Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description and Ecology of Matlapitsi Cave
2.2. Collection of Bat Flies from Egyptian Rousette Bats
2.3. Infestation Rate of Egyptian Rousette Bats by Bat Flies
2.4. Marburg Virus Infection Rate in Bat Flies
2.5. Experimental Animals
2.6. Virus Stock
2.7. Experimental Infections
2.8. Serology
2.9. Real-Time Quantitative Reverse-Transcription Polymerase Chain Reaction and Virus Isolation
2.10. Statistical Analysis
3. Results
3.1. Estimation of Infestation Rate of Egyptian Rousette Bats by Bat Flies
3.2. Field Infection Rate with Marburg Virus in Nycteribiid Bat Flies
3.3. Survival and Biology of Bat Flies
3.4. Horizontal Transmission
3.4.1. Oral Susceptibility of Bat Flies to MARV following Feeding on Viremic Bats and Attempted Transmission of MARV by Bat Flies from Viremic Bats to in Contact Bats
3.4.2. Susceptibility of Bat Flies to MARV following IC Inoculation and Attempted Transmission of MARV from IC Inoculated Flies to Bats
3.5. Vertical Transmission
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amarasinghe, G.K.; Aréchiga Ceballos, N.G.; Banyard, A.C.; Basles, C.F.; Bavari, S.; Bennett, A.J.; Blasdell, K.R.; Brise, T.; Bukreyew, A.; Caì, Y.; et al. Taxonomy of the order Mononegavirales: Update 2018. Arch. Virol. 2018, 163, 2283–2294. [Google Scholar] [CrossRef] [Green Version]
- Amman, B.R.; Swanepoel, R.; Nichol, S.T.; Towner, J.S. Ecology of filoviruses. Curr. Top. Microbiol. Immunol. 2017, 411, 23–61. [Google Scholar]
- World Health Organization. Marburg Virus Disease—Uganda. 25 October 2017. Available online: http://www.who.int/csr/don/25-october-2017-marburg-uganda/en/ (accessed on 28 December 2017).
- World Health Organization. West African’s First-Ever Case of Marburg Virus Disease Confirmed in Guinea. Available online: http://www.afro.who.int (accessed on 9 August 2021).
- Towner, J.S.; Pourrut, X.; Albariño, C.G.; Nkoque, C.N.; Bird, B.H.; Grard, G.; Ksiazek, T.G.; Gonzalez, J.P.; Nichol, S.T.; Leroy, E.M. Marburg virus infection detected in a common African bat. PLoS ONE 2007, 2, e764. [Google Scholar] [CrossRef]
- Changula, K.; Kajihara, M.; Mori-Kajihara, A.; Eto, Y.; Miyamoto, H.; Yoshida, R.; Shigeno, A.; Hang’ombe, B.; Qiu, Y.; Mwizabi, D.; et al. Seroprevalence of filovirus infection of Rousettus aegyptiacus bats in Zambia. J. Infect. Dis. 2018, 218, S312–S317. [Google Scholar] [CrossRef]
- Amman, B.R.; Bird, B.H.; Bakar, I.A.; Bangura, J.; Schuh, A.J.; Johnny, J.; Sealy, T.K.; Conteh, I.; Koroma, A.H.; Foday, I.; et al. Isolation of Angola-like Marburg virus from Egyptian rousette bats from West Africa. Nat. Commun. 2017, 11, 510. [Google Scholar] [CrossRef]
- Gear, J.S.; Cassel, G.A.; Gear, A.J.; Trappler, B.; Clausen, L.; Meyers, A.M.; Kew, M.C.; Bothwell, T.H.; Sher, R.; Miller, G.G.; et al. Outbreak of Marburg virus disease in Johannesburg. Br. Med. J. 1975, 29, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towner, J.S.; Khristova, M.L.; Sealy, T.K.; Vincent, M.J.; Erickson, B.R.; Bawiec, D.A.; Hartman, A.L.; Comer, J.A.; Zali, A.R.; Ströher, U. Marburgvirus genomics and association with a large hemorrhagic fever outbreak in Angola. J. Virol. 2006, 80, 6497–6516. [Google Scholar] [CrossRef] [Green Version]
- Olival, K.J.; Hosseini, P.R.; Zambrana-Torrelio, C.; Ross, N.; Bogich, T.L.; Daszak, P. Host and viral traits predict zoonotic spillover from mammals. Nature 2017, 546, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Mollentze, N.; Streicker, D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA 2020, 117, 9423–9430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Délicat, A.; Paweska, J.T.; Gonzalez, J.P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef]
