Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Plasmids
- (1)
- pMRV2;
- (2)
- pMRV3—possessed the enhanced green fluorescent protein (EGFP) gene inserted into insertion site 1;
- (3)
- pF–RSV-MRV2—contained the ATU consisting of sequence coding for Human orthopneumovirus (RSV, from previous name human respiratory syncytial virus) fusion protein ectodomain fused to transmembrane and cytoplasmic domains of MuV F protein (F–RSV); this ATU is added using insertion site 1;
- (4)
- pE1E2TMD–HCV–MRV2 contains two ATUs, consisting of sequences coding for Hepacivirus C (HCV, from previous name Hepatitis C virus) E1 or E2 ectodomain, each fused to transmembrane and cytoplasmic domains of MuV F protein; these ATUs are added using insertion site 1;
- (5)
- pmiscr-MRV3 was derived from pMRV3, by insertion of an 84-nucleotides long random, noncoding sequence at insertion site 2; this created the longest noncoding region in the MuV genome;
- (6)
- pVdeopti-MRV2 possesses an alternative synonymous sequence of MuV genomic region 2001–2416, that codes for the protein segment common to P, V and I proteins;
- (7)
- pSHdeopti-MRV2 possesses alternative synonymous sequence of the SH gene coding region.
2.3. Generation of Recombinant Viruses
2.4. Virus Passaging
2.5. Viral RNA Isolation, Reverse Transcription and PCR Amplification
2.6. Next Generation Sequencing (NGS)
2.7. Compilation of Genomic Sequences of Viruses Belonging to Genus Orthorubulavirus
2.8. L Protein Structure Prediction
3. Results
3.1. Homogeneity of Input Plasmids
3.2. Threshold for Detection of Heterogeneous Genomic Positions in Viral Samples
3.3. The Variability of Viral Populations in Primary Rescue Stocks
3.4. Heterogeneous Genomic Positions Common to Different Recombinant MuVs
3.5. Population Variability Generated under Usual In Vitro Passaging Conditions
3.6. Substitution C9660T in the L Gene
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mühlebach, M.D. Measles virus in cancer therapy. Curr. Opin. Virol. 2020, 41, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Frantz, P.N.; Teeravechyan, S.; Tangy, F. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 2018, 20, 493–500. [Google Scholar] [CrossRef]
- Munis, A.M.; Bentley, E.M.; Takeuchi, Y. A tool with many applications: Vesicular stomatitis virus in research and medicine. Expert Opin. Biol. Ther. 2020, 20, 1187–1201. [Google Scholar] [CrossRef]
- Beaty, S.M.; Park, A.; Won, S.T.; Hong, P.; Lyons, M.; Vigant, F.; Freiberg, A.N.; tenOever, B.R.; Duprex, W.P.; Lee, B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. Am. Soc. Microbiol. 2017, 2, e00376-16. [Google Scholar] [CrossRef] [Green Version]
- Elango, N.; Varsanyi, T.M.; Kövamees, J.; Norrby, E. Molecular cloning and characterization of six genes, determination of gene order and intergenic sequences and leader sequence of mumps virus. J. Gen. Virol. 1988, 69, 2893–2900. [Google Scholar] [CrossRef]
- Elliott, G.D.; Afzal, M.A.; Martin, S.J.; Rima, B.K. Nucleotide sequence of the matrix, fusion and putative SH protein genes of mumps virus and their deduced amino acid sequences. Virus Res. 1989, 12, 61–75. [Google Scholar] [CrossRef]
