Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Blood Collection
2.3. Blood Cell Counts
2.4. Clinical Serum Chemistry
2.5. Data Analysis and Statistics
3. Results
3.1. Blood Cell Phenotypes in Thin-Film Blood Smears
3.2. Blood Cell Reference Ranges
3.3. Serum Reference Ranges
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Number | |||
---|---|---|---|
Age (Weeks) | ♂ | ♀ | |
8 | 5 | 6 | <24 weeks: n = 29 |
12 | 2 | 3 | |
17 | 7 (9 *) | 6 (12 *) | |
24 | 2 | 0 | >24 weeks: n = 22 |
27 | 3 | 7 | |
51 | 1 | 0 | |
52 | 3 | 2 | |
56 | 0 | 4 | |
23 (25 *) | 28 (34 *) |
Pathogen | Detection Method | Status |
---|---|---|
Clostridium piliforme | Serology | negative |
Rodentibacter sp. | Serology | positive |
Streptobacillus moniformis | Serology | negative |
Mastophorus muris | Serology | Previously positive, now negative |
Mycoplasma pulmonis | Serology | negative |
Mouse Adenovirus FL | Serology | negative |
Ectromelia virus | Serology | negative |
Mouse Hepatitis Virus | Serology | negative |
Murine K-Virus Polyoma virus | Serology | negative |
Lymphocytic choriomeningitis virus | Serology | negative |
Mouse Minute Virus | Serology | negative |
Pneumonia virus of mice | Serology | negative |
Polyoma-Virus | Serology | negative |
Reovirus 3 | Serology | negative |
Sendai virus | Serology | negative |
Theiler’s Murine Encephalomyelitis Virus GD VII | Serology | negative |
Murine Rotavirus EDIM | Serology | negative |
Lactate dehydrogenase elevating virus | Serology | negative |
Hantaan Virus | Serology | negative |
Mouse Adenovirus K87 | Serology | negative |
Murine cytomegalovirus | Serology | negative |
Parvoviruses | Serology | negative |
Murine norovirus 1 | Serology | negative |
Encephalomyocarditis virus | Serology | negative |
Puumala Virus | Serology | negative |
Mouse astrovirus | Serology | positive |
Mastomys Natalensis Papilloma Virus | Serology | negative |
Citrobacter rodentium | PCR/MALDITOF | negative |
Clostridium piliforme | PCR/MALDITOF | negative |
Corynebacterium kutscheri | PCR/MALDITOF | negative |
Escherichia coli | PCR/MALDITOF | Previously positive, now negative |
Rodentibacter spp. | PCR/MALDITOF | positive |
Salmonella spp. | PCR/MALDITOF | negative |
Streptococcus ß-hemolytic | PCR/MALDITOF | negative |
Streptococcus pneumoniae | PCR/MALDITOF | negative |
Helicobacter spp. | PCR/MALDITOF | positive |
Streptobacillus moniformis | PCR/MALDITOF | negative |
Klebsiella oxytoca | PCR/MALDITOF | negative |
Proteus mirablilis | PCR/MALDITOF | Previously positive, now negative |
Pseudomonas aeruginosa | PCR/MALDITOF | negative |
Staphylococcus aureus | PCR/MALDITOF | negative |
Pneumocytis murina | PCR/MALDITOF | negative |
ecto-arthropoda | Microscopy | negative |
Aspiculuris spp. | Microscopy | negative |
Syphacia spp. | Microscopy | negative |
Chilomastix spp. | Microscopy | positive |
Coccidia spp. | Microscopy | negative |
Entamoeba spp. | Microscopy | negative |
Giardia spp. | Microscopy | negative |
Spironucleus muris | Microscopy | negative |
Tritrichmonas spp. | Microscopy | negative |
other flagellates | Microscopy | negative |
References
- De Bellocq, J.G.; Bryjová, A.; Martynov, A.A.; Lavrenchenko, L.A. Dhati Welel virus, the missing mammarenavirus of the widespread Mastomys natalensis. J. Vertebr. Biol. 2020, 69, 1. [Google Scholar] [CrossRef]