- Swanepoel, R.; Smit, S.B.; Rollin, P.E.; Formenty, P.; Leman, P.A.; Kemp, A.; Burt, F.J.; Grobbelaar, A.A.; Croft, J.; Bausch, D.G.; et al. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 2007, 13, 1847–1851. [Google Scholar] [CrossRef]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef]
- Poon, L.L.M.; Chu, D.K.W.; Chan, K.H.; Wong, O.K.; Ellis, T.M.; Leung, Y.H.C.; Lau, S.K.P.; Woo, P.C.Y.; Suen, K.Y.; Yuen, K.Y.; et al. Identification of a novel coronavirus in bats. J. Virol. 2005, 79, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Shi, Z.; Yu, M.; Ren, W.; Smith, C.; Epstein, J.H.; Wang, H.; Crameri, G.; Hu, Z.; Zhang, H.; et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005, 310, 676–679. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.K.P.; Woo, P.C.Y.; Li, K.S.M.; Huang, Y.; Tsoi, H.-W.; Wong, B.H.L.; Wong, S.S.Y.; Leung, S.-Y.; Chan, K.-H.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memish, Z.A.; Mishra, N.; Olival, K.J.; Fagbo, S.F.; Kapoor, V.; Epstein, J.H.; Alhakeem, R.; Durosinloun, A.; Al Asmari, M.; Islam, A.; et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg. Infct. Dis. 2013, 19, 1819–1823. [Google Scholar] [CrossRef] [Green Version]
- Markotter, W.; Geldenhuys, M.; Jansen van Vuren, P.; Kemp, A.; Mortlock, M.; Mudakikwa, A.; Nel, L.; Nziza, J.; Paweska, J.; Weyer, J. Paramyxo- and coronaviruses in Rwandan bats. Trop. Med. Infect. Dis. 2019, 4, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geldenhuys, M.; Mortlock, M.; Epstein, J.H.; Pawęska, J.T.; Weyer, J.; Markotter, W. Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses 2021, 13, 936. [Google Scholar] [CrossRef]
- Chua, K.B.; Bellini, W.J.; Rota, P.A.; Harcourt, B.H.; Tamin, A.; Lam, S.K.; Ksiazek, T.G.; Rollin, P.E.; Zaki, S.R.; Shieh, W.; et al. Nipah virus: A recently emergent deadly paramyxovirus. Science 2000, 288, 1432–1435. [Google Scholar] [CrossRef]
- Halpin, K.; Young, P.L.; Field, H.E.; Mackenzie, J.S. Isolation of Hendra virus from pteropid bats: A natural reservoir of Hendra virus. J. Gen. Virol. 2000, 81, 1927–1932. [Google Scholar] [CrossRef]
- Drexler, J.F.; Max Corman, V.; Müller, M.A.; Maganga, G.D.; Vallo, P.; Binger, T.; Gloza-Rausch, F.; Cottontail, V.M.; Rasche, A.; Yordanov, A.; et al. Bats host major mammalian paramyxoviruses. Nat. Commun. 2012, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mortlock, M.; Kuzmin, I.V.; Weyer, J.; Gilbert, A.T.; Agwanda, B.; Rupprecht, C.E.; Nel, L.H.; Kearney, T.; Malekani, J.M.; Markotter, W. Novel paramyxoviruses in bats from Sub-Saharan Africa, 2007–2012. Emerg. Infect. Dis. 2015, 21, 1840–1843. [Google Scholar] [CrossRef]
- Van Thiel, P.P.; van den Hoek, J.A.; Eftimov, F.; Tepaske, R.; Zaaijer, H.J.; Spanjaard, L.; de Boer, H.E.; van Doornum, G.J.; Schutten, M.; Osterhaus, A.; et al. Fatal case of human rabies (Duvenhage virus) from a bat in Kenya: The Netherlands, December 2007. Eurosurveillance 2008, 13, 8007. [Google Scholar] [CrossRef]
- Coertse, J.; Grobler, C.S.; Sabeta, C.T.; Seamark, R.C.J.; Kearney, T.; Paweska, J.T.; Markotter, W. Lyssaviruses in insectivorous bats, South Africa, 2003–2018. Emerg. Infect. Dis. 2020, 26, 3056–3060. [Google Scholar] [CrossRef]
- Bausch, D.G.; Nichol, S.T.; Muyembe-Tamfum, J.J.; Borchert, M.; Rollin, P.E.; Sleurs, H.; Campbell, P.; Tshioko, F.K.; Roth, C.; Colebunders, R.; et al. Marburg hemorrhagic fever associated with multiple genetic lineages of virus. N. Engl. J. Med. 2006, 355, 909–919. [Google Scholar] [CrossRef]
- Paweska, J.T.; Jansen van Vuren, P.; Masumu, J.; Leman, P.A.; Grobbelaar, A.A.; Birkhead, M.; Clift, S.; Swanepoel, R.; Kemp, A. Virological and serological findings in Rousettus aegyptiacus experimentally inoculated with Vero cells-adapted Hogan strain of Marburg virus. PLoS ONE 2012, 7, e45479. [Google Scholar] [CrossRef] [PubMed]