- Paterson, R.G.; Lamb, R.A. RNA editing by G-nucleotide insertion in mumps virus P-gene mRNA transcripts. J. Virol. 1990, 64, 4137–4145. [Google Scholar] [CrossRef] [Green Version]
- Calain, P.; Roux, L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolakofsky, D.; Pelet, T.; Garcin, D.; Hausmann, S.; Curran, J.; Roux, L. Paramyxovirus RNA Synthesis and the Requirement for Hexamer Genome Length: The Rule of Six Revisited. J. Virol. 1998, 72, 891–899. [Google Scholar] [CrossRef] [Green Version]
- Rubin, S.; Eckhaus, M.; Rennick, L.J.; Bamford, C.G.G.; Duprex, W.P. Molecular biology, pathogenesis and pathology of mumps virus. J. Pathol. 2015, 235, 242–252. [Google Scholar] [CrossRef]
- Su, S.-B.; Chang, H.-L.; Chen, K.-T. Current status of mumps virus infection: Epidemiology, pathogenesis, and vaccine. Int. J. Environ. Res. Public Health 2020, 17, 1686. [Google Scholar] [CrossRef] [Green Version]
- Ivancic, J.; Gulija, T.K.; Forcic, D.; Baricevic, M.; Jug, R.; Mesko-Prejac, M.; Mazuran, R. Genetic characterization of L-Zagreb mumps vaccine strain. Virus Res. 2005, 109, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Connell, A.R.; Connell, J.; Leahy, T.R.; Hassan, J. Mumps Outbreaks in Vaccinated Populations—Is It Time to Re-assess the Clinical Efficacy of Vaccines? Front. Immunol. 2020, 11, 2089. [Google Scholar] [CrossRef]
- Malik, T.H.; Wolbert, C.; Nerret, L.; Sauder, C.; Rubin, S. Single amino acid changes in the mumps virus haemagglutinin-neuraminidase and polymerase proteins are associated with neuroattenuation. J. Gen. Virol. 2009, 90, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Malik, T.; Ngo, L.; Bosma, T.; Rubin, S. A single point mutation in the mumps v protein alters targeting of the cellular STAT pathways resulting in virus attenuation. Viruses 2019, 11, 1016. [Google Scholar] [CrossRef] [Green Version]
- Malik, T.; Sauder, C.; Wolbert, C.; Zhang, C.; Carbone, K.M.; Rubin, S. A single nucleotide change in the mumps virus F gene affects virus fusogenicity in vitro and virulence in vivo. J. Neurovirol. 2007, 13, 513–521. [Google Scholar] [CrossRef]
- Krüger, N.; Sauder, C.; Hoffmann, M.; Örvell, C.; Drexler, J.F.; Rubin, S.; Herrler, G. Recombinant mumps viruses expressing the batMuV fusion glycoprotein are highly fusion active and neurovirulent. J. Gen. Virol. 2016, 97, 2837–2848. [Google Scholar] [CrossRef]
- Ikegame, S.; Beaty, S.M.; Stevens, C.; Won, S.T.; Park, A.; Sachs, D.; Hong, P.; Lee, B.; Thibault, P.A. Genome-wide transposon mutagenesis of paramyxoviruses reveals constraints on genomic plasticity. PLoS Pathog. 2020, 16, 1008877. [Google Scholar] [CrossRef]
- Hao, X.; Wang, Y.; Zhu, M.; Zhou, D.; Liu, R.; Wang, B.; Huang, Y.W.; Zhao, Z. Development of Improved Mumps Vaccine Candidates by Mutating Viral mRNA Cap Methyltransferase Sites in the Large Polymerase Protein. Virol. Sin. 2020, 12250. [Google Scholar] [CrossRef]