- Mari Saez, A.; Cherif Haidara, M.; Camara, A.; Kourouma, F.; Sage, M.; Magassouba, N.; Fichet-Calvet, E. Rodent control to fight Lassa fever: Evaluation and lessons learned from a 4-year study in Upper Guinea. PLoS Negl. Trop. Dis. 2018, 12, e0006829. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, E.; Aplin, K.; Denys, C.; Catzeflis, F.; Chades, M.; Chevret, P. Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evol. Biol. 2008, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Demartini, J.C.; Green, D.E.; Monath, T.P. Lassa virus infection in Mastomys natalensis in Sierra Leone. Gross and microscopic findings in infected and uninfected animals. Bull. World Health Organ. 1975, 52, 651–663. [Google Scholar] [PubMed]
- Leirs, H.; Verhagen, R.; Verheyen, W. The Basis of Reproductive Seasonality in Mastomys Rats (Rodentia, Muridae) in Tanzania. J. Trop. Ecol. 1994, 10, 55–66. [Google Scholar] [CrossRef]
- Fichet-Calvet, E.; Lecompte, E.; Koivogui, L.; Soropogui, B.; Doré, A.; Kourouma, F.; Sylla, O.; Daffis, S.; Koulémou, K.; Meulen, J. Ter Fluctuation of Abundance and Lassa Virus Prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne Zoonotic Dis. 2007, 7, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, L.A. Rodent Pest Management in Eastern Africa; FAO: Rome, Italy, 1994. [Google Scholar]
- Isaäcson, M.; Taylor, P.; Arntzen, L. Ecology of plague in Africa: Response of indigenous wild rodents to experimental plague infection. Bull. World Health Organ. 1983, 61, 339–344. [Google Scholar] [PubMed]
- Olayemi, A.; Cadar, D.; Magassouba, N.; Obadare, A.; Kourouma, F.; Oyeyiola, A.; Fasogbon, S.; Igbokwe, J.; Rieger, T.; Bockholt, S.; et al. New Hosts of The Lassa Virus. Sci. Rep. 2016, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadouleton, A.; Agolinou, A.; Kourouma, F.; Saizonou, R.; Pahlmann, M.; Bedié, S.K.; Bankolé, H.; Becker-Ziaja, B.; Gbaguidi, F.; Thielebein, A.; et al. Lassa virus in pygmy mice, Benin, 2016–2017. Emerg. Infect. Dis. 2019, 25, 1977–1979. [Google Scholar] [CrossRef] [Green Version]
- Monath, T.P.; Newhouse, V.F.; Kemp, G.E.; Setzer, H.W.; Cacciapuoti, A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science 1974, 185, 263–265. [Google Scholar] [CrossRef]
- Pitchford, R.J.; Visser, P.S. The role of naturally infected wild rodents in the epidemiology of schistosomiasis in the Eastern Transvaal. Trans. R. Soc. Trop. Med. Hyg. 1962, 56, 126–135. [Google Scholar] [CrossRef]
- Lämmler, G.; Petrányi, G. Chemotherapeutic studies on experimental Schistosoma mansoni infection of Mastomys natalensis. Bull. World Health Organ. 1971, 44, 739–750. [Google Scholar] [PubMed]
- Arntzen, L.; Wadee, A.A.; Isaäcson, M. Immune responses of two Mastomys sibling species to Yersinia pestis. Infect. Immun. 1991, 59, 1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasche, D.; Rösl, F. Mastomys Species as Model Systems for Infectious Diseases. Viruses 2019, 11, 182. [Google Scholar] [CrossRef] [Green Version]
- Modlin, I.M.; Zucker, K.A.; Zdon, M.J.; Sussman, J.; Adrian, T.E. Characteristics of the spontaneous gastric endocrine tumor of mastomys. J. Surg. Res. 1988, 44, 205–215. [Google Scholar] [CrossRef]
- Hardin, A.; Nevonen, K.A.; Eckalbar, W.L.; Carbone, L.; Ahituv, N. Comparative Genomic Characterization of the Multimammate Mouse Mastomys coucha. Mol. Biol. Evol. 2019, 36, 2805–2812. [Google Scholar] [CrossRef] [PubMed]
