Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance
Abstract
:1. Introduction
2. Recurring Emergence of HPAI H5 Viruses in Europe 2005–2020
2.1. H5 Clade 2.2 (2005–2009)
2.2. H5 Clade 2.3.2.1 (2010–2015)
2.3. H5 Clade 2.3.4.4 (2014–2020)
3. Underlying Mechanisms of Emergence of Novel HPAI H5 Viruses at the Wild–Domestic Bird Interface
3.1. Virus-Related Drivers of Emergence of Novel HPAI H5 Viruses in Wild/domestic Birds
3.2. Environmental-Related Drivers for Emergence of Novel HPAI H5 Viruses in Wild/Domestic Birds
3.3. Host-Related Drivers of Emergence of Novel HPAI H5 Viruses in Wild/Domestic Birds
3.4. HPAI H5 Virus Introductions into Europe by Wild Birds
3.5. HPAI H5 Virus Introductions into Poultry Farms by Wild Birds
4. Future Directions for HPAI Virus Research and Surveillance
4.1. Whole Genome Sequencing
4.2. Environmental Monitoring
4.3. Host Species Identification
4.4. Wild Bird Surveillance Site Selection
4.5. Active Surveillance and Mitigation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.; Brown, I. History of highly pathogenic avian influenza. Rev. Sci. Tech. l’OIE 2009, 28, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Runstadler, J.A.; Hill, N.; Hussein, I.T.; Puryear, W.; Keogh, M. Connecting the study of wild influenza with the potential for pandemic disease. Infect. Genet. Evol. 2013, 17, 162–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napp, S.; Majó, N.; Sánchez-Gónzalez, R.; Vergara-Alert, J. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016-2017. Transbound. Emerg. Dis. 2018, 65, 1217–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAOSTAT Food and Agriculture Data of the FAO–Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#home (accessed on 17 December 2020).
- EBCC/RSPB/BirdLife/CSO. PanEuropean Common Bird Monitoring Scheme. Available online: https://pecbms.info (accessed on 17 December 2020).
- Cattoli, G.; Fusaro, A.; Monne, I.; Capua, I. H5N1 Virus Evolution in Europe—An Updated Overview. Viruses 2009, 1, 1351–1363. [Google Scholar] [CrossRef] [Green Version]
- Becker, W.B. The isolation and classification of Tern virus: Influenza A-Tern South Africa-1961. J. Hyg. 1966, 64, 309–320. [Google Scholar] [CrossRef]
- Chen, H.; Smith, G.J.; Zhang, S.Y.; Qin, K.; Wang, J.; Li, K.S.; Webster, R.G.; Peiris, J.S.; Guan, Y. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 2005, 436, 191–192. [Google Scholar] [CrossRef]
- Smith, G.J.; Donis, R.O.; World Health Organization; World Organisation for Animal Health; Food Agriculture Organization (WHO/OIE/FAO) H5 Evolution Working Group. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013–2014. Influenza Other Respir. Viruses 2015, 9, 271–276. [Google Scholar] [CrossRef]
- Group WOFHNEW. Continued evolution of highly pathogenic avian influenza A (H5N1): Updated nomenclature. Influenza Other Respir. Viruses 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shepard, S.S.; Davis, C.T.; Bahl, J.; Rivailler, P.; York, I.A.; Donis, R.O. LABEL: Fast and Accurate Lineage Assignment with Assessment of H5N1 and H9N2 Influenza A Hemagglutinins. PLoS ONE 2014, 9, e86921. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Gu, X.; Lu, X.; Pan, J.; Duan, Z.; Zhao, K.; Gu, M.; Liu, Q.; He, L.; Chen, J.; et al. Novel Reassortant Highly Pathogenic H5N2 Avian Influenza Viruses in Poultry in China. PLoS ONE 2012, 7, e46183. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-G.; Liu, M.; Liu, F.; Lv, R.; Liu, D.-F.; Qu, L.-D.; Zhang, Y. Emerging multiple reassortant H5N5 avian influenza viruses in ducks, China, 2008. Vet. Microbiol. 2013, 167, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Gu, M.; Zhong, L.; Duan, Z.; Zhang, Y.; Zhu, Y.; Zhao, G.; Zhao, M.; Chen, Z.; Hu, S.; et al. Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet. Microbiol. 2013, 163, 351–357. [Google Scholar] [CrossRef]
- Wong, F.Y.; Phommachanh, P.; Kalpravidh, W.; Chanthavisouk, C.; Gilbert, J.; Bingham, J.; Davies, K.R.; Cooke, J.; Eagles, D.; Phiphakhavong, S.; et al. Reassortant Highly Pathogenic Influenza A(H5N6) Virus in Laos. Emerg. Infect. Dis. 2015, 21, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Lycett, S.J.; Pohlmann, A.; Staubach, C.; Caliendo, V.; Woolhouse, M.; Beer, M.; Kuiken, T. Global Consortium for HN, Related Influenza V. Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia. Proc. Natl. Acad. Sci. USA 2020, 117, 20814–20825. [Google Scholar] [CrossRef]
- Lycett, S.; Bodewes, R.; Pohlmann, A.; Bank, J.; Banyai, K.; Boni, M. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 2016, 354, 213–217. [Google Scholar]
- Chen, H.; Li, Y.; Li, Z.; Shi, J.; Shinya, K.; Deng, G.; Qi, Q.; Tian, G.; Fan, S.; Zhao, H.; et al. Properties and Dissemination of H5N1 Viruses Isolated during an Influenza Outbreak in Migratory Waterfowl in Western China. J. Virol. 2006, 80, 5976–5983. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, Y.; Li, M.; Zhao, L.; Wang, D.; Tian, J.; Bai, X.; Ci, Y.; Wu, S.; Wang, F.; et al. Evolution and extensive reassortment of H5 influenza viruses isolated from wild birds in China over the past decade. Emerg. Microbes Infect. 2020, 9, 1793–1803. [Google Scholar] [CrossRef]
- Pohlmann, A.; Starick, E.; Harder, T.; Grund, C.; Höper, D.; Globig, A.; Staubach, C.; Dietze, K.; Strebelow, G.; Ulrich, R.G.; et al. Outbreaks among Wild Birds and Domestic Poultry Caused by Reassorted Influenza A(H5N8) Clade 2.3.4.4 Viruses, Germany, 2016. Emerg. Infect. Dis. 2017, 23, 633–636. [Google Scholar] [CrossRef]
- Kaleta, E.F.; Rulke, C.P. The beginning and spread of fowl plague (H7 HPAI) across Europe and Asia (1878-1955). In Avian Influenza, 1st ed.; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 145–189. [Google Scholar]
- Alexander, D.J.; Capua, I.; Koch, G. Highly Pathogenic Avian Influenza Outbreaks in Europe, Asia, and Africa Since 1959, Excluding the Asian H5N1 Virus Outbreaks. In Avian Influenza, 1st ed.; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 217–237. [Google Scholar]
- Update on Highly Pathogenic Avian Influenza in Animals (Type H5 and H7) of the OIE–World Organisation for Animal Health. Available online: https://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2020 (accessed on 13 April 2020).