- Xu, P.; Li, Z.; Sun, D.; Lin, Y.; Wu, J.; Rota, P.A.; He, B. Rescue of wild-type mumps virus from a strain associated with recent outbreaks helps to define the role of the SH ORF in the pathogenesis of mumps virus. Virology 2011, 417, 126–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauder, C.J.; Zhang, C.X.; Ngo, L.; Werner, K.; Lemon, K.; Duprex, W.P.; Malik, T.; Carbone, K.; Rubin, S.A. Gene-Specific Contributions to Mumps Virus Neurovirulence and Neuroattenuation. J. Virol. 2011, 85, 7059–7069. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhu, M.Y.; Wang, Y.L.; Hao, X.Q.; Zhou, D.M.; Liu, R.X.; Zhang, C.D.; Qu, C.F.; Zhao, Z.Y. Establishment of an efficient reverse genetic system of Mumps virus S79 from cloned DNA. World J. Pediatr. 2019, 15, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Nasar, F.; Megati, S.; Luckay, A.; Lee, M.; Udem, S.A.; Eldridge, J.H.; Egan, M.A.; Emini, E.; Clarke, D.K. Prime-Boost Vaccination with Recombinant Mumps Virus and Recombinant Vesicular Stomatitis Virus Vectors Elicits an Enhanced Human Immunodeficiency Virus Type 1 Gag-Specific Cellular Immune Response in Rhesus Macaques. J. Virol. 2009, 83, 9813–9823. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Zhu, M.Y.; Wang, Y.L.; Hao, X.Q.; Zhou, D.M.; Liu, R.X.; Zhang, C.D.; Qu, C.F.; Zhao, Z.Y. Attenuated MuV-S79 as vector stably expressing foreign gene. World J. Pediatr. 2019, 15, 511–515. [Google Scholar] [CrossRef]
- Bamford, C.; Wignall-Fleming, E.; Sreenu, V.B.; Randall, R.; Duprex, P.; Rima, B. Unusual, stable replicating viruses generated from mumps virus cDNA clones. PLoS ONE 2019, 14, e0219168. [Google Scholar] [CrossRef] [PubMed]
- Ammayappan, A.; Russell, S.J.; Federspiel, M.J. Recombinant mumps virus as a cancer therapeutic agent. Mol. Ther.-Oncolytics 2016, 3, 16019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combredet, C.; Labrousse, V.; Mollet, L.; Lorin, C.; Delebecque, F.; Hurtrel, B.; McClure, H.; Feinberg, M.B.; Brahic, M.; Tangy, F. A Molecularly Cloned Schwarz Strain of Measles Virus Vaccine Induces Strong Immune Responses in Macaques and Transgenic Mice. J. Virol. 2003, 77, 11546–11554. [Google Scholar] [CrossRef] [Green Version]
- Lauring, A.S.; Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010, 6, e1001005. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, U.J.; Finke, S.; Conzelmann, K.-K. Generation of Bovine Respiratory Syncytial Virus (BRSV) from cDNA: BRSV NS2 Is Not Essential for Virus Replication in Tissue Culture, and the Human RSV Leader Region Acts as a Functional BRSV Genome Promoter. J. Virol. 1999, 73, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takata, M.A.; Gonçalves-Carneiro, D.; Zang, T.M.; Soll, S.J.; York, A.; Blanco-Melo, D.; Bieniasz, P.D. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 2017, 550, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Kosutic-Gulija, T.; Forcic, D.; Šantak, M.; Ramljak, A.; Mateljak-Lukacevic, S.; Mazuran, R. Genetic heterogeneity of L-Zagreb mumps virus vaccine strain. Virol. J. 2008, 5, e96149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forcic, D.; Košutić-Gulija, T.; Šantak, M.; Jug, R.; Ivancic-Jelecki, J.; Markusic, M.; Mažuran, R. Comparisons of mumps virus potency estimates obtained by 50% cell culture infective dose assay and plaque assay. Vaccine 2010, 28, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Brandariz-Fontes, C.; Camacho-Sanchez, M.; Vilà, C.; Vega-Pla, J.L.; Rico, C.; Leonard, J.A. Effect of the enzyme and PCR conditions on the quality of high-throughput DNA sequencing results. Sci. Rep. 2015, 5, 8056. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Charlebois, P.; Macalalad, A.; Henn, M.R.; Zody, M.C. V-Phaser 2: Variant inference for viral populations. BMC Genom. 2013, 14, 674. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Afzal, M.A.; Dussupt, V.; Minor, P.D.; Pipkin, P.A.; Fleck, R.; Hockley, D.J.; Stacey, G.N. Assessment of mumps virus growth on various continuous cell lines by virological, immunological, molecular and morphological investigations. J. Virol. Methods 2005, 126, 149–156. [Google Scholar] [CrossRef]
- Abdella, R.; Aggarwal, M.; Okura, T.; Lamb, R.A.; He, Y. Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proc. Natl. Acad. Sci. USA 2020, 117, 4931–4941. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Collins, P.L. RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J. Virol. 1996, 70, 5075–5082. [Google Scholar] [CrossRef] [Green Version]
- Baricevic, M.; Forcic, D.; Santak, M.; Mazuran, R. A comparison of complete untranslated regions of measles virus genomes derived from wild-type viruses and SSPE brain tissues. Virus Genes 2007, 35, 17–27. [Google Scholar] [CrossRef]
- Skiadopoulos, M.H.; Vogel, L.; Riggs, J.M.; Surman, S.R.; Collins, P.L.; Murphy, B.R. The Genome Length of Human Parainfluenza Virus Type 2 Follows the Rule of Six, and Recombinant Viruses Recovered from Non-Polyhexameric-Length Antigenomic cDNAs Contain a Biased Distribution of Correcting Mutations. J. Virol. 2003, 77, 270–279. [Google Scholar] [CrossRef] [Green Version]
- Skiadopoulos, M.H.; Surman, S.R.; Riggs, J.M.; Örvell, C.; Collins, P.L.; Murphy, B.R. Evaluation of the replication and immunogenicity of recombinant human parainfluenza virus type 3 vectors expressing up to three foreign glycoproteins. Virology 2002, 297, 136–152. [Google Scholar] [CrossRef] [Green Version]
- Sauder, C.J.; Simonyan, V.; Ngo, L.; Karagiannis, K.; Cong, Y.; Zhang, C.; Wang, R.; Wu, W.W.; Malik, T.; Rubin, S.A. Evidence that a polyhexameric genome length is preferred, but not strictly required, for efficient mumps virus replication. Virology 2016, 493, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Bankamp, B.; Liu, C.; Rivailler, P.; Bera, J.; Shrivastava, S.; Kirkness, E.F.; Bellini, W.J.; Rota, P.A. Wild-type measles viruses with non-standard genome lengths. PLoS ONE 2014, 9, e95470. [Google Scholar] [CrossRef]