- Kagira, J.M.; Maina, N.W.; Thuita, J.K.; Ngotho, M.; Hau, J. Influence of cyclophosphamide on the haematological profile of laboratory bred African soft-furred rats (Mastomys natalensis). Scand. J. Lab. Anim. Sci. 2005, 32, 153–158. [Google Scholar]
- Doeing, D.C.; Borowicz, J.L.; Crockett, E.T. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin. Pathol. 2003, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Nemzek, J.A.; Bolgos, G.L.; Williams, B.A.; Remick, D.G. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm. Res. 2001, 50, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, C.; Käufer-Weiss, I.; Zahner, H. On the Pathogenesis of Anaemia and Leukopenia in Filarial (Litomosoides carinii) Infection of Mastomys natalensis. J. Vet. Med. Ser. B 1991, 38, 123–134. [Google Scholar] [CrossRef]
- Green, C.A.; Keogh, H.; Gordon, D.H.; Pinto, M.; Hartwig, E.K. The distribution, identification, and naming of the Mastomys natalensis species complex in southern Africa (Rodentia: Muridae). J. Zool. 1980, 192, 17–23. [Google Scholar] [CrossRef]
- Lecompte, E.; Brouat, C.; Duplantier, J.M.; Galan, M.; Granjon, L.; Loiseau, A.; Mouline, K.; Cosson, J.F. Molecular identification of four cryptic species of Mastomys (Rodentia, Murinae). Biochem. Syst. Ecol. 2005, 33, 681–689. [Google Scholar] [CrossRef]
- Duplantier, J.M.; Britton-Davidian, J.; Granjon, L. Chromosomal characterization of three species of the genus Mastomys in Senegal. J. Zool. Syst. Evol. Res. 1990, 28, 289–298. [Google Scholar] [CrossRef]
- Torrero, M.N.; Morris, C.P.; Mitre, B.K.; Hübner, M.P.; Fox, E.M.; Karasuyama, H.; Mitre, E. Basophils help establish protective immunity induced by irradiated larval vaccination for filariasis. Vaccine 2013, 31, 3675–3682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, S.K.; Verma, S.K.; Verma, R.; Saxena, J.K.; Srivastava, M.; Murthy, P.K. Anti-inflammatory BmAFI of Brugia malayi modulates IgE, histamine and histamine receptor responses in Mastomys coucha. Acta Trop. 2013, 127, 82–86. [Google Scholar] [CrossRef]
- Chander, R.; Srivastava, V.; Tandon And, J.S.; Kapoor, N.K. Antihepatotoxic Activity of Diterpenes of Andrographis Paniculata (Kal-Megh) Against Plasmodium Berghei-Induced Hepatic Damage in Mastomys Natalensis. Int. J. Pharmacogn. 1995, 33, 135–138. [Google Scholar] [CrossRef]
- Hoggatt, J.; Hoggatt, A.F.; Tate, T.A.; Fortman, J.; Pelus, L.M. Bleeding the laboratory mouse: Not all methods are equal. Exp. Hematol. 2016, 44, 132–137.e1. [Google Scholar] [CrossRef] [Green Version]
- Charles River Lab C57BL/6 Mouse Hematology C57BL/6 Mouse Biochemistry North American Colonies—January 2008–December 2012. Available online: https://www.criver.com/sites/default/files/resources/C57BL6MouseModelInformationSheet.pdf (accessed on 28 July 2020).
- Giknis, M.L.A.; Clifford, C. Clinical Laboratory Parameters for Crl: WI (Han); Charles River Laboratories: Wilmington, MA, USA, 2008; pp. 1–14. Available online: https://www.criver.com/sites/default/files/resources/rm_rm_r_Wistar_Han_clin_lab_parameters_08.pdf (accessed on 28 July 2020).
- Jackson Laboratory Physiological Data Summary—C57BL/6J (000664). Available online: http://jackson.jax.org/rs/444-BUH-304/images/physiological_data_000664.pdf (accessed on 28 July 2020).