- Capua, I.; Mutinelli, F.; Marangon, S.; Alexander, D.J. H7N1 avian influenza in Italy (1999 to 2000) in intensively reared chickens and turkeys. Avian Pathol. 2000, 29, 537–543. [Google Scholar] [CrossRef]
- Velkers, F.C.; Bouma, A.; Matthijs, M.G.R.; Koch, G.; Westendorp, S.T.; Stegeman, J.A. Outbreak of avian influenza H7N3 on a turkey farm in the Netherlands. Vet. Rec. 2006, 159, 403–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerens, N.; Heutink, R.; Harders, F.; Bossers, A.; Koch, G.; Peeters, B. Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. J. Virol. 2020, 94, 94. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; Wallensten, A.; Baas, C.; Rimmelzwaan, G.F.; Schutten, M.; Olsen, B.; Osterhaus, A.D.; Fouchier, R. Mallards and Highly Pathogenic Avian Influenza Ancestral Viruses, Northern Europe. Emerg. Infect. Dis. 2005, 11, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Fouchier, R.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.G.; Munster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Van Doornum, G.J.J.; et al. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 1356–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briand, F.-X.; Niqueux, E.; Schmitz, A.; Hirchaud, E.; Quenault, H.; Allée, C.; Le Prioux, A.; Guillou-Cloarec, C.; Ogor, K.; Le Bras, M.; et al. Emergence and multiple reassortments of French 2015–2016 highly pathogenic H5 avian influenza viruses. Infect. Genet. Evol. 2018, 61, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, D.; Paget, J.; Meijer, A.; Ganter, B. Highly pathogenic avian influenza reported to be spreading into western Russia. Wkly. Releases 2005, 10, 2776. [Google Scholar] [CrossRef] [PubMed]
- Oprisan, G.; Coste, H.; Lupulescu, E.; Oprişoreanu, A.M.; Szmal, C.; Onita, I.; Popovici, N.; Ionescu, L.E.; Bicheru, S.; Enache, N.; et al. Molecular analysis of the first avian influenza H5N1 isolates from fowl in Romania. Roum. Arch. Microbiol. Immunol. 2008, 65, 79–82. [Google Scholar]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Eurosurveillance 2017, 22, 22. [Google Scholar] [CrossRef] [Green Version]
- Savic, V.; Labrović, A.; Zelenika, T.A.; Balenović, M.; Šeparović, S.; Jurinović, L. Multiple Introduction of Asian H5N1 Avian Influenza Virus in Croatia by Wild Birds During 2005–2006 and Isolation of the Virus from Apparently Healthy Black-Headed Gulls (Larus ridibundus). Vector Borne Zoonotic Dis. 2010, 10, 915–920. [Google Scholar] [CrossRef]
- King, J.; Harder, T.; Conraths, F.J.; Beer, M.; Pohlmann, A. The Genetics of Highly Pathogenic Avian Influenza Viruses of Subtype H5 in Germany, 2006–2020. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- L’Vov, D.K.; Shchelkanov, M.Y.; Prilipov, A.G.; Vlasov, N.A.; Fedyakina, I.T.; Deryabin, P.G.; Alkhovsky, S.V.; Grebennikova, T.V.; Zaberezhny, A.D.; Suarez, D.L. Evolution of Highly Pathogenic Avian Influenza H5N1 Virus in Natural Ecosystems of Northern Eurasia (2005–08). Avian Dis. 2010, 54, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Starick, E.; Beer, M.; Hoffmann, B.; Staubach, C.; Werner, O.; Globig, A.; Strebelow, G.; Grund, C.; Durban, M.; Conraths, F.; et al. Phylogenetic analyses of highly pathogenic avian influenza virus isolates from Germany in 2006 and 2007 suggest at least three separate introductions of H5N1 virus. Vet. Microbiol. 2008, 128, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avian Influenza in Europe: Update of the IZSV-Istituto Zooprofilattico Sperimentale Delle Venezie. Available online: https://www.izsvenezie.com/reference-laboratories/avian-influenza-newcastle-disease/europe-update (accessed on 17 December 2020).
- Fink, M.; Fernandez, S.R.; Schobesberger, H.; Koefer, J. Geographical spread of highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Austria. J. Virol. 2010, 84, 5815–5823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goletic, T.; Gagić, A.; ReŠidbegović, E.; Kustura, A.; Kavazović, A.; Savic, V.; Harder, T.C.; Starick, E.; PraŠović, S. Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Mute Swans (Cygnus olor) in Central Bosnia. Avian Dis. 2010, 54, 496–501. [Google Scholar] [CrossRef]
- Nagy, A.; Vostinakova, V.; Pindova, Z.; Hornickova, J.; Cernikova, L.; Sedlak, K.; Mojzis, M.; Dirbakova, Z.; Machova, J. Molecular and phylogenetic analysis of the H5N1 avian influenza virus caused the first highly pathogenic avian influenza outbreak in poultry in the Czech Republic in 2007. Vet. Microbiol. 2009, 133, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Nagy, A.; Machova, J.; Hornickova, J.; Tomci, M.; Nagl, I.; Horyna, B.; Holko, I. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic. Vet. Microbiol. 2007, 120, 9–16. [Google Scholar] [CrossRef]
- Bragstad, K.; Jørgensen, P.H.; Handberg, K.; Hammer, A.S.; Kabell, S.; Fomsgaard, A. First introduction of highly pathogenic H5N1 avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe. Virol. J. 2007, 4, 43. [Google Scholar] [CrossRef] [Green Version]
- Le Gall-Reculé, G.; Briand, F.-X.; Schmitz, A.; Guionie, O.; Massin, P.; Jestin, V. Double introduction of highly pathogenic H5N1 avian influenza virus into France in early 2006. Avian Pathol. 2008, 37, 15–23. [Google Scholar] [CrossRef]
- Szeleczky, Z.; Dán, Á.; Ursu, K.; Ivanics, É.; Kiss, I.; Erdélyi, K.; Belák, S.; Muller, C.P.; Brown, I.H.; Bálint, Á. Four different sublineages of highly pathogenic avian influenza H5N1 introduced in Hungary in 2006–2007. Vet. Microbiol. 2009, 139, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Terregino, C.; Milani, A.; Capua, I.; Marino, A.M.F.; Cavaliere, N. Highly pathogenic avian influenza H5N1 subtype in mute swans in Italy. Vet. Rec. 2006, 158, 491. [Google Scholar] [CrossRef]
- Śmietanka, K.; Fusaro, A.; Domanska-Blicharz, K.; Salviato, A.; Monne, I.; Dundon, W.G.; Cattoli, G.; Minta, Z. Full-Length Genome Sequencing of the Polish HPAI H5N1 Viruses Suggests Separate Introductions in 2006 and 2007. Avian Dis. 2010, 54, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Slavec, B.; Krapež, U.; Racnik, J.; Hari, A.; Wernig, J.M.; Dovc, A.; Zadravec, M.; Lindtner-Knific, R.; Marhold, C.; Zorman-Rojs, O. Surveillance of Influenza A Viruses in Wild Birds in Slovenia from 2006 to 2010. Avian Dis. 2012, 56, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Barral, M.F.M.; Alvarez, V.; Juste, R.A.; Agirre, I.; Inchausti, I. First case of highly pathogenic H5N1 avian influenza virus in Spain. BMC Vet. Res. 2008, 4, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, I.; Gyarmati, P.; Zohari, S.; Ramsay, K.W.; Metreveli, G.; Weiss, E.; Brytting, M.; Stivers, M.; Lindström, S.; Lundkvist, Å.; et al. Molecular characterization of highly pathogenic H5N1 avian influenza viruses isolated in Sweden in 2006. Virol. J. 2008, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.A.; Renzullo, S.; Baumer, A. Phylogenetic characterization of H5N1 highly pathogenic avian influenza viruses isolated in Switzerland in 2006. Virus Genes 2008, 37, 407–413. [Google Scholar] [CrossRef]
- Baumer, A.; Feldmann, J.; Renzullo, S.; Müller, M.; Thür, B.; Hofmann, M.A. Epidemiology of Avian Influenza Virus in Wild Birds in Switzerland Between 2006 and 2009. Avian Dis. 2010, 54, 875–884. [Google Scholar] [CrossRef]
- WHO. H5N1 Highly Pathogenic Avian Influenza: Timeline of Major Events. Available online: https://www.who.int/influenza/human_animal_interface/h5n1_avian_influenza_update20140714.pdf (accessed on 10 December 2020).