- Paweska, J.T.; Jansen van Vuren, P.; Fenton, K.A.; Graves, K.; Grobbelaar, A.A.; Moolla, N.; Leman, P.; Weyer, J.; Storm, N.; McCulloch, S.D.; et al. Lack of Marburg virus transmission from experimentally infected to susceptible in-contact Egyptian fruit bats. J. Infect. Dis. 2015, 212, S109–S118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Schuh, A.J.; Bird, B.H.; Clema-McCry, J.A.D.; Martin, B.E.; Nichol, S.T.; Towner, J.T. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J. Wildl. Dis. 2015, 51, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.E.; Schuh, A.J.; Amman, B.R.; Sealy, T.K.; Zaki, S.R.; Nichol, S.T.; Towner, J.S. Experimental inoculation of Egyptian Rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus Genera. Viruses 2015, 7, 3420–3442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, A.J.; Amman, B.R.; Jones, M.E.B.; Sealy, T.K.; Uebelhoer, L.S.; Spengler, J.R.; Martin, B.E.; Coleman-McCray, J.A.D.; Nichol, S.T.; Towner, J.S. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017, 8, 14446. [Google Scholar] [CrossRef]
- Storm, N.; Jansen van Vuren, P.; Markotter, W.; Paweska, J.T. Virological and serological responses to experimental infection with Marburg virus in Egyptian rousette bats with pre-existing natural humoral immunity. Viruses 2018, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.D.; Johnson, B.K.; Silverstein, D.; Tukei, P.; Geisbert, T.W.; Sanchez, A.N.; Jahrling, P.B. Characterization of a new Marburg virus isolated from a 1987 fatal case in Kenya. Arch. Virol. 1996, 11, S101–S114. [Google Scholar]
- Centers for Disease Control and Prevention. Imported case of Marburg hemorrhagic fever—Colorado, 2008. Morb. Mortal. Wkly. Rep. 2009, 58, 1377–1381. [Google Scholar]
- Adjemian, J.; Farnon, E.C.; Tschioko, F.; Wamala, J.F.; Byaruhanga, E.; Bwire, G.S.; Kansiimey, E.; Kagirita, A.; Ahimbisibwe, S.; Katunguka, F.; et al. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J. Infect. Dis. 2011, 204, S796–S799. [Google Scholar] [CrossRef]
- Timen, A.; Koopmans, M.P.G.; Vossen, A.C.T.M.; van Doornum, G.J.J.; Günther, S.; van den Berkmortel, F.; Verduin, K.M.; Dittrich, S.; Emmerich, P.; Albert, D.M.E.; et al. Response to imported case of Marburg hemorrhagic fever, The Netherlands. Emerg. Infect. Dis. 2009, 15, 1171–1175. [Google Scholar] [CrossRef]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef]
- Pawęska, J.T.; Storm, N.; Markotter, W.; Di Paola, N.; Wiley, M.R.; Palacios, G.; Jansen van Vuren, P. Shedding of marburgvirus in naturally infected Egyptian rousette bats, South Africa, 2017. Emerg. Infect. Dis. 2020, 26, 3051–3055. [Google Scholar] [CrossRef]
- Martini, G. Marburg virus disease. Clinical syndrome. In Marburg Virus Disease; Martini, G., Siegert, R., Eds.; Springer: New York, NY, USA, 1971; pp. 1–9. [Google Scholar]
- Edmond, R.T.D.; Evans, B.; Bowen, E.T.W.; Lloyd, G. A case of Ebola virus infection. Br. Med. J. 1977, 2, 541–544. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.H.; Johnson, B.K.; Isaacson, M.; Swanepoel, R.; Johnson, K.M.; Killy, M.; Bagshawe, A.; Siongok, T.; Keruga, W.K. Marburg-virus disease in Kenya. Lancet 1982, 1, 816–820. [Google Scholar] [CrossRef]
- Rodriguez, L.L.; Roo, A.D.; Guimard, Y.; Trappier, S.G.; Sanchez, A.; Bressler, D.; Williams, A.J.; Rowe, A.K.; Bertolli, J.; Khan, A.S.; et al. Persistence and genetic stability of Ebola virus during the outbreak in Kikwit, Democratic Republic of the Congo, 1995. J. Infect. Dis. 1999, 179, S170–S176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christie, A.; Davies-Wayne, G.J.; Cordier-Lasalle, T.; Blackley, D.J.; Laney, A.S.; Williams, D.E.; Shinde, S.A.; Badio, M.; Lo, T.; Mate, S.E.; et al. Possible sexual transmission of Ebola virus—Liberia, 2015. MMWR 2015, 64, 479–481. [Google Scholar] [PubMed]