Cell Type | Mean Size (±SD) | Median Size |
---|---|---|
Erythrocyte (n = 47) | 6.1 ± 0.4 µm | 6.1 µm |
Thrombocyte (n = 28) | 2.2 ± 0.6 µm | 2.1 µm |
Monocyte (n = 10) | 14.6 ± 2.0 µm | 14.4 µm |
Lymphocyte (n = 13) | 9.1 ± 1.3 µm | 8.8 µm |
Neutrophil (n = 14) | 13.1 ± 1.1 µm | 13.1 µm |
Eosinophil (n = 11) | 12.4 ± 1.4 µm | 12.7 µm |
Mean (Reference Range) | σ | Median | Mean and Reference Range with 6%-Correction of Automatic Counts (see Figure 2) | |
---|---|---|---|---|
WBC [10³/µL] (n = 45) | 3.138 (0.43–6.89) | 1.491 | 3.12 | - |
LYM [10³/µL] (n = 47) | 2.239 (0.29–5.64) | 1.114 | 2.09 | 2.373 (0.31–5.98) |
MON [10³/µL] (n = 42) | 0.084 (0.00–0.06) | 0.057 | 0.07 | - |
GRA [10³/µL] (n = 43) | 0.783 (0.08–1.92) | 0.477 | 0.79 | 0.736 (0.08–1.80) |
Males ♂ | Mean (Reference Range) | σ | Median | Holm–Sidak Adjusted p-Values between Sexes | Females ♀ | Mean (Reference Range) | σ | Median |
---|---|---|---|---|---|---|---|---|
RBC [106/µL] (n = 22) | 7.524 (5.64–8.52) | 0.659 | 7.650 | 0.12 | RBC [106/µL] (n = 25) | 6.898 (4.27–9.84) | 1.170 | 6.940 |
HCT [%] (n = 23) | 43.75 (32.06–50.02) | 4.45 | 43.83 | 0.44 | HCT [%] (n = 24) | 41.61 (29.32–55.43) | 6.08 | 41.48 |
HGB [g/dL] (n = 23) | 14.15 (10–17) | 1.77 | 14.10 | 0.44 | HGB [g/dL] (n = 24) | 13.39 (9.5–18.7) | 2.15 | 13.30 |
PLT [10³/µL] (n = 22) | 363.5 (60–522) | 116.0 | 374.5 | 0.66 | PLT [10³/µL] (n = 25) | 381.3 (37–650) | 151.0 | 402.0 |
Males ♂ | Mean (Reference Range) | σ | Median | Sidak-Adjusted p-Values Mann-Whitney Test | Females ♀ | Mean (Reference Range) | σ | Median |
---|---|---|---|---|---|---|---|---|
CRE [mg/dL] (n = 24) | 0.271 (0.14–0.58) | 0.117 | 0.26 | <0.0006 a | Cre [mg/dL] (n = 24) | 0.172 (0.14–0.27) | 0.044 | 0.14 |
BUN [mg/dL] (n = 24) | 26.18 (16.0–42.6) | 7.78 | 24.1 | 0.0035 * | BUN [mg/dL] (n = 30) | 19.08 (3.5–28.1) | 4.99 | 18.5 |
ALB [g/dL] (n = 22) | 2.56 (1.4–4.0) | 0.64 | 2.6 | 0.0129 * | ALB [g/dL] (n = 30) | 3.25 (1.8–5.4) | 0.86 | 3.3 |
ALT/GPT [U/L] (n = 20) | 21.2 (12–38) | 7.1 | 20 | >0.9999 | ALT/GPT [U/L] (n = 22) | 25.3 (13–50) | 10.7 | 21.5 |
AST/GOT [U/L] (n = 20) | 95.2 (54–183) | 30.7 | 83 | 0.0065 * | AST/GOT [U/L] (n = 22) | 138.2 (80–296) | 54.9 | 120.5 |
ALP [U/L] (n = 22) | 103.9 (38–268) | 59.1 | 89 | >0.9999 | ALP [U/L] (n = 29) | 111.3 (10–247) | 67.9 | 88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wozniak, D.M.; Kirchoff, N.; Hansen-Kant, K.; Sogoba, N.; Safronetz, D.; Prescott, J. Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis). Viruses 2021, 13, 187. https://doi.org/10.3390/v13020187
Wozniak DM, Kirchoff N, Hansen-Kant K, Sogoba N, Safronetz D, Prescott J. Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis). Viruses. 2021; 13(2):187. https://doi.org/10.3390/v13020187
Chicago/Turabian StyleWozniak, David M., Norman Kirchoff, Katharina Hansen-Kant, Nafomon Sogoba, David Safronetz, and Joseph Prescott. 2021. "Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis)" Viruses 13, no. 2: 187. https://doi.org/10.3390/v13020187
APA StyleWozniak, D. M., Kirchoff, N., Hansen-Kant, K., Sogoba, N., Safronetz, D., & Prescott, J. (2021). Hematology and Clinical Chemistry Reference Ranges for Laboratory-Bred Natal Multimammate Mice (Mastomys natalensis). Viruses, 13(2), 187. https://doi.org/10.3390/v13020187