- Muzyka, D.; Rula, O.; Tkachenko, S.; Muzyka, N.; Köthe, S.; Pishchanskyi, O.; Stegniy, B.; Pantin-Jackwood, M.J.; Beer, M. Highly Pathogenic and Low Pathogenic Avian Influenza H5 Subtype Viruses in Wild Birds in Ukraine. Avian Dis. 2018, 63, 235–245. [Google Scholar] [CrossRef]
- Adlhoch, C.; Fusaro, A.; Gonzales, J.L.; Kuiken, T.; Marangon, S.; Niqueux, E.; Staubach, C.; Smietanka, K.; Terregino, C.; Van Der Stede, Y.; et al. Avian influenza overview–update on 19 November 2020, EU/EEA and the UK. Efsa J. 2020, 11, e06341. [Google Scholar]
- Verhagen, J.; Van Der Jeugd, H.; Nolet, B.A.; Slaterus, R.; Kharitonov, S.; De Vries, P.; Vuong, O.; Majoor, F.; Kuiken, T.; Fouchier, R. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance 2015, 20, 21069. [Google Scholar] [CrossRef]
- Poen, M.J.; Venkatesh, D.; Bestebroer, T.M.; Vuong, O.; Scheuer, R.D.; Munnink, B.B.O.; De Meulder, D.; Richard, M.; Kuiken, T.; Koopmans, M.P.G.; et al. Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evol. 2019, 5, vez004. [Google Scholar] [CrossRef]
- Reid, S.M.; Shell, W.M.; Barboi, G.; Onita, I.; Turcitu, M.; Cioranu, R.; Marinova-Petkova, A.; Goujgoulova, G.; Webby, R.J.; Webster, R.G.; et al. First Reported Incursion of Highly Pathogenic Notifiable Avian Influenza A H5N1 Viruses from Clade 2.3.2 into European Poultry. Transbound. Emerg. Dis. 2010, 58, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Marinova-Petkova, A.; Georgiev, G.; Seiler, P.; Darnell, D.; Franks, J.; Krauss, S.; Webby, R.J.; Webster, R.G. Spread of Influenza Virus A (H5N1) Clade 2.3.2.1 to Bulgaria in Common Buzzards. Emerg. Infect. Dis. 2012, 18, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Sharshov, K.; Silko, N.; Sousloparov, I.; Zaykovskaya, A.V.; Vorotnikov, Y.A.; Drozdov, I. Avian Influenza (H5N1) Outbreak among Wild Birds, Russia, 2009. Emerg. Infect. Dis. 2010, 16, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.I.; Sharshov, K.A.; Silko, N.I.; Susloparov, I.M.; Durymanov, A.G.; Zaĭkovskaia, A.V.; Alekseev, A.I.; Smolovskaia, O.V.; Stefanenko, A.P.; Malkova, E.M.; et al. Characterization of the H5N1 influenza virus isolated during an outbreak among wild birds in Russia (Tuva Republic) in 2010. Mol. Genet. Microbiol. Virol. 2011, 26, 36–40. [Google Scholar] [CrossRef]
- Bi, Y.; Chen, J.; Zhang, Z.; Li, M.; Cai, T.; Sharshov, K.; Susloparov, I.; Vorotnikov, Y.A.; Wong, G.; He, Y.; et al. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014–2015. Virol. Sin. 2016, 31, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Stoimenov, G.; Goujgoulova, G.; Hristov, K.; Teneva, A. Outbreak of influenza A virus (H5N1) in Dalmatian pelicans Srebarna Reserve, Bulgaria, 2015. Tradit. Mod. Vet. Med. 2018, 3, 61–66. [Google Scholar]
- Ku, K.B.; Park, E.H.; Yum, J.; Kim, J.A.; Oh, S.K.; Seo, S.H. Highly Pathogenic Avian Influenza A(H5N8) Virus from Waterfowl, South Korea, 2014. Emerg. Infect. Dis. 2014, 20, 1587–1588. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Peng, X.; Xu, L.; Jin, C.; Cheng, L.; Lu, X.; Xie, T.; Yao, H.; Wu, N. Novel Reassortant Influenza A(H5N8) Viruses in Domestic Ducks, Eastern China. Emerg. Infect. Dis. 2014, 20, 1315–1318. [Google Scholar] [CrossRef]
- Lee, D.-H.; Sharshov, K.; Swayne, D.E.; Kurskaya, O.; Sobolev, I.; Kabilov, M.; Alekseev, A.; Irza, V.; Vorotnikov, Y.A. Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016. Emerg. Infect. Dis. 2017, 23, 359–360. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H.; Bertran, K.; Kwon, J.-H.; Swayne, D.E. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4. J. Vet. Sci. 2017, 18, 269–280. [Google Scholar] [CrossRef]
- Harder, T.; Maurer-Stroh, S.; Pohlmann, A.; Starick, E.; Höreth-Böntgen, D.; Albrecht, K.; Pannwitz, G.; Teifke, J.; Gunalan, V.; Lee, R.T.; et al. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany. Emerg. Infect. Dis. 2015, 21, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, R.J.; Koch, G.; Heutink, R.; Harders, F.; Van Der Spek, A.; Elbers, A.R.; Bossers, A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance 2015, 20, 21174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna, A.; Banks, J.; Marston, D.A.; Ellis, R.J.; Brookes, S.M.; Brown, I.H. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014. Emerg. Infect. Dis. 2015, 21, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Globig, A.; Starick, E.; Homeier, T.; Pohlmann, A.; Grund, C.; Wolf, P.; Zimmermann, A.; Wolf, C.; Heim, D.; Schlößer, H.; et al. Epidemiological and Molecular Analysis of an Outbreak of Highly Pathogenic Avian Influenza H5N8 clade 2.3.4.4 in a German Zoo: Effective Disease Control with Minimal Culling. Transbound. Emerg. Dis. 2016, 64, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.; Susloparov, I.M.; Kolosova, N.P.; Goncharova, N.I.; Shipovalov, A.V.; Durymanov, A.G.; Ilyicheva, T.N.; Budatsirenova, L.V.; Ivanova, V.K.; Ignatyev, G.A.; et al. Influenza A(H5N8) virus isolation in Russia, 2014. Arch. Virol. 2015, 160, 2857–2860. [Google Scholar] [CrossRef]
- Globig, A.; Staubach, C.; Sauter-Louis, C.; Dietze, K.; Homeier-Bachmann, T.; Probst, C.; Gethmann, J.; Depner, K.R.; Grund, C.; Harder, T.C.; et al. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017. Front. Vet. Sci. 2017, 4, 240. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, D.; Brouwer, A.; Goujgoulova, G.; Ellis, R.; Seekings, J.; Brown, I.H.; Lewis, N.S. Regional Transmission and Reassortment of 2.3.4.4b Highly Pathogenic Avian Influenza (HPAI) Viruses in Bulgarian Poultry 2017/18. Viruses 2020, 12, 605. [Google Scholar] [CrossRef]
- King, J.; Schulze, C.; Engelhardt, A.; Hlinak, A.; Lennermann, S.-L.; Rigbers, K.; Skuballa, J.; Staubach, C.; Mettenleiter, T.C.; Harder, T.C.; et al. Novel HPAIV H5N8 Reassortant (Clade 2.3.4.4b) Detected in Germany. Viruses 2020, 12, 281. [Google Scholar] [CrossRef] [Green Version]
- Świętoń, E.; Śmietanka, K. Phylogenetic and molecular analysis of highly pathogenic avian influenza H5N8 and H5N5 viruses detected in Poland in 2016-2017. Transbound. Emerg. Dis. 2018, 65, 1664–1670. [Google Scholar] [CrossRef]
- Bergervoet, S.A.; Ho, C.K.Y.; Heutink, R.; Bossers, A.; Beerens, N. Spread of Highly Pathogenic Avian Influenza (HPAI) H5N5 Viruses in Europe in 2016–2017 Appears Related to the Timing of Reassortment Events. Viruses 2019, 11, 501. [Google Scholar] [CrossRef] [Green Version]
- Pohlmann, A.; Starick, E.; Grund, C.; Höper, D.; Strebelow, G.; Globig, A.; Staubach, C.; Conraths, F.J.; Mettenleiter, T.C.; Harder, T.C.; et al. Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Sci. Rep. 2018, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerens, N.; Koch, G.; Heutink, R.; Harders, F.; Vries, D.E.; Ho, C.; Bossers, A.; Elbers, A. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017. Emerg. Infect. Dis. 2018, 24, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.; Susloparov, I.M.; Komissarov, A.; Fadeev, A.V.; Goncharova, N.I.; Shipovalov, A.V.; Svyatchenko, S.V.; Durymanov, A.G.; Ilyicheva, T.N.; Salchak, L.K.; et al. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia. Arch. Virol. 2017, 162, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.; Goncharova, N.; Susloparov, I.; Kolosova, N.; Gudymo, A.; Svyatchenko, S.; Danilenko, A.; Durymanov, A.; Gavrilova, E.; Maksyutov, R.; et al. Isolation and characterization of H5Nx highly pathogenic avian influenza viruses of clade 2.3.4.4 in Russia. Virology 2018, 525, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Volkov, M.S.; Irza, V.N.; Varkentin, A.V. History of highly pathogenic avian influenza eradication in russian federation in 2016–2017. Vet. Sci. Today 2018, 3–10. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Jeong, S.; Lee, N.-H.; Swayne, D.E.; Kim, Y.-J.; Lee, S.-H.; Noh, J.-Y.; Erdene-Ochir, T.-O.; Jeong, J.-H.; Song, C.-S. New Reassortant Clade 2.3.4.4b Avian Influenza A(H5N6) Virus in Wild Birds, South Korea, 2017–18. Emerg. Infect. Dis. 2018, 24, 1953–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ProMED-Mail Avian Influenza. Available online: http://www.promedmail.org (accessed on 22 January 2021).