- Soka, M.J.; Choi, M.J.; Baller, A.; White, S.; Rogers, E.; Purpura, L.J.; Mahmoud, N.; Wasunna, C.; Massaquoi, M.; Abad, N.; et al. Prevention of sexual transmission of Ebola in Liberia through a national semen testing and counselling programme for survivors: An analysis of Ebola virus RNA results and behavioural data. Lancet Glob. Health 2016, 4, e736–e743. [Google Scholar] [CrossRef] [Green Version]
- Uyeki, T.M.; Erickson, B.R.; Brown, S.; McElroy, A.K.; Cannon, D.; Gibbons, A.; Sealy, T.; Kainulainen, M.H.; Schuh, A.J.; Kraft, C.S.; et al. Ebola Virus Persistence in Semen of Male Survivors. Clin. Infect Dis. 2016, 62, 1552–1555. [Google Scholar] [CrossRef] [Green Version]
- Subtil, F.; Delaunay, C.; Keita, A.K.; Sow, M.S.; Toure, A.; Leroy, S.; Msellati, P.; Magassouba, N.; Baize, S.; Raoul, H.; et al. Dynamics of Ebola RNA persistence in semen: A report from the postebogui Cohort in Guinea. Clin. Infect Dis. 2017, 64, 1788–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sissoko, D.; Duraffour, S.; Kerber, R.; Kolie, J.S.; Beavogui, A.H.; Camara, A.-M.; Colin, G.; Rieger, T.; Oestereich, L.; Pályi, B.; et al. Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: A longitudinal analysis and modelling study. Lancet Glob. Health 2017, 5, e80–e88. [Google Scholar] [CrossRef] [Green Version]
- Diallo, B.; Sissoko, D.; Loman, N.J.; Bah, H.A.; Bah, H.; Worrell, M.C.; Conde, I.S.; Sacko, R.; Mesfin, S.; Loua, A.; et al. Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin. Infect. Dis. 2016, 63, 1353–1366. [Google Scholar] [CrossRef]
- Larsen, T.; Stevens, E.L.; Davis, K.J.; Geisbert, J.B.; Daddario-DiCaprio, K.M.; Jahrling, P.B.; Hensley, L.E.; Geisbert, T.W. Pathologic findings associated with delayed death in nonhuman primates experimentally infected with Zaire Ebola virus. J. Infect. Dis. 2007, 196, S323–S328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howletty, P.; Brown, C.; Helderman, T.; Brooks, T.; LIsk, D.; Deem, G.; Solbrig, M.; Lada, M. Ebola virus disease complicated by late-onset encephalitis and polyarthritis, Sierra Leone. Emerg. Infect. Dis. 2016, 22, 150–152. [Google Scholar] [CrossRef] [Green Version]
- Mattia, J.G.; Vandy, M.J.; Chang, J.C.; Platt, D.E.; Dierberg, K.; Bausch, D.G.; Brooks, T.; Conteh, S.; Crozier, I.; Fowler, R.A.; et al. Early clinical sequelae of Ebola virus disease in Sierra Leone: A cross-sectional study. Lancet Infect. Dis. 2016, 16, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Sissoko, D.; Laouenan, C.; Folkesson, E.; Lebing, A.B.; Beavogui, A.H.; Baize, S.; Camara, S.M.; Maes, P.; Shepherd, S.; Danel, C.; et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Trial): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016, 13, e1001967. [Google Scholar] [CrossRef] [Green Version]
- Schindell, B.G.; Webb, A.L.; Kindrachuk, J. Persistence and sexual transmission of filoviruses. Viruses 2018, 10, 683. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P. Ecology of Marburg and Ebola: Speculation and directions for future research. J. Infect. Dis. 1999, 179, S127–S138. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Chang, G.J.J. Biological transmission of arboviruses; re-examination of and new insights into components, mechanism and unique traits as well as their evolutionary trends. Clin. Microbiol. Rev. 2005, 18, 608–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leitner, W.W.; Wali, T.; Kincaid, R.; Costero-Saint Denis, A. Arthropod Vectors and Disease Transmission: Translational Aspects. PLoS Negl. Trop. Dis. 2015, 9, e0004107. [Google Scholar] [CrossRef] [Green Version]
