossRef]
- Patil, K.; Zeng, C.; O’Leary, C.; Lessor, L.; Kongari, R.; Gill, J.; Liu, M. Complete genome sequence of Salmonella enterica serovar Typhimurium siphophage Seabear. Microbiol. Resour. Announc. 2019, 8, e01160-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartman, S.; Zeng, C.; O’Leary, C.; Newkirk, H.; Kongari, R.; Gill, J.; Liu, M. Complete genome sequence of Salmonella enterica serovar Enteritidis siphophage Seafire. Microbiol. Resour. Announc. 2019, 8, e01167-19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, H.-H.; Duc, H.M.; Masuda, Y.; Honjoh, K.-i.; Miyamoto, T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol. 2021, 98, 103791. [Google Scholar] [CrossRef]
- Amarillas, L.; Rubí-Rangel, L.; Chaidez, C.; González-Robles, A.; Lightbourn-Rojas, L.; León-Félix, J. Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant Escherichia coli. Front. Microbiol. 2017, 8, 1355. [Google Scholar] [CrossRef]
- Niu, Y.D.; Stanford, K.; Kropinski, A.M.; Ackermann, H.W.; Johnson, R.P.; She, Y.-M.; Ahmed, R.; Villegas, A.; McAllister, T.A. Genomic, proteomic and physiological characterization of a T5-like bacteriophage for control of Shiga toxin-producing Escherichia coli O157:H7. PLoS ONE 2012, 7, e34585. [Google Scholar] [CrossRef] [Green Version]
- Golomidova, A.K.; Kulikov, E.E.; Prokhorov, N.S.; Guerrero-Ferreira, R.C.; Ksenzenko, V.N.; Tarasyan, K.K.; Letarov, A.V. Complete genome sequences of T5-related Escherichia coli bacteriophages DT57C and DT571/2 isolated from horse feces. Arch. Virol. 2015, 160, 3133–3137. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017, 33, 3396–3404. [Google Scholar] [CrossRef] [Green Version]
- Feucht, A.; Schmid, A.; Benz, R.; Schwarz, H.; Heller, K.J. Pore formation associated with the tail-tip protein pb2 of bacteriophage T5. J. Biol. Chem. 1990, 265, 18561–18567. [Google Scholar] [CrossRef]
- Katsura, I.; Hendrix, R.W. Length determination in bacteriophage lambda tails. Cell 1984, 39, 691–698. [Google Scholar] [CrossRef]
- Stewart, C.R.; Casjens, S.R.; Cresawn, S.G.; Houtz, J.M.; Smith, A.L.; Ford, M.E.; Peebles, C.L.; Hatfull, G.F.; Hendrix, R.W.; Huang, W.M.; et al. The genome of Bacillus subtilis bacteriophage SPO1. J. Mol. Biol. 2009, 388, 48–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Xi, Y.; Zhang, H.; Wang, Z.; Fan, M.; Liu, Y.; Wu, W. Characterization and adsorption of Lactobacillus virulent phage P1. J. Dairy Sci. 2016, 99, 6995–7001. [Google Scholar] [CrossRef] [Green Version]
- Mercanti, D.J.; Ackermann, H.W.; Quiberoni, A. Characterization of two temperate Lactobacillus paracasei bacteriophages: Morphology, kinetics and adsorption. Intervirology 2015, 58, 49–56. [Google Scholar] [CrossRef]
- Hong, J.; Kim, K.P.; Heu, S.; Lee, S.J.; Adhya, S.; Ryu, S. Identification of host receptor and receptor-binding module of a newly sequenced T5-like phage EPS7. FEMS Microbiol. Lett. 2008, 289, 202–209. [Google Scholar] [CrossRef]
- Kim, M.; Ryu, S. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 2011, 77, 2042–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondigler, M.; Holz, T.; Heller, K.J. Identification of the receptor-binding regions of pb5 proteins of bacteriophages T5 and BF23. Virology 1996, 219, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Golomidova, A.K.; Kulikov, E.E.; Prokhorov, N.S.; Guerrero-Ferreira, R.С.; Knirel, Y.A.; Kostryukova, E.S.; Tarasyan, K.K.; Letarov, A.V. Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis. Viruses 2016, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Decker, K.; Krauel, V.; Meesmann, A.; Heller, K.J. Lytic conversion of Escherichia coli by bacteriophage T5: Blocking of the FhuA receptor protein by a lipoprotein expressed early during infection. Mol. Microbiol. 1994, 12, 321–332. [Google Scholar] [CrossRef]
- Mondigler, M.; Ayoub, A.T.; Heller, K.J. The DNA region of phage BF23 encoding receptor binding protein and receptor blocking lipoprotein lacks homology to the corresponding region of closely related phage T5. J. Basic Microbiol. 2006, 46, 116–125. [Google Scholar] [CrossRef]
- Vizcaíno, J.A.; Deutsch, E.W.; Wang, R.; Csordas, A.; Reisinger, F.; Ríos, D.; Dianes, J.A.; Sun, Z.; Farrah, T.; Bandeira, N.; et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223–226. [Google Scholar] [CrossRef] [PubMed]