- Dugan, V.G.; Chen, R.; Spiro, D.J.; Sengamalay, N.; Zaborsky, J.; Ghedin, E.; Nolting, J.; Swayne, D.E.; Runstadler, J.A.; Happ, G.M.; et al. The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds. PLoS Pathog. 2008, 4, e1000076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wille, M.; Tolf, C.; Avril, A.; Latorre-Margalef, N.; Wallerström, S.; Olsen, B.; Waldenström, J. Frequency and patterns of reassortment in natural influenza A virus infection in a reservoir host. Virology 2013, 443, 150–160. [Google Scholar] [CrossRef]
- Lebarbenchon, C.; Sreevatsan, S.; Lefèvre, T.; Yang, M.; Ramakrishnan, M.A.; Brown, J.D.; Stallknecht, D.E. Reassortant influenza A viruses in wild duck populations: Effects on viral shedding and persistence in water. Proc. R. Soc. B Boil. Sci. 2012, 279, 3967–3975. [Google Scholar] [CrossRef] [Green Version]
- Lebarbenchon, C.; Feare, C.J.; Renaud, F.; Ujvari, B.; Gauthier-Clerc, M. Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems. Emerg. Infect. Dis. 2010, 16, 1057–1062. [Google Scholar] [CrossRef]
- White, M.C.; Lowen, A.C. Implications of segment mismatch for influenza A virus evolution. J. Gen. Virol. 2018, 99, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Chou, Y.-Y.; Doğanay, S.; Vafabakhsh, R.; Ha, T.; Palese, P. The Influenza A Virus PB2, PA, NP, and M Segments Play a Pivotal Role during Genome Packaging. J. Virol. 2012, 86, 7043–7051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essere, B.; Yver, M.; Gavazzi, C.; Terrier, O.; Isel, C.; Fournier, E.; Giroux, F.; Textoris, J.; Julien, T.; Socratous, C.; et al. Critical role of segment-specific packaging signals in genetic reassortment of influenza A viruses. Proc. Natl. Acad. Sci. USA 2013, 110, E3840–E3848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadonaite, B.; Gilbertson, B.; Knight, M.; Trifkovic, S.; Rockman, S.; Laederach, A.; E Brown, L.; Fodor, E.; Bauer, D.L.V. The structure of the influenza A virus genome. Nat. Microbiol. 2019, 4, 1781–1789. [Google Scholar] [CrossRef]
- Le Sage, V.; Kanarek, J.P.; Snyder, D.J.; Cooper, V.S.; Lakdawala, S.S.; Lee, N. Mapping of Influenza Virus RNA-RNA Interactions Reveals a Flexible Network. Cell Rep. 2020, 31, 107823. [Google Scholar] [CrossRef]
- Dubois, R.M.; Zaraket, H.; Reddivari, M.; Heath, R.J.; White, S.W.; Russell, C.J. Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity. PLoS Pathog. 2011, 7, e1002398. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.W.; Munier, S.; Larcher, T.; Soubieux, D.; Ledevin, M.; Esnault, E.; Tourdes, A.; Croville, G.; Guerin, J.-L.; Quéré, P.; et al. Length Variations in the NA Stalk of an H7N1 Influenza Virus Have Opposite Effects on Viral Excretion in Chickens and Ducks. J. Virol. 2011, 86, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Long, J.-X.; Peng, D.; Liu, Y.-L.; Wu, Y.-T.; Liu, X. Virulence of H5N1 avian influenza virus enhanced by a 15-nucleotide deletion in the viral nonstructural gene. Virus Genes 2008, 36, 471–478. [Google Scholar] [CrossRef]
- Hulse-Post, D.J.; Franks, J.; Boyd, K.; Salomon, R.; Hoffmann, E.; Yen, H.L.; Webby, R.J.; Walker, D.; Nguyen, T.D.; Webster, R.G. Molecular Changes in the Polymerase Genes (PA and PB1) Associated with High Pathogenicity of H5N1 Influenza Virus in Mallard Ducks. J. Virol. 2007, 81, 8515–8524. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Feng, H.; Xu, J.; Zhao, D.; Shi, J.; Li, Y.; Deng, G.; Jiang, Y.; Li, X.; Zhu, P.; et al. The PA Protein Directly Contributes to the Virulence of H5N1 Avian Influenza Viruses in Domestic Ducks. J. Virol. 2010, 85, 2180–2188. [Google Scholar] [CrossRef] [Green Version]
- Reed, M.L.; Bridges, O.A.; Seiler, P.; Kim, J.-K.; Yen, H.-L.; Salomon, R.; Govorkova, E.A.; Webster, R.G.; Russell, C.J. The pH of Activation of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity and Transmissibility in Ducks. J. Virol. 2009, 84, 1527–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Cardona, C.J. Adaptation and Transmission of a Wild Duck Avian Influenza Isolate in Chickens. Avian Dis. 2010, 54, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Munier, S.; Larcher, T.; Cormier-Aline, F.; Soubieux, D.; Su, B.; Guigand, L.; Labrosse, B.; Cherel, Y.; Quéré, P.; Marc, D.; et al. A Genetically Engineered Waterfowl Influenza Virus with a Deletion in the Stalk of the Neuraminidase Has Increased Virulence for Chickens. J. Virol. 2009, 84, 940–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Yu, Z.; Hu, Y.; Tu, J.; Zou, W.; Peng, Y.; Zhu, J.; Li, Y.; Zhang, A.; Yu, Z.; et al. The Special Neuraminidase Stalk-Motif Responsible for Increased Virulence and Pathogenesis of H5N1 Influenza A Virus. PLoS ONE 2009, 4, e6277. [Google Scholar] [CrossRef] [PubMed]
- Sorrell, E.M.; Song, H.; Pena, L.; Perez, D.R. A 27-Amino-Acid Deletion in the Neuraminidase Stalk Supports Replication of an Avian H2N2 Influenza A Virus in the Respiratory Tract of Chickens. J. Virol. 2010, 84, 11831–11840. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zu Dohna, H.; Anchell, N.L.; Adams, S.C.; Dao, N.T.; Xing, Z.; Cardona, C.J. Adaptation and transmission of a duck-origin avian influenza virus in poultry species. Virus Res. 2010, 147, 40–46. [Google Scholar] [CrossRef]
- Vigeveno, R.M.; Poen, M.J.; Parker, E.; Holwerda, M.; De Haan, K.; Van Montfort, T.; Lewis, N.S.; Russell, C.A.; Fouchier, R.A.M.; De Jong, M.D.; et al. Outbreak Severity of Highly Pathogenic Avian Influenza A(H5N8) Viruses Is Inversely Correlated to Polymerase Complex Activity and Interferon Induction. J. Virol. 2020, 94, 94. [Google Scholar] [CrossRef]
- Venkatesh, D.; Poen, M.J.; Bestebroer, T.M.; Scheuer, R.D.; Vuong, O.; Chkhaidze, M.; Machablishvili, A.; Mamuchadze, J.; Ninua, L.; Fedorova, N.B.; et al. Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Peiris, J.S.M.; Lipatov, A.S.; Ellis, T.M.; Dyrting, K.C.; Krauss, S.; Zhang, L.J.; Webster, R.G.; Shortridge, K.F. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc. Natl. Acad. Sci. USA 2002, 99, 8950–8955. [Google Scholar] [CrossRef] [Green Version]
- Sharshov, K.; Romanovskaya, A.; Uzhachenko, R.; Durymanov, A.; Zaykovskaya, A.; Kurskaya, O.; Ilinykh, P.; Silko, N.; Kulak, M.; Alekseev, A.; et al. Genetic and biological characterization of avian influenza H5N1 viruses isolated from wild birds and poultry in Western Siberia. Arch. Virol. 2010, 155, 1145–1150. [Google Scholar] [CrossRef]
- Nagy, A.; Černíková, L.; Jiřincová, H.; Havlíčková, M.; Horníčková, J. Local-Scale Diversity and Between-Year “Frozen Evolution” of Avian Influenza A Viruses in Nature. PLoS ONE 2014, 9, e103053. [Google Scholar] [CrossRef] [Green Version]
- Ramey, A.M.; Reeves, A.B.; Drexler, J.Z.; Ackerman, J.T.; De La Cruz, S.; Lang, A.S.; Leyson, C.; Link, P.; Prosser, D.J.; Robertson, G.J.; et al. Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proc. R. Soc. B Boil. Sci. 2020, 287, 20201680. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Shane, S.M.; Kearney, M.T.; Zwank, P.J. Persistence of Avian Influenza Viruses in Water. Avian Dis. 1990, 34, 406. [Google Scholar] [CrossRef] [PubMed]