- Martina, B.E.; Barzon, L.; Pijlman, G.P.; Joséde la Fuente, I.; Rizzoli, A.; Wammes, L.J.; Takken, W.; van Rij, R.P.; Papa, A. Human to human transmission of arthropod-borne pathogens. Curr. Opin. Virolol. 2017, 22, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Tortosa, P.; Dsouli, N.; Gomard, Y.; Ramasindrazana, B.; Dick, C.W.; Goodman, S.M. Evolutionary history of Indian Ocean Nycteribiid bat flies mirroring the ecology of their hosts. PLoS ONE 2013, 8, e75215. [Google Scholar] [CrossRef]
- Bertola, P.B.; Aires, C.C.; Favorito, S.E.; Graciolli, G.; Amaku, M.; Pinto-da-Rocha, R. Bat flies (Diptera:Streblidae, Nycteribiidae) parasitic on bats (Mammalia: Chiroptera) at Parque da Cantareira, Sao Paulo, Brazil: Parasitism rates and host-parasite associations. Mem. Inst. Oswaldo Cruz. 2005, 100, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Dick, C.W.; Patterson, B.D. Bat flies: Obligate ectoparasites of bats. In Micromammals and Macroparasites; Morand, S., Krasnov, B.R., Poulin, R., Eds.; Springer: Tokyo, Japan, 2006; pp. 179–194. [Google Scholar]
- Ramasindrazana, B.; Goodman, S.M.; Gomard, Y.; Dick, C.W.; Tortosa, P. Hidden diversity of Nycteribiidae (Diptera) bat flies from the Malagasy region and insights on host-parasite interactions. Parasit. Vectors 2017, 10, 630. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Duron, O.; Cordonin, C.; Gomard, Y.; Ramasindrazana, B.; Mavingui, P.; Goodman, S.M.; Tortosa, P. The bacteriome of bat flies (Nycteribiidae) from the Malagasy region: A community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl. Environ. Microbiol. 2016, 82, 1778–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, C.E.; Bai, Y.; Dobson, A.P.; Osikowicz, L.M.; Ranaivoson, H.C.; Zhu, Q.; Kosoy, M.Y.; Dittmar, K. Bartonella spp. in fruit bats and blood-feeding ectoparasites in Madagascar. PLoS Negl. Trop. Dis. 2015, 10, e0003532. [Google Scholar] [CrossRef]
- Morse, S.F.; Olival, K.J.; Kosoy, M.; Billeter, S.A.; Patterson, B.D.; Dick, C.W.; Dittmar, K. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect. Genet. Evol. 2012, 12, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Lopez, C.; Vasquez-Moron, S.; Marston, D.A.; Juste, J.; Ibáñez, C.; Miguel Berciano, J.; Salsamendi, E.; Aihartza, J.; Banyard, A.; McElhinney, L.; et al. Detection of rhabdovirus viral RNA in oropharyngeal swabs and ectoparasites of Spanish bats. J. Gen. Virol. 2013, 94, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, T.L.; Bennett, A.J.; Kityo, R.; Kuhn, J.H.; Chapman, C.A. Kanyawara virus: A novel rhabdovirus infecting newly discovered nycteribiid bat flies infesting previously unknown pteropodid bats in Uganda. Sci. Rep. 2017, 7, 5287. [Google Scholar] [CrossRef] [Green Version]
- Obame-Nkoghe, J.; Rahola, N.; Bourgarel, M.; Yangari, P.; Prugnolle, F.; Maganga, G.D.; Leroy, E.M.; Fontenille, D.; Ayala, D.; Paupy, C. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cavedwelling bats in Gabon: Diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasit. Vectors 2016, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Kunz, C.; Hofmann, H. Some characteristics of the Marburg virus. In Marburg Virus Disease; Martini, G.A., Siegert, R., Eds.; Springer: Berlin, Germany, 1971; pp. 109–111. [Google Scholar]
- Conrad, J.L.; Isaacsony, M.; Smith, E.B.; Wulff, H.; Crees, M.; Geldenhuys, P.; Johnston, J. Epidemiologic investigation of Marburg virus disease, Southern Africa, 1975. Am. J. Trop. Med. Hyg. 1978, 27, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Reiter, P.; Turell, M.; Coleman, R.; Miller, B.; Maupin, G.; Liz, J.; Kuehne, A.; Barth, J.; Geisbert, J.; Dohm, D.; et al. Field investigations of an outbreak of Ebola hemorrhagic fever, Kikwit, Democratic Republic of the Congo, 1995: Arthropod studies. J. Infect. Dis. 1999, 179 (Suppl. 1), S148–S154. [Google Scholar] [CrossRef]