- Eshaghi, A.R.; Duvvuri, V.R.; Lai, R.; Nadarajah, J.T.; Li, A.; Patel, S.N.; Low, D.E.; Gubbay, J.B. Genetic variability of human respiratory syncytial virus a strains circulating in Ontario: A novel genotype with a 72 nucleotide G gene duplication. PLoS ONE 2012, 7, e32807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trento, A.; Galiano, M.; Videla, C.; Carballal, G.; García-Barreno, B.; Melero, J.A.; Palomo, C. Major changes in the G protein of human respiratory syncytial virus isolates introduced by a duplication of 60 nucleotides. J. Gen. Virol. 2003, 84, 3115–3120. [Google Scholar] [CrossRef]
- King, S.; Rajko-Nenow, P.; Ropiak, H.M.; Ribeca, P.; Batten, C.; Baron, M.D. Full genome sequencing of archived wild type and vaccine rinderpest virus isolates prior to their destruction. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.G.; Russ, C.; Costello, M.; Hollinger, A.; Lennon, N.J.; Hegarty, R.; Nusbaum, C.; Jaffe, D.B. Characterizing and measuring bias in sequence data. Genome Biol. 2013, 14, R51. [Google Scholar] [CrossRef] [Green Version]
- Jagušić, M. Targeted Attenuation of Mumps Virus by Viral Factors That Modulate the Innative Immune Response. Doctoral Thesis, University of Zagreb, Zagreb, Croatia, 17 November 2017. [Google Scholar]
- Bosma, T.J.; Karagiannis, K.; Santana-Quintero, L.; Ilyushina, N.; Zagorodnyaya, T.; Petrovskaya, S.; Laassri, M.; Donnelly, R.P.; Rubin, S.; Simonyan, V.; et al. Identification and quantification of defective virus genomes in high throughput sequencing data using DVG-profiler, a novel post-sequence alignment processing algorithm. PLoS ONE 2019, 14, e0216944. [Google Scholar] [CrossRef] [Green Version]
- Pomeroy, L.W.; Bjørnstad, O.N.; Holmes, E.C. The evolutionary and epidemiological dynamics of the paramyxoviridae. J. Mol. Evol. 2008, 66, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignuzzi, M.; Stone, J.K.; Arnold, J.J.; Cameron, C.E.; Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 2006, 439, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Aaskov, J.; Buzacott, K.; Thu, H.M.; Lowry, K.; Holmes, E.C. Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science (80-.) 2006, 311, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Beard, S.; Hunjan, R.; Brown, D.W.G.; Miller, E. Characterization of measles virus strains causing SSPE: A study of 11 cases. J. Neurovirol. 2002, 8, 335–344. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Mumps virus vaccines. Wkly. Epidemiol. Rec. Relev. Epidemiol. Hebd. World Health Organ. 2001, 76, 346–355. [Google Scholar]
- Yoshida, A.; Kawabata, R.; Honda, T.; Sakai, K.; Ami, Y.; Sakaguchi, T.; Takashi, I. A Single Amino Acid Substitution within the Paramyxovirus Sendai Virus Nucleoprotein Is a Critical Determinant for Production of Interferon-Beta-Inducing Copyback-Type Defective Interfering Genomes. J. Virol. 2018, 92, e02094-17. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.M.; Krumm, S.A.; Thakkar, V.D.; Sohn, M.; Plemper, R.K. The structurally disordered paramyxovirus nucleocapsid protein tail domain is a regulator of the mRNA transcription gradient. Sci. Adv. 2017, 3, e1602350. [Google Scholar] [CrossRef] [Green Version]
- Poch, O.; Blumberg, B.M.; Bougueleret, L.; Tordo, N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: Theoretical assignment of functional domains. J. Gen. Virol. 1990, 71, 1153–1162. [Google Scholar] [CrossRef]