- Nazir, J.; Haumacher, R.; Ike, A.C.; Marschang, R.E. Persistence of Avian Influenza Viruses in Lake Sediment, Duck Feces, and Duck Meat. Appl. Environ. Microbiol. 2011, 77, 4981–4985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, C.K.; Yoon, K.J.; Wang, C.; Hoff, S.J.; Zimmerman, J.J.; Denagamage, T.; O’Connor, A.M. Using the Systematic Review Methodology To Evaluate Factors That Influence the Persistence of Influenza Virus in Environmental Matrices. Appl. Environ. Microbiol. 2010, 77, 1049–1060. [Google Scholar] [CrossRef] [Green Version]
- Stallknecht, D.E.; Kearney, M.T.; Shane, S.M.; Zwank, P.J. Effects of pH, Temperature, and Salinity on Persistence of Avian Influenza Viruses in Water. Avian Dis. 1990, 34, 412. [Google Scholar] [CrossRef]
- Brown, J.D.; Goekjian, G.; Poulson, R.; Valeika, S.; Stallknecht, D.E. Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Vet. Microbiol. 2009, 136, 20–26. [Google Scholar] [CrossRef]
- Graiver, D.A.; Topliff, C.L.; Kelling, C.L.; Bartelt-Hunt, S.L. Survival of the Avian Influenza Virus (H6N2) After Land Disposal. Environ. Sci. Technol. 2009, 43, 4063–4067. [Google Scholar] [CrossRef]
- Numberger, D.; Dreier, C.; Vullioud, C.; Gabriel, G.; Greenwood, A.D.; Grossart, H.P. Recovery of influenza A viruses from lake water and sediments by experimental inoculation. PLoS ONE 2019, 14, e0216880. [Google Scholar]
- Roche, B.; Drake, J.M.; Brown, J.; Stallknecht, D.E.; Bedford, T.; Rohani, P. Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses. PLoS Biol. 2014, 12, e1001931. [Google Scholar] [CrossRef]
- Breban, R.; Drake, J.M.; Stallknecht, D.E.; Rohani, P. The Role of Environmental Transmission in Recurrent Avian Influenza Epidemics. PLoS Comput. Biol. 2009, 5, e1000346. [Google Scholar] [CrossRef] [PubMed]
- Rohani, P.; Breban, R.; Stallknecht, D.E.; Drake, J.M. Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc. Natl. Acad. Sci. USA 2009, 106, 10365–10369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vittecoq, M.; Gauduin, H.; Oudart, T.; Bertrand, O.; Roche, B.; Guillemain, M.; Boutron, O. Modeling the spread of avian influenza viruses in aquatic reservoirs: A novel hydrodynamic approach applied to the Rhône delta (southern France). Sci. Total Environ. 2017, 595, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Swayne, D.E.; Cooper, R.J.; Burns, R.E.; Stallknecht, D.E. Persistence of H5 and H7 Avian Influenza Viruses in Water. Avian Dis. 2007, 51, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, A.; Derksen, T.; Biswas, S.; Nazmi, A.; Rejmanek, D.; Crossley, B.; Pandey, P.; Gallardo, R.A. Persistence of low and highly pathogenic avian influenza virus in reused poultry litter, effects of litter amendment use, and composting temperatures. J. Appl. Poult. Res. 2020, 100096. [Google Scholar] [CrossRef]
- Hauck, R.; Crossley, B.; Rejmanek, D.; Zhou, H.; Gallardo, R.A. Persistence of Highly Pathogenic and Low Pathogenic Avian Influenza Viruses in Footbaths and Poultry Manure. Avian Dis. 2017, 61, 64–69. [Google Scholar] [CrossRef]
- Reperant, L.A.; Fuckar, N.S.; Osterhaus, A.D.; Dobson, A.P.; Kuiken, T. Spatial and temporal association of outbreaks of H5N1 influenza virus infection in wild birds with the 0 degrees C isotherm. PLoS Pathog. 2010, 6, e1000854. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, D.; De La Rocque, S.; Khomenko, S.; Gilbert, M.; Newman, S.H.; Roche, B.; Schwabenbauer, K.; Pinto, J.; Robinson, T.P.; Slingenbergh, J. The Cold European Winter of 2005–2006 Assisted the Spread and Persistence of H5N1 Influenza Virus in Wild Birds. EcoHealth 2010, 7, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Pavon-Jordan, D. Waterbirds in a Changing World: Effects of Climate, Habitat and Conservation Policy on European Waterbirds. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Lehikoinen, A.; Jaatinen, K. Delayed autumn migration in northern Europe waterfowl. J. Ornithol. 2012, 153, 563–570. [Google Scholar] [CrossRef]
- Kleyheeg, E.; Van Dijk, J.G.B.; Tsopoglou-Gkina, D.; Woud, T.Y.; Boonstra, D.K.; Nolet, B.A.; Soons, M.B. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 2017, 5, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.A.; Alexandrou, O.; Bierregaard, R.O., Jr.; Bildstein, K.L.; Bohning-Gaese, K.; Bracis, C.; Brzorad, J.N.; Buechley, E.R. Large birds travel farther in homogenous environments. Glob. Ecol. Biogeogr. 2019, 28, 576–587. [Google Scholar] [CrossRef] [Green Version]
- Puranik, A.; Slomka, M.J.; Warren, C.J.; Thomas, S.S.; Mahmood, S.; Byrne, A.M.; Ramsay, A.M.; Skinner, P.; Watson, S.; Everett, H.E.; et al. Transmission dynamics between infected waterfowl and terrestrial poultry: Differences between the transmission and tropism of H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4a) among ducks, chickens and turkeys. Virology 2020, 541, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Van den Brand, J.M.A.; Verhagen, J.H.; Veldhuis Kroeze, E.J.B.; van de Bildt, M.W.G.; Bodewes, R.; Herfst, S.; Richard, M.; Lexmond, P.; Bestebroer, T.M.; Fouchier, R.A.M.; et al. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014–2015) without clinical or pathological evidence of disease. Emerg. Microbes Infect. 2018, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalthoff, D.; Breithaupt, A.; Teifke, J.P.; Globig, A.; Harder, T.; Mettenleiter, T.C.; Beer, M. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans. Emerg. Infect. Dis. 2008, 14, 1267–1270. [Google Scholar] [CrossRef] [PubMed]
- Beerens, N.; Heutink, R.; Pritz-Verschuren, S.; Germeraad, E.A.; Bergervoet, S.A.; Harders, F.; Bossers, A.; Koch, G. Genetic relationship between poultry and wild bird viruses during the highly pathogenic avian influenza H5N6 epidemic in the Netherlands, 2017–2018. Transbound. Emerg. Dis. 2019, 66, 1370–1378. [Google Scholar] [CrossRef]
- Koethe, S.; Ulrich, L.; Ulrich, R.; Amler, S.; Graaf, A.; Harder, T.C.; Grund, C.; Mettenleiter, T.C.; Conraths, F.J.; Beer, M.; et al. Modulation of lethal HPAIV H5N8 clade 2.3.4.4B infection in AIV pre-exposed mallards. Emerg. Microbes Infect. 2020, 9, 180–193. [Google Scholar] [CrossRef]
- Brochet, A.-L.; Guillemain, M.; Lebarbenchon, C.; Simon, G.; Fritz, H.; Green, A.J.; Renaud, F.; Thomas, F.; Gauthier-Clerc, M. The Potential Distance of Highly Pathogenic Avian Influenza Virus Dispersal by Mallard, Common Teal and Eurasian Pochard. EcoHealth 2009, 6, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Delany, S.; Veen, J.; Clark, J. (Eds.) Urgent Preliminary Assessment of Ornithological Data Relevant to the Spread of Avian Influenza in Europe. EU-DG Environment, Brussels. 2006. Available online: https://www.wetlands.org/publications/urgent-preliminary-assessment-of-ornithological-data-relevant-to-the-spread-of-avian-influenza-in-europe-phase-1-2/ (accessed on 29 January 2021).