- Leirs, H.; Mills, J.N.; Krebs, J.W.; Childs, J.E.; Akaibe, D.; Woollen, N.; Ludwigg, G.; Peters, C.J.; Ksiazek, T.G. Search for the Ebola virus reservoir in the Democratic Republic of the Congo; refelections on vertebrate collection. J. Infect. Dis. 1999, 179 (Suppl. 1), S155–S163. [Google Scholar] [CrossRef] [Green Version]
- Schuh, A.J.; Amman, B.R.; Apanaskevich, D.A.; Sealy, T.K.; Nichol, S.T.; Towner, J.S. No evidence for the involvement of the argasid tick Ornithodoros faini in the enzootic maintenance of marburgvirus within Egyptian rousette bats Rousettus aegyptiacus. Parasit. Vectors 2016, 9, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paweska, J.T.; Jansen van Vuren, P.; Kamp, A.; Storm, N.; Grobbelaar, A.A.; Wiley, M.R.; Palacios, G.; Markotter, W. Marburg virus infection in Egyptian rousette bats, South Africa, 2013–2014. Emerg. Infect. Dis. 2018, 24, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Jansen van Vuren, P.; Wiley, M.; Palacios, G.; Storm, N.; McCulloch, S.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a novel fusogenic orthoreovirus from Eucampsipoda africana bat flies in South Africa. Viruses 2016, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Jansen van Vuren, P.; Wiley, M.R.; Palacios, G.; Storm, N.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a novel orthobunyavirus from bat flies (Eucampsipoda africana). J. Gen. Virol. 2017, 98, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, N.H.G.; Du Plessis, E. Observations on the ecology and biology of the Cape fruit bat Rousettus aegyptiacus leachi in the Eastern Transvaal. S. Afr. J. Sci. 1976, 72, 270–273. [Google Scholar]
- Theodor, O. The Nycteribiidae of the Ethiopian region and Madagascar. Parasitology 1957, 47, 457–543. [Google Scholar] [CrossRef]
- Morrison, K. BaTML Factsheet: Harp Trapping; Guidance Notes for Bat Workers. BaTML Publications. 2005. Available online: www.batml.org.uk (accessed on 7 August 2021).
- Theodor, O. On the genus Eucampsipoda Kol. and Dipseliopoda n.g. (Nycteribiidae, Diptera). Parasitology 1955, 45, 195–229. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, A.Y.; Teel, P.D.; Pérez de León, A.A.; Seshu, J.; Liu, J. Biological and physiological characterization of in vitro blood feeding in nymph and adult stages of Ornithodoros turicata (Acari: Argasidae). J. Insect Physiol. 2015, 75, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Chigusa, Y.; Ohshita, M.; Taya, J.; Kirinoki, M.; Yokoi, H.; Kawai, S.; Matsuda, H. Relationship between longevity and body weight in Glossina morsitans morsitans. Med. Entomol. Zool. 1997, 48, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Loder, P.M.J. Size of blood meals taken by tsetse flies (Glossina spp.) (Diptera: Glossinidae) correlates with fat reserves. Bul. Entomol. Res. 1997, 87, 547–549. [Google Scholar] [CrossRef] [Green Version]
- Waite, J.L.; Henrt, A.R.; Adler, F.R.; Clayton, D.H. Sex-specific effects of an avian malaria parasite on an insect vector: Support for the resource limitation hypothesis. Ecology 2012, 93, 2448–2455. [Google Scholar] [CrossRef] [Green Version]
- Theodor, O. A revision of the Streblidae (Diptera) of the Ethiopian Region. Trans. R. Entomol. Soc. Lond. 1968, 120, 313–373. [Google Scholar] [CrossRef]
- Patterson, B.D.; Dick, C.W.; Dittmar, K. Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J. Trop. Ecol. 2007, 23, 177–189. [Google Scholar] [CrossRef]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front. Microbiol. 2019, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Mullens, B.A.; Gerry, A.C.; Lysyk, T.J.; Schmidtmann, E.T. Environmental effects on vector competence and virogenesis of bluetongue virus in Culicoides: Interpreting laboratory data in a field context. Vet. Ital. 2004, 40, 160–166. [Google Scholar]