- MacArthur, M.W.; Thornton, J.M. Influence of proline residues on protein conformation. J. Mol. Biol. 1991, 218, 397–412. [Google Scholar] [CrossRef]
- Emeny, J.M.; Morgan, M.J. Regulation of the interferon system: Evidence that vero cells have a genetic defect in interferon production. J. Gen. Virol. 1979, 43, 247–252. [Google Scholar] [CrossRef]
- Billeter, M.A.; Naim, H.Y.; Udem, S.A. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: Applications of recombinant measles viruses. Curr. Top. Microbiol. Immunol. 2009, 329, 129–162. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.F.; Wang, C.K.; Malkin, E.; Schickli, J.H.; Shambaugh, C.; Zuo, F.; Galinski, M.S.; Dubovsky, F.; Tang, R.S. Implication of respiratory syncytial virus (RSV) F transgene sequence heterogeneity observed in Phase 1 evaluation of MEDI-534, a live attenuated parainfluenza type 3 vectored RSV vaccine. Vaccine 2013, 31, 2822–2827. [Google Scholar] [CrossRef] [PubMed]
MRV2 | MRV3 | F–RSV-MRV2 | E1E2TMD-HCV-MRV2 | miscr MRV3 | Vdeopti-MRV2 | SHdeopti-MRV2 | |
---|---|---|---|---|---|---|---|
Genome Length | 15,384 | 16,296 | 17,328 | 17,562 | 16,380 | 15,384 | 15,384 |
Insert Length | n/a | 912 | 1944 | 2178 | 996 a | n/a | n/a |
Total Number of Heterogeneous Sites (%) | 4 (0.03) | 20 (0.12) | 21 (0.12) | 10 (0.06) | 6 (0.04) | 9 (0.06) | 13 (0.08) |
in Coding Regions | 4 | 17 | 17 | 8 | 4 | 8 | 12 |
Synonymous | 0 | 5 | 6 | 2 | 0 | 0 | 0 |
Nonsynonymous, Missense | 4 | 11 | 10 | 5 | 4 | 7 | 12 |
Nonsynonymous, Nonsense | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
in Noncoding Regions | 0 | 3 | 4 | 2 | 2 | 1 | 1 |
Number of Heterogeneous Sites in Insert(s) | n/a | 2 | 7 | 1 | 0 | n/a | n/a |
in Coding Regions | 1 | 6 | 0 | ||||
Synonymous | 0 | 0 | 0 | ||||
Nonsynonymous, Missense | 1 | 6 | 0 | ||||
Nonsynonymous, Nonsense | 0 | 0 | 0 | ||||
in Noncoding Regions | 1 | 1 | 1 | ||||
Number of Changes in Consensus Sequence b | 0 | 1 | 4 | 2 | 0 | 0 | 1 |
In Complete Genome | In ATU | |||||
---|---|---|---|---|---|---|
Virus Sample | Number of Heterogeneous Sites (%) | Number of New a Heterogeneous Sites | Number of Changes b in Consensus | Number of Heterogeneous Sites | Number of New a Heterogeneous Sites | Number of Changes b in Consensus |
MRV2 | 4 (0.03) | n/a | 0 | n/a | n/a | n/a |
MRV2-5p | 13 (0.08) | 11 | 1 | n/a | n/a | n/a |
MRV2-10p | 10 (0.07) | 4 | 3 | n/a | n/a | n/a |
MRV3 | 20 (0.12) | n/a | 1 | 2 | n/a | 0 |
MRV3-5p-A | 30 (0.18) | 27 | 7 | 0 | 0 | 0 |
MRV3-10p-A | 33 (0.20) | 28 | 1 | 1 | 1 | 0 |
MRV3-5p-B | 30 (0.18) | 24 | 3 | 2 | 1 | 0 |
MRV3-10p-B | 33 (0.20) | 28 | 6 | 0 | 0 | 0 |
F–RSV-MRV2 | 21 (0.12) | n/a | 4 | 7 | n/a | 1 |
F–RSV-MRV2-5p-A | 29 (0.17) | 17 | 4 | 2 | 1 | 1 |
F–RSV-MRV2-10p-A | 35 (0.20) | 20 | 7 | 5 | 3 | 2 |
F–RSV-MRV2-5p-B | 32 (0.18) | 24 | 6 | 1 | 0 | 1 |
F–RSV-MRV2-10p-B | 32 (0.18) | 10 | 7 | 4 | 1 | 1 |
Virus Sample | Gene | Nucleotide Substitution * | Viral Variant % | Amino Acid Change * |
---|---|---|---|---|