- Veen, J.; Brouwer, J.; Atkinson, P.W.; Bilgin, C.; Blew, J.; Eksioglu, S.; Hoffmann, M.; Nardelli, R.; Spina, F.; Tendi, C.; et al. Ornithological Data Relevant to the Spread of Avian Influenza in Europe (Phase 2): Further Identification and First Field Assessment of Higher Risk Species; Wetlands International: Wageningen, The Netherlands, 2007. [Google Scholar]
- Keawcharoen, J.; Van Riel, D.; Van Amerongen, G.; Bestebroer, T.; Beyer, W.; Van Lavieren, R.; Osterhaus, A.; Fouchier, R.; Kuiken, T. Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1). Emerg. Infect. Dis. 2008, 14, 600–607. [Google Scholar] [CrossRef]
- Reperant, L.A.; Van De Bildt, M.W.G.; Van Amerongen, G.; Buehler, D.M.; Osterhaus, A.D.M.E.; Jenni-Eiermann, S.; Piersma, T.; Kuiken, T. Highly Pathogenic Avian Influenza Virus H5N1 Infection in a Long-Distance Migrant Shorebird under Migratory and Non-Migratory States. PLoS ONE 2011, 6, e27814. [Google Scholar] [CrossRef] [Green Version]
- Ramis, A.; Van Amerongen, G.; Van De Bildt, M.W.G.; Leijten, L.; Vanderstichel, R.; Osterhaus, A.D.M.E.; Kuiken, T. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus). Vet. Res. 2014, 45, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Leyson, C.; Youk, S.-S.; Smith, D.; Dimitrov, K.; Lee, D.-H.; Larsen, L.E.; Swayne, D.E.; Pantin-Jackwood, M.J. Pathogenicity and genomic changes of a 2016 European H5N8 highly pathogenic avian influenza virus (clade 2.3.4.4) in experimentally infected mallards and chickens. Virology 2019, 537, 172–185. [Google Scholar] [CrossRef] [PubMed]
- Fereidouni, S.R.; Starick, E.; Beer, M.; Wilking, H.; Kalthoff, D.; Grund, C.; Hauslaigner, R.; Breithaupt, A.; Lange, E.; Harder, T.C. Highly pathogenic avian influenza virus infection of mallards with homo- and heterosubtypic immunity induced by low pathogenic avian influenza viruses. PLoS ONE 2009, 4, e6706. [Google Scholar] [CrossRef] [PubMed]
- Nickbakhsh, S.; Hall, M.D.; Dorigatti, I.; Lycett, S.J.; Mulatti, P.; Monne, I.; Fusaro, A.; Woolhouse, M.E.; Rambaut, A.; Kao, R.R. Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry. Epidemics 2016, 17, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Latorre-Margalef, N.; Grosbois, V.; Wahlgren, J.; Munster, V.J.; Tolf, C.; Fouchier, R.A.M.; Osterhaus, A.D.M.E.; Olsen, B.; Waldenström, J. Heterosubtypic Immunity to Influenza A Virus Infections in Mallards May Explain Existence of Multiple Virus Subtypes. PLoS Pathog. 2013, 9, e1003443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.J.; Lapedes, A.S.; De Jong, J.C.; Bestebroer, T.M.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 2004, 305, 371–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ye, H.; Li, H.; Ma, K.; Qiu, W.; Chen, Y.; Qiu, Z.; Li, B.; Jia, W.; Liang, Z.; et al. Evolution and Antigenic Drift of Influenza A (H7N9) Viruses, China, 2017–2019. Emerg. Infect. Dis. 2020, 26, 1906–1911. [Google Scholar] [CrossRef]
- Koel, B.F.; van der Vliet, S.; Burke, D.F.; Bestebroer, T.M.; Bharoto, E.E.; Yasa, I.W.; Herliana, I.; Laksono, B.M.; Xu, K.; Skepner, E.; et al. Antigenic variation of clade 2.1 H5N1 virus is determined by a few amino acid substitutions immediately adjacent to the receptor binding site. MBio 2014, 5, e01070-14. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.; Koel, B.F.; Bestebroer, T.M.; Lewis, N.S.; Smith, D.J.; Fouchier, R.A.M. Serological Evidence for Non-Lethal Exposures of Mongolian Wild Birds to Highly Pathogenic Avian Influenza H5N1 Virus. PLoS ONE 2014, 9, e113569. [Google Scholar] [CrossRef] [Green Version]
- Bailey, E.; Long, L.-P.; Zhao, N.; Hall, J.S.; Baroch, J.A.; Nolting, J.; Senter, L.; Cunningham, F.L.; Pharr, G.T.; Hanson, L.; et al. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America. Avian Dis. 2016, 60, 346–353. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Poen, M.; Stallknecht, D.E.; Van Der Vliet, S.; Lexmond, P.; Sreevatsan, S.; Poulson, R.L.; Fouchier, R.A.M.; Lebarbenchon, C. Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Wibawa, H.; Henning, J.; Waluyati, D.E.; Usman, T.B.; Lowther, S.; Bingham, J.; Junaidi, A.; Meers, J. Comparison of serological assays for detecting antibodies in ducks exposed to H5 subtype avian influenza virus. BMC Vet. Res. 2012, 8, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, S.C.; Manvell, R.J.; Schulenburg, B.; Shell, W.; Wikramaratna, P.S.; Perrins, C.; Sheldon, B.C.; Brown, I.H.; Pybus, O.G. Antibody responses to avian influenza viruses in wild birds broaden with age. Proc. R. Soc. B Boil. Sci. 2016, 283, 20162159. [Google Scholar] [CrossRef] [PubMed]
- Waldenström, J.; Kuiken, T.; Wille, M. Narrative Overview on Wild Bird Migration in the Context of Highly Pathogenic Avian Influenza Incursion into the European Union. EFSA Supporting Publ. 2017, 14, 1283E. [Google Scholar] [CrossRef]
- Alarcon, P.; Brouwer, A.; Venkatesh, D.; Duncan, D.; Dovas, C.I.; Georgiades, G.; Monne, I.; Fusaro, A.; Dan, A.; Śmietanka, K.; et al. Comparison of 2016–17 and Previous Epizootics of Highly Pathogenic Avian Influenza H5 Guangdong Lineage in Europe. Emerg. Infect. Dis. 2018, 24, 2270–2283. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.D.; Dalby, L.; Christensen, T.K.; Nagy, S.; Balsby, T.J.; Crowe, O.; Clausen, P.; Deceuninck, B.; Devos, K.; Holt, C.A.; et al. Seeking explanations for recent changes in abundance of wintering Eurasian wigeon (Anas penelope) in northwest Europe. Ornis Fenn. 2016, 93, 12–25. [Google Scholar]
- Hochman, A.; Scher, S.; Quinting, J.F.; Pinto, J.G.; Messori, G. Dynamics and predictability of cold spells over the Eastern Mediterranean. Clim. Dyn. 2020, 1–18. [Google Scholar] [CrossRef]
- Weber, T.P.; Houston, A.I. Flight Costs, Flight Range and the Stopover Ecology of Migrating Birds. J. Anim. Ecol. 1997, 66, 297. [Google Scholar] [CrossRef]
- Schaub, M.; Pradel, R.; Jenni, L.; Lebreton, J.D. Migrating birds stop over longer than usually thought: An improved capture-recapture analysis. Ecology 2001, 82, 852–859. [Google Scholar]
- Nilsson, C.; Klaassen, R.H.G.; Alerstam, T. Differences in Speed and Duration of Bird Migration between Spring and Autumn. Am. Nat. 2013, 181, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Kölzsch, A.; Müskens, G.J.D.M.; Szinai, P.; Moonen, S.; Glazov, P.; Kruckenberg, H.; Wikelski, M.; Nolet, B.A. Flyway connectivity and exchange primarily driven by moult migration in geese. Mov. Ecol. 2019, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Van Toor, M.L.; Avril, A.; Wu, G.; Holan, S.H.; Waldenstrom, J. As the Duck Flies—Estimating the Dispersal of Low-Pathogenic Avian Influenza Viruses by Migrating Mallards. Front. Ecol. Evol. 2018, 6, 208. [Google Scholar] [CrossRef] [Green Version]
- Gaidet, N.; Cappelle, J.; Takekawa, J.Y.; Prosser, D.J.; Iverson, S.A.; Douglas, D.C.; Perry, W.M.; Mundkur, T.; Newman, S.H. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: Dispersal ranges and rates determined from large-scale satellite telemetry. J. Appl. Ecol. 2010, 47, 1147–1157. [Google Scholar] [CrossRef]
- Si, Y.; Xin, Q.; Prins, H.H.T.; De Boer, W.F.; Gong, P. Improving the quantification of waterfowl migration with remote sensing and bird tracking. Sci. Bull. 2015, 60, 1984–1993. [Google Scholar] [CrossRef] [Green Version]
- Elbers, A.R.W.; Gonzales, J.L. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound. Emerg. Dis. 2019, 67, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Velkers, F.C.; Manders, T.T.M.; Vernooij, J.C.; Stahl, J.; Slaterus, R.; Stegeman, A. Association of wild bird densities around poultry farms with the risk of highly pathogenic avian influenza virus subtype H5N8 outbreaks in the Netherlands, 2016. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.-Q.; De Vlas, S.J.; Liang, S.; Looman, C.W.N.; Gong, P.; Xu, B.; Yan, L.; Yang, H.; Richardus, J.H.; Cao, W.-C. Environmental Factors Contributing to the Spread of H5N1 Avian Influenza in Mainland China. PLoS ONE 2008, 3, e2268. [Google Scholar] [CrossRef] [Green Version]
- Bergervoet, S.A.; Pritz-Verschuren, S.B.E.; Gonzales, J.L.; Bossers, A.; Poen, M.J.; Dutta, J.; Khan, Z.; Kriti, D.; Van Bakel, H.; Bouwstra, R.; et al. Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006–2016. Sci. Rep. 2019, 9, 13681. [Google Scholar] [CrossRef]