- Paweska, J.T.; Venter, G.J.; Mellor, P. Vector competence of South African Culicoides species for bluetongue virus serotype 1(BTV-1) with special reference to the effect of temperature on the rate of virus replication in C. imicola and C. bolitinos. Med. Vet. Entomol. 2002, 16, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Winokur, O.C.; Main, B.J.; Nicholson, J.; Barker, C.M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0008047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merwaiss, F.; Filomatori, C.V.; Susuki, Y.; Bardossy, E.S.; Alvarez, D.E.; Saleh, M.-C. Chikungunya virus replication rate determines the capacity of crossing tissue barriers in mosquitoes. J. Virol. 2019, 5, e01956-20. [Google Scholar]
- Franz, A.W.E.; Kantor, K.; Passarelli, A.L.; Clem, R.J. Tissue barriers to arbovirus infection in mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983, 28, 229–262. [Google Scholar] [CrossRef]
- Dick, C.W.; Dittmar, K. Parasitic Bat Flies (Diptera: Streblidae and Nycteribiidae): Host Specificity and Potential as Vectors. In Bats (Chiroptera) as Vectors of Diseases and Parasites, Parasitology Research Monographs 5; Klimpel, S., Mehlhorn, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 131–155. [Google Scholar]
- Ching, L.M.; Marshall, A.G. The breeding biology of the bat-fly Eucampsipoda sundaicum Theodor, 1955 (Diptera: Nycteribiidae). Malayan Nat. J. 1968, 21, 171–180. [Google Scholar]
- Dittmar, K.; Porter, M.L.; Murray, S.; Whiting, M.F. Molecular phylogenetic analysis of nycteribiid and streblid bat flies (Diptera: Brachycera, Calyptratae): Implications for host associations and phylogeographic origins. Mol. Phylogenet. Evol. 2006, 38, 155–170. [Google Scholar] [CrossRef]
- Marshall, A.G. The life cycle of Basilia hispida Theodor 1957 (Diptera: Nycteribiidae) in Malaysia. Parasitology 1970, 61, 1–18. [Google Scholar] [CrossRef]
- Pilosof, S.; Dick, C.W.; Korine, C.; Patterson, B.D.; Krasnov, B. Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism on bats. PLoS ONE 2012, 7, e41487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, S.E. Roost fidelity of bats: A review. J. Mammal. 1995, 76, 481–496. [Google Scholar] [CrossRef]
- Reckardt, K.; Kerth, G. The reproductive success of the parasitic bat fly Basilia nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the Bechstein’s bat (Myotis bechsteinii). Parasitol. Res. 2006, 98, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, K.; Dick, C.W.; Patterson, B.D.; Whiting, M.F.; Gruwell, M.E. Pupal deposition and ecology of bat flies (Diptera: Streblidae): Trichobius sp. (caecus group) in a Mexican cave habitat. J. Parasitol. 2009, 95, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Ramanantsalama, R.V.; Andrianarimisa, A.; Raselimanana, A.P.; Goodman, S.M. Rates of hematophagous ectoparasites consumption during grooming by an endemic Madagascar fruit bat. Parasit. Vectors 2018, 11, 330. [Google Scholar] [CrossRef] [PubMed]
Date of Capture and Flies Count | No. Bats Captured | No. ERB Females | No. ERB Males | No. Non-Pregnant Females without Pups | No. Pregnant Females | No. Females with Pups |
---|---|---|---|---|---|---|
2–3 November 2016 | ||||||
Total no. bats captured | 56 | 51 | 5 | - a | - | - |
Total no. flies | 551 | 461 | 90 | - | - | - |
Infestation rate (%) | 98.3 | 98.0 | 100 | - | - | - |
Mean ± SD b no. flies/bat | 9.8 ± 8.3 | 9.0 ± 6.8 | 18.0 ± 16.6 | - | - | - |
Range in no. flies/bat | 0–46 | 0–28 | 5–46 | - | - | - |
14–15 November 2016 | ||||||
Total no. bats captured | 62 | 55 | 7 | 19 | 14 | 22 |
Total no. flies | 556 | 365 | 191 | 158 | 73 | 134 |
Infestation rate (%) | 95.2 | 96.4 | 100 | 89.5 | 100 | 95.5 |
Mean ± SD no. flies/bat | 9.0 ± 12.0 | 7.0 ± 6.9 | 27.3 ± 24.1 | 8.3 ± 10.4 | 5.2 ± 3.6 | 6.1 ± 4.0 |