Strains | Comment | Reference |
---|---|---|
Yersinia enterocolitica | ||
8081-c | Serotype O:8, virulence plasmid cured, smooth | [30] |
8081-c-R2 | Rough, virulence plasmid cured. Host strain for phage ϕR2-01 | [28,31] |
6471/76-c (YeO3-c) | Serotype O:3, virulence plasmid cured | [32] |
YeO3-R1 (=YeO3-c-R1) | Spontaneous rough derivative of 6471/76-c | [33] |
YeO3-c-OC | ∆(wzx-wbcQ), derivative of 6471/76-c | [34] |
YeO3-c-OCR | Spontaneous rough derivative of YeO3-c-OC | [34] |
YeO3-c-R1-M164 | waaF::Cat-Mu derivative of YeO3-c-R1 | [35] |
YeO3-c-R1-M196 | galU::Cat-Mu derivative of YeO3-c-R1 | [35] |
YeO3-c-R1-M205 | hldE::Cat-Mu derivative of YeO3-c-R1 | [35] |
YeO3-R1-10R | btuB::Cat-Mu with insertion at position 2,853,209 of Y11 genome * | This work |
YeO3-R1-11R | btuB::Cat-Mu with insertion at position 2,853,177 of Y11 genome * | This work |
YeO3-R1-15R | btuB::Cat-Mu with insertion at position 2,853,689 of Y11 genome * | This work |
YeO3-R1-20R | btuB::Cat-Mu with insertion at position 2,852,224 of Y11 genome * | This work |
YeO3-R1-15R::pSW25T_BtuB | Cis-complemented btuB::Cat-Mu strain | This work |
Escherichia coli | ||
DH10B | Used for cloning and plasmid isolation | Invitrogen |
ω7249 | Host for suicide plasmids (chrRP4Δnic35) | [36] |
Plasmids | ||
pTM100 | TetR | [37] |
pTM100_BtuB | Complementation plasmid with wild-type btuB gene cloned into pTM100 | This work |
pSW25T | Mobilizable suicide plasmid, SpecR | [38] |
pSW25T_BtuB | Complementation suicide plasmid with wild-type btuB gene cloned into pSW25T | This work |
Yersinia Species | Phage-Sensitive Serotypes b | Serotypes with Phage-Sensitive (S) and -Resistant (R) Strains | Phage-Resistant Serotypes c |
---|---|---|---|
Y. enterocolitica | O:1 [2], O:2 [2], O:3 [11], O:4 [1], O:4,32 [1], O:5 [7], O:5,27 [5], O:6 [2], O:6,31 [2], O:7,8 [2], O:8 [12], O:9 [8], O:13 [1], O:13a,13b [1] d, O:13,7 [2], O:13,18 [1], O:14 [1], O:20 [2], O:21 [3], O:25 [1], O:34 [1], O:35,36 [1], O:35,52 [1], O:41(27),K1 [1], O:41(27),42 [1], O:41,43 [1], and O:50 [1] | O:6,30 [1S/2R], O:10 [1S/3R], and O:41(27),43 [1S/1R] | O:1,2,3 [1] O:25,26,44 [1], O:26,44 [1], O:28,50 [1], O:41(27),42,K1 [1] e, K1 NT [2], and NT [2] |
Y. aleksiciae | O:16 [2] | ||
Y. bercovieri | O:58,16 [2], NT [1] | ||
Y. frederiksenii | O:3 [1], O:16 [1], O:35 [1], O:48 [1], K1 NT [1], NK [2], and NT [1] | ||
Y. intermedia | O:16,21 [1], O:52,54 [1], and NK [1] | ||
Y. kristensenii | O:3 [1] | O:12,15 [1], NT [1], and UT [1] | |
Y. mollaretii | O:3 [1] and O:59(20,36,7) [1] | ||
Y. nurmii | UT [1] | ||
Y. pekkanenii | NK [1] | ||
Y. pestis | NA [2] | ||
Y. pseudotuberculosis | O:1b [2] and O:3 [2] | ||
Y. rohdei | NK [1] | ||
Y. ruckeri | NK [1] and UT [2] |
Strain | LPS Composition * | EOP with ϕR2-01 |
---|---|---|
8081-c | LA-IC-O-ag (smooth) | 1 × 10−6 |
8081-c-R2 | LA-IC (rough) | 1 |
6471/76-c (YeO3-c) | LA-IC-OC-O-ag (smooth) | 0.1 |
YeO3-R1 (=YeO3-c-R1) | LA-IC-OC (rough) | 1 |
YeO3-c-OC | LA-IC-O-ag (smooth) | 0.02 |
YeO3-c-OCR | LA-IC (rough) | 1 |
YeO3-c-R1-M196 | LA-Rd1 (deep rough) | 1 |
YeO3-c-R1-M164 | LA-Rd2 (deeper rough) | 1 |
YeO3-c-R1-M205 | LA-Re (deepest rough) | 1 |
YeO3-R1-15R | LA-IC-OC (rough), btuB::CatMu mutant | 0 |
YeO3-R1-15R::pSW25T_BtuB | LA-IC-OC (rough), btuB-complemented | 1 |
YeO3-R1-15R/pTM100_BtuB | LA-IC-OC (rough), btuB-complemented | 1 |
ω7249 | E. coli K12 (rough) | 0 |
ω7249/pTM100_BtuB | E. coli K12 (rough), expresses Ye BtuB | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Happonen, L.J.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021, 13, 2171. https://doi.org/10.3390/v13112171
Happonen LJ, Pajunen MI, Jun JW, Skurnik M. BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses. 2021; 13(11):2171. https://doi.org/10.3390/v13112171
Chicago/Turabian StyleHapponen, Lotta J., Maria I. Pajunen, Jin Woo Jun, and Mikael Skurnik. 2021. "BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01" Viruses 13, no. 11: 2171. https://doi.org/10.3390/v13112171
APA StyleHapponen, L. J., Pajunen, M. I., Jun, J. W., & Skurnik, M. (2021). BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses, 13(11), 2171. https://doi.org/10.3390/v13112171