- Bengtsson, D.; Avril, A.; Gunnarsson, G.; Elmberg, J.; Söderquist, P.; Norevik, G.; Tolf, C.; Safi, K.; Fiedler, W.; Wikelski, M.; et al. Movements, Home-Range Size and Habitat Selection of Mallards during Autumn Migration. PLoS ONE 2014, 9, e100764. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, J.L.; Pritz-Verschuren, S.; Bouwstra, R.; Wiegel, J.; Elbers, A.R.W.; Beerens, N. Seasonal risk of low pathogenic avian influenza virus introductions into free-range layer farms in the Netherlands. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef]
- Verhagen, J.H.; Lexmond, P.; Vuong, S.; Schutten, M.; Guldemeester, J.; Osterhaus, A.D.M.E.; Elbers, A.R.W.; Slaterus, R.; Hornman, M.; Koch, G.; et al. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs. PLoS ONE 2017, 12, e0173470. [Google Scholar] [CrossRef] [Green Version]
- Hobbelen, P.H.F.; Elbers, A.R.W.; Werkman, M.; Koch, G.; Velkers, F.C.; Stegeman, A.; Hagenaars, T.J. Estimating the introduction time of highly pathogenic avian influenza into poultry flocks. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, J.G.; Hoye, B.J.; Verhagen, J.H.; Nolet, B.A.; Fouchier, R.A.; Klaassen, M. Juveniles and migrants as drivers for seasonal epizootics of avian influenza virus. J. Anim. Ecol. 2014, 83, 266–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beatty, W.S.; Webb, E.B.; Kesler, D.C.; Raedeke, A.H.; Naylor, L.W.; Humburg, D.D. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period. Landsc. Ecol. 2014, 29, 989–1000. [Google Scholar] [CrossRef]
- Cappelle, J.; Zhao, D.D.; Gilbert, M.; Nelson, M.M.; Newman, S.S.; Takekawa, J.J.; Gaidet, N.; Prosser, D.D.; Liu, Y.Y.; Li, P.P.; et al. Risks of Avian Influenza Transmission in Areas of Intensive Free-Ranging Duck Production with Wild Waterfowl. EcoHealth 2014, 11, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conraths, F.J.; Sauter-Louis, C.; Globig, A.; Dietze, K.; Pannwitz, G.; Albrecht, K.; Höreth-Böntgen, D.; Beer, M.; Staubach, C.; Homeier-Bachmann, T. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations. Transbound. Emerg. Dis. 2015, 63, 10–13. [Google Scholar] [CrossRef]
- Central Veterinary Institute WU. Risk factors of primary introduction of highly pathogenic and low pathogenic avian influenza into European poultry holdings, considering at least material contaminated by wildbirdsandcontact with wildbirds. EFSA Supporting Publ. 2007, 14, 1282E. [Google Scholar]
- Ssematimba, A.; Hagenaars, T.; De Wit, J.; Ruiterkamp, F.; Fabri, T.; Stegeman, J.; De Jong, M. Avian influenza transmission risks: Analysis of biosecurity measures and contact structure in Dutch poultry farming. Prev. Vet. Med. 2013, 109, 106–115. [Google Scholar] [CrossRef]
- Borchardt, M.A.; Spencer, S.K.; Hubbard, L.E.; Firnstahl, A.D.; Stokdyk, J.P.; Kolpin, D.W. Avian inlfuenza virus RNA in groundwater wells supplying poultry farms affected by the 2015 influenza outbreak. Environ. Sci. Technol. Lett. 2017, 4, 268–272. [Google Scholar] [CrossRef]
- Caron, A.; Grosbois, V.; Etter, E.M.C.; Gaidet, N.; De Garine-Wichatitsky, M. Bridge hosts for avian influenza viruses at the wildlife/domestic interface: An eco-epidemiological framework implemented in southern Africa. Prev. Vet. Med. 2014, 117, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Caron, A.; Cappelle, J.; Cumming, G.S.; De Garine-Wichatitsky, M.; Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 2015, 46, 83. [Google Scholar] [CrossRef] [Green Version]
- Burns, T.E.; Ribble, C.; Stephen, C.; Kelton, D.; Toews, L.; Osterhold, J.; Wheeler, H. Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada. Can. Vet. J. Rev. Vet. Can. 2012, 53, 158–166. [Google Scholar]
- Bosco-Lauth, A.M.; Marlenee, N.L.; Hartwig, A.E.; Bowen, R.A.; Root, J.J. Shedding of clade 2.3.4.4 H5N8 and H5N2 highly pathogenic avian influenza viruses in peridomestic wild birds in the US. Transbound. Emerg. Dis. 2019, 66, 1301–1305. [Google Scholar] [CrossRef] [PubMed]
- Grear, D.A.; Dusek, R.J.; Walsh, D.P.; Hall, J.S. No evidence of infection or exposure to highly pathogenic avian influenzas in peridomestic wildlife on an affected poultry facility. J. Wildl. Dis. 2017, 53, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Shriner, S.A.; Root, J.J.; Lutman, M.W.; Kloft, J.M.; VanDalen, K.K.; Sullivan, H.J.; White, T.S.; Milleson, M.P.; Hairston, J.L.; Chandler, S.C.; et al. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak. Sci. Rep. 2016, 6, 36237. [Google Scholar] [CrossRef] [PubMed]
- Velkers, F.C.; Blokhuis, S.J.; Kroeze, E.J.B.V.; Burt, S.A. The role of rodents in avian influenza outbreaks in poultry farms: A review. Vet. Q. 2017, 37, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Guinat, C.; Rouchy, N.; Camy, F.; Guérin, J.L.; Paul, M. Exploring the Wind-Borne Spread of Highly Pathogenic Avian Influenza H5N8 During the 2016–2017 Epizootic in France. Avian Dis. 2018, 63, 246–248. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Harder, T.; Beer, M.; Pohlmann, A. Rapid multiplex MinION nanopore sequencing workflow for Influenza A viruses. BMC Infect. Dis. 2020, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Poen, M.J.; Pohlmann, A.; Amid, C.; Bestebroer, T.M.; Brookes, S.M.; Brown, I.H.; Everett, H.; Schapendonk, C.M.E.; Scheuer, R.D.; Smits, S.L.; et al. Comparison of sequencing methods and data processing pipelines for whole genome sequencing and minority single nucleotide variant (mSNV) analysis during an influenza A/H5N8 outbreak. PLoS ONE 2020, 15, e0229326. [Google Scholar] [CrossRef] [Green Version]
- Poen, A.; Verhagen, J.; Manvell, R.J.; Brown, I.; Bestebrer, T.; Van Der Vliet, S.; Vuong, O.; Scheuer, R.D.; Van Der Jeugd, H.P.; Nolet, B.; et al. Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016. Eurosurveillance 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Lickfett, T.M.; Clark, E.; Gehring, T.M.; Alm, E.W. Detection of Influenza A viruses at migratory bird stopover sites in Michigan, USA. Infect. Ecol. Epidemiol. 2018, 8, 1474709. [Google Scholar] [CrossRef] [Green Version]
- Pepin, K.M.; Hopken, M.W.; Shriner, S.A.; Spackman, E.; Abdo, Z.; Parrish, C.R.; Riley, S.; Lloyd-Smith, J.O.; Piaggio, A.J. Improving risk assessment of the emergence of novel influenza A viruses by incorporating environmental surveillance. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood, G.; Roche, X.; Brioudes, A.; Von Dobschuetz, S.; Fasina, F.O.; Kalpravidh, W.; Makonnen, Y.; Lubroth, J.; Sims, L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Tizard, J.; Patel, S.; Waugh, J.; Tavares, E.; Bergmann, T.; Gill, B.J.; Norman, J.; Christidis, L.; Scofield, P.; Haddrath, O.; et al. DNA barcoding a unique avifauna: An important tool for evolution, systematics and conservation. BMC Evol. Biol. 2019, 19, 1–13. [Google Scholar] [CrossRef]
- Aliabadian, M.; Beentjes, K.K.; Roselaar, C.; Van Brandwijk, H.; Nijman, V.; Vonk, R. DNA barcoding of Dutch birds. ZooKeys 2013, 365, 25–48. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Waugh, J.; Millar, C.D.; Lambert, D.M. Conserved primers for DNA barcoding historical and modern samples from New Zealand and Antarctic birds. Mol. Ecol. Resour. 2010, 10, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Hebert, P.D.; Stoeckle, M.Y.; Zemlak, T.S.; Francis, C.M. Identification of Birds through DNA Barcodes. PLoS Biol. 2004, 2, e312. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Yang, C.; Ke, D. DNA barcoding and phylogenetic relationships in Anatidae. Mitochondrial DNA 2014, 27, 1042–1044. [Google Scholar] [CrossRef]
- McCormack, J.E.; Harvey, M.G.; Faircloth, B.C.; Crawford, N.G.; Glenn, T.C.; Brumfield, R.T. A Phylogeny of Birds Based on Over 1,500 Loci Collected by Target Enrichment and High-Throughput Sequencing. PLoS ONE 2013, 8, e54848. [Google Scholar] [CrossRef] [Green Version]
- Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nat. Cell Biol. 2015, 526, 569–573. [Google Scholar] [CrossRef]
- Stiller, J.; Zhang, G. Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies. Diversity 2019, 11, 115. [Google Scholar] [CrossRef] [Green Version]
- Barcode of Life Database (BoLD). Available online: https://www.boldsystems.org (accessed on 23 November 2020).