Range in no. flies/bat | 0–67 | 0–36 | 1–67 | 1–36 | 1–14 | 1–12 |
Flies Fed on Infected Bats | Cage No. | Count/No. Collected Survival (%) | ||||||
1 | 2 | 3 | 4 | 5 | ||||
(A) | ||||||||
Day a 0 | 60 b | 60 | 60 | 120 | 100 | 400/0 | ||
Day 3 | 48/1 c | 42/2 | 44/2 | nc d/15 | nc/13 | 134/33 134/180 e (74.4) | ||
Day 5 | 28/0 | 29/0 | 31/0 | nc e /25 | nc/20 | 86/45 93/180 (51.7) | ||
Day 7 | nc/0 | nc/7 | nc/0 | nc/15 | nc/12 | nc/34 | ||
Day 9 | nc/0 | nc/0 | nc/0 | 33/0 | 27/0 | 60/0 87/220 (39.5) | ||
Day 12 | 9/0 | 12/2 | 26/4 | nc/0 | nc/0 | 47/6 (26.1) 47/180 | ||
Day 15 | 8/3 | 7/3 | 10/3 | nc/8 | nc/4 | 25/21 31/180 (17.2) | ||
Day 22 | 2/2 | 4/0 | 8/0 | 12/6 | 9/4 | 35/12 56/400 (14.0) | ||
Day 29 | 0 | 2/2 | 5/5 | 8/8 | 2/2 | 17/17 29/400 (7.3) | ||
Inoculated Flies Fed on Bats | Cage No. | Count/No. Collected Survival (%) | ||||||
7 | 8 | 9 | ||||||
(B) | ||||||||
Day f 0 | 24 b | 30 | 83 | 137 | ||||
Day 3 | nc/0 | nc/0 | 63/0 | 63/0 63/83 (75.9) | ||||
Day 7 | 10/1 | 14/1 | 43/5 | 67/7 67/137 (48.9) | ||||
Day 12 | 5/0 | 8/0 | 24/0 | 37/0 37/137 (27.0) | ||||
Day 15 | nc | nc | 16/16 | 16/16 16/83 (19.3) | ||||
Day 22 | 2/0 | 3/0 | 0/0 | 21/0 21/137 (15.3) |
F1 Pupal and Adult Flies | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Day after SC Inoculation Cages 1–5 | ||||||||||
3 | 5 | 7 | 9 | 12 | 15 | 22 | 29 | 36–43 | Total | |
No. pupae | 13 | 28 | 38 | 37 | 31 | 58 | 34 | 37 | 20 | 216 |
New | 13 | 15 | 21 | 12 | 6 | 33 | 10 | 3 | 7 | 120 |
Collected | 0 | 11 | 13 | 12 | 6 | 34 | 0 | 0 | 20 | 96 |
No. flies Collected | 0 | 0 | 0 | 0 | 0 | 0 | 5 3 | 16 14 | 25 22 | 46 39 |
Day after Post IC Inoculation Cages 7–9 | ||||||||||
3 | 5 | 7 | 9 | 12 | 15 | 22 | 29 | 33–38 | ||
No. pupae | 30 | 55 | 68 | 72 | 64 | 65 | nc a | 51 | 25 | 179 |
New | 30 | 25 | 13 | 4 | 5 | 11 | nc | 4 | 2 | 94 |
Collected | 0 | 0 | 0 | 13 | 10 | 9 | 0 | 28 | 25 | 85 |
No. flies Collected | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 48 37 | 17 15 | 74 61 |
Days Post Inoculation a | Number of Bats Tested/Positive (% Viremic Bats) | Mean log10TCID50 b ± SD c /mL Blood |
(A) | ||
3 | 11/13 (84.6) | 3.25 ± 0.63 |
5 | 11/11 (100) | 4.06 ± 0.61 |
7 | 4/9 (44.4) | 2.05 ± 0.57 |
9 | 2/11 (27.3) | 1.86 ± 0.03 |
12 | 0/12 | 0 |
15–22 | 0/23 | 0 |
Days Post Inoculation d | Number Bat Flies Tested/Positive (% Flies Positive) | Mean log10TCID50 ± SD/Fly |
(B) | ||
3 | 31/0 (0) | |
5 | 25/3 (12.0) | 0.25 ± 0.08 |
7 | 39/12 (30.8) | 2.01 ± 1.24 |
9 | 29/0 | |
12–15 | 47/0 (0) | |
21–29 | 25/0 (0) | |
36–43 e | 20/0 (0) |
Days Post Inoculation a | Number Bat Flies Tested/Positive (% Positive) | Mean log10TCID50 b ± SD c/Fly |
---|---|---|
0 | 6/6 (100) | 1.7 ± 0.54 |
7 | 10/10 (100) | 1.35 ± 1.06 |
12 | 16 d/0 (0) | |
21 | 10/0 (0) | |
31–38 e | 100/0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawęska, J.T.; Jansen van Vuren, P.; Storm, N.; Markotter, W.; Kemp, A. Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae). Viruses 2021, 13, 2226. https://doi.org/10.3390/v13112226
Pawęska JT, Jansen van Vuren P, Storm N, Markotter W, Kemp A. Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae). Viruses. 2021; 13(11):2226. https://doi.org/10.3390/v13112226
Chicago/Turabian StylePawęska, Janusz T., Petrus Jansen van Vuren, Nadia Storm, Wanda Markotter, and Alan Kemp. 2021. "Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae)" Viruses 13, no. 11: 2226. https://doi.org/10.3390/v13112226
APA StylePawęska, J. T., Jansen van Vuren, P., Storm, N., Markotter, W., & Kemp, A. (2021). Vector Competence of Eucampsipoda africana (Diptera: Nycteribiidae) for Marburg Virus Transmission in Rousettus aegyptiacus (Chiroptera: Pteropodidae). Viruses, 13(11), 2226. https://doi.org/10.3390/v13112226