MRV2 ** | / | / | / | / |
MRV2-5p | L | C9660T 1 | 74.66 | Pro408Leu |
MRV2-10p | HN | G8261A | 78.66 | Gly550Ser |
L | C9660T 1 | 100 | Pro408Leu | |
L | A13374C | 79.43 | Gly1646Pro | |
MRV3 | L | C10572T 1 | 74.62 | Pro408Leu |
MRV3-5p-A | N | T1588C 2 | 93.80 | n/a (481) |
N | T1599C 3 | 93.19 | Leu485Ser | |
N | T1601C | 52.00 | Tyr486His | |
N | T1615C 4 | 91.20 | n/a (490) | |
HN | A8565T 5 | 56.17 | Tyr347Phe | |
L | C10572T 1 | 100 | Pro408Leu | |
L | T12047G 6 | 57.67 | Phe900Val | |
MRV3-10p-A | L | C10572T1 | 100 | Pro408Leu |
MRV3-5p-B | N | T1588C 2 | 61.83 | n/a (481) |
N | T1615C 4 | 55.99 | n/a (490) | |
L | C10572T 1 | 100 | Pro408Leu | |
MRV3-10p-B | N | T1588C 2 | 100 | n/a (481) |
N | T1599C 3 | 100 | Leu485Ser | |
N | T1615C 4 | 92.96 | n/a (490) | |
HN | A8565T 5 | 89.14 | Tyr347Phe | |
L | C10572T 1 | 100 | Pro408Leu | |
L | T12047G 6 | 89.33 | Phe900Val | |
F–RSV-MRV2 | N | T1599C 3 | 80.31 | Leu485Ser |
N | T1615C 4 | 80.77 | n/a (490) | |
F–RSV | A3551G 7 | 79.02 | Ile525Val | |
L | C11604T 1 | 93.22 | Pro408Leu | |
F–RSV-MRV2-5p-A | N | T1599C 3 | 74.38 | Leu485Ser |
N | T1615C 4 | 69.85 | n/a (490) | |
F–RSV | A3551G 7 | 78.77 | Ile525Val | |
L | C11604T 1 | 94.41 | Pro408Leu | |
F–RSV-MRV2-10p-A | N | T1599C 3 | 89.27 | Leu485Ser |
N | T1615C 4 | 89.60 | n/a (490) | |
F–RSV | G2066T | 87.86 | Glu30stop | |
F–RSV | A3551G 7 | 93.74 | Ile525Val | |
HN | A9152G | 69.01 | Asn199Asp | |
L | C11604T 1 | 100 | Pro408Leu | |
L | G12584A | 94.29 | Asp735Asn | |
F–RSV-MRV2-5p-B | N | T1599C 3 | 88.12 | Leu485Ser |
N | T1615C 4 | 100 | n/a (490) | |
N | A1902G 8 | 61.69 | NCR | |
F–RSV | A3551G 7 | 87.48 | Ile525Val | |
L | C11604T 1 | 94.66 | Pro408Leu | |
L | A13739G 9 | 63.71 | Asn1120Asp | |
F–RSV-MRV2-10p-B | N | T1599C 3 | 98.28 | Leu485Ser |
N | T1615C 4 | 98.14 | n/a (490) | |
N | A1902G 8 | 92.40 | NCR | |
F–RSV | A3551G 7 | 98.55 | Ile525Val | |
M | G5567A | 67.79 | n/a (120) | |
L | C11604T 1 | 98.65 | Pro408Leu | |
L | A13739G 9 | 92.56 | Asn1120Asp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slović, A.; Košutić-Gulija, T.; Forčić, D.; Šantak, M.; Jagušić, M.; Jurković, M.; Pali, D.; Ivančić-Jelečki, J. Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses 2021, 13, 2550. https://doi.org/10.3390/v13122550
Slović A, Košutić-Gulija T, Forčić D, Šantak M, Jagušić M, Jurković M, Pali D, Ivančić-Jelečki J. Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses. 2021; 13(12):2550. https://doi.org/10.3390/v13122550
Chicago/Turabian StyleSlović, Anamarija, Tanja Košutić-Gulija, Dubravko Forčić, Maja Šantak, Maja Jagušić, Mirna Jurković, Dorotea Pali, and Jelena Ivančić-Jelečki. 2021. "Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses" Viruses 13, no. 12: 2550. https://doi.org/10.3390/v13122550
APA StyleSlović, A., Košutić-Gulija, T., Forčić, D., Šantak, M., Jagušić, M., Jurković, M., Pali, D., & Ivančić-Jelečki, J. (2021). Population Variability Generated during Rescue Process and Passaging of Recombinant Mumps Viruses. Viruses, 13(12), 2550. https://doi.org/10.3390/v13122550