- Verhagen, J.; Höfle, U.; Van Amerongen, G.; Van De Bildt, M.; Majoor, F.; Fouchier, R.; Kuiken, T. Long-Term Effect of Serial Infections with H13 and H16 Low-Pathogenic Avian Influenza Viruses in Black-Headed Gulls. J. Virol. 2015, 89, 11507–11522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meade, P.; Latorre-Margalef, N.; Stallknecht, D.E.; Krammer, F. Development of an influenza virus protein microarray to measure the humoral response to influenza virus infection in mallards. Emerg. Microbes Infect. 2017, 6, e110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freidl, G.S.; De Bruin, E.; Van Beek, J.; Reimerink, J.; De Wit, S.; Koch, G.; Vervelde, L.; Ham, H.-J.V.D.; Koopmans, M.P.G. Getting More Out of Less–A Quantitative Serological Screening Tool for Simultaneous Detection of Multiple Influenza A Hemagglutinin-Types in Chickens. PLoS ONE 2014, 9, e108043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuiken, T. Is low pathogenic avian influenza virus virulent for wild waterbirds? Proc. R. Soc. B Biol. Sci. 2013, 280, 20130990. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Avian Influenza. Available online: https://ec.europa.eu/food/animals/animal-diseases/control-measures/avian-influenza_en (accessed on 17 December 2020).
- Gaidet, N.; Newman, S.H.; Hagemeijer, W.; Dodman, T.; Cappelle, J.; Hammoumi, S.; De Simone, L.; Takekawa, J.Y. Duck Migration and Past Influenza A (H5N1) Outbreak Areas. Emerg. Infect. Dis. 2008, 14, 1164–1166. [Google Scholar] [CrossRef]
- Meseko, C.A.; Ehizibolo, D.O.; Vakuru, C. Migratory Waterfowl from Europe as Potential Source of Highly Pathogenic Avian Inlfuenza INfection to Nigeria Poultry. Niger. Vet. J. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Twabela, A.T.; Tshilenge, G.M.; Sakoda, Y.; Okamatsu, M.; Bushu, E.; Kone, P.; Wiersma, L.; Zamperin, G.; Drago, A.; Zecchin, B.; et al. Highly Pathogenic Avian Influenza A(H5N8) Virus, Democratic Republic of the Congo, 2017. Emerg. Infect. Dis. 2018, 24, 1371–1374. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, B.L.; Wood, C.L.; Iliff, M.J.; Bonney, R.E.; Fink, D.; Kelling, S. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 2009, 142, 2282–2292. [Google Scholar] [CrossRef]
- Euro Bird Portal. Available online: https://eurobirdportal.org (accessed on 23 January 2021).
- Gonzales, J.L.; Boender, G.J.; Elbers, A.R.W.; Stegeman, A.; De Koeijer, A. Risk based surveillance for early detection of low pathogenic avian influenza outbreaks in layer chickens. Prev. Vet. Med. 2014, 117, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Elbers, A.R.W.; Holtslag, J.B.; Bouma, A.; Koch, G. Within-Flock Mortality during the High-Pathogenicity Avian Influenza (H7N7) Epidemic in the Netherlands in 2003: Implications for an Early Detection System. Avian Dis. 2007, 51, 304–308. [Google Scholar] [CrossRef]
- Bisdorff, B.; Schauer, B.; Taylor, N.; Rodríguez-Prieto, V.; Comin, A.; Brouwer, A.; Dórea, F.; Drewe, J.; Hoinville, L.; Lindberg, A.; et al. Active animal health surveillance in European Union Member States: Gaps and opportunities. Epidemiol. Infect. 2016, 145, 802–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guinat, C.; Comin, A.; Kratzer, G.; Durand, B.; Delesalle, L.; Delpont, M.; Guerin, J.-L.; Paul, M. Biosecurity risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms, France. Transbound. Emerg. Dis. 2020, 67, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Delpont, M.; Racicot, M.; Durivage, A.; Fornili, L.; Guerin, J.-L.; Vaillancourt, J.; Paul, M. Determinants of biosecurity practices in French duck farms after a H5N8 Highly Pathogenic Avian Influenza epidemic: The effect of farmer knowledge, attitudes and personality traits. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in Poultry: Ecology and Potential Interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Guinat, C.; Durand, B.; Vergne, T.; Corre, T.; Rautureau, S.; Scoizec, A.; Lebouquin-Leneveu, S.; Guérin, J.-L.; Paul, M.C. Role of Live-Duck Movement Networks in Transmission of Avian Influenza, France, 2016–2017. Emerg. Infect. Dis. 2020, 26, 472–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestman, M.; De Jong, W.; Wagenaar, J.-P.; Weerts, T. Presence of avian influenza risk birds in and around poultry free-range areas in relation to range vegetation and openness of surrounding landscape. Agrofor. Syst. 2017, 92, 1001–1008. [Google Scholar] [CrossRef]
- Beerens, N.; Heutink, R.; Bergervoet, S.A.; Harders, F.; Bossers, A.; Koch, G. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016. Emerg. Infect. Dis. 2017, 23, 1974–1981. [Google Scholar] [CrossRef]
Clade | 2.2 | 2.3.2.1 | 2.3.4.4 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subclade | 2.2.1 | 2.2.2 | 2.2 | 2.3.2.1c | 2.3.2.1c | 2.3.4.4a | 2.3.4.4b | 2.3.4.4b | 2.3.4.4b | 2.3.4.4b | ||||||||||
Period | 2005–2006 | 2005–2006 | 2006–2009 | 2010 | 2015 | 2014–2015 | 2016–2019 | 2017–2019 | 2019–2020 | 2020–2021 (ongoing) | ||||||||||
Subtypes identified | H5N1 | H5N1 | H5N1 | H5N1 | H5N1 | H5N8 | H5N5 H5N6 H5N8 | H5N6 | H5N8 | H5N1 H5N3 H5N4 H5N5 H5N8 | ||||||||||
Host type | W | P | W | P | W | P | W | P | W | P | W | P | W | P | W | P | W | P | W | P |
Country | ||||||||||||||||||||
Albania | ||||||||||||||||||||
Andorra | ||||||||||||||||||||
Armenia | ||||||||||||||||||||
Austria | ||||||||||||||||||||
Azerbaijan | ||||||||||||||||||||
Belarus | ||||||||||||||||||||
Belgium | ||||||||||||||||||||
Bosnia Herzegovina | ||||||||||||||||||||
Bulgaria | ||||||||||||||||||||
Croatia | ||||||||||||||||||||
Cyprus | ||||||||||||||||||||
Czechia | ||||||||||||||||||||
Denmark | ||||||||||||||||||||
Estonia | ||||||||||||||||||||
Finland | ||||||||||||||||||||
France | ||||||||||||||||||||
Georgia | ||||||||||||||||||||
Germany | ||||||||||||||||||||
Greece | ||||||||||||||||||||
Hungary | ||||||||||||||||||||
Iceland | ||||||||||||||||||||
Ireland | ||||||||||||||||||||
Italy | ||||||||||||||||||||
Kosovo | ||||||||||||||||||||
Latvia | ||||||||||||||||||||
Liechtenstein | ||||||||||||||||||||
Lithuania | ||||||||||||||||||||
Luxembourg | ||||||||||||||||||||
Malta | ||||||||||||||||||||
Moldova | ||||||||||||||||||||
Monaco | ||||||||||||||||||||
Montenegro | ||||||||||||||||||||
Netherlands | ||||||||||||||||||||
North Macedonia | ||||||||||||||||||||
Norway | ||||||||||||||||||||
Poland | ||||||||||||||||||||
Portugal | ||||||||||||||||||||
Romania | ||||||||||||||||||||
Russia | ||||||||||||||||||||
San Marino | ||||||||||||||||||||
Serbia | ||||||||||||||||||||
Slovakia | ||||||||||||||||||||
Slovenia | ||||||||||||||||||||
Spain | ||||||||||||||||||||
Sweden | ||||||||||||||||||||
Switzerland | ||||||||||||||||||||
Turkey | ||||||||||||||||||||
Ukraine | ||||||||||||||||||||
UK | ||||||||||||||||||||
Vatican City |
Clade | 2.2 | 2.3.2.1 | 2.3.4.4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subclade | 2.2.1 | 2.2.2 | 2.2 | 2.3.2.1c | 2.3.2.1c | 2.3.4.4a | 2.3.4.4b | 2.3.4.4b | 2.3.4.4b | 2.3.4.4b | |||
Period | 2005–2006 | 2005–2006 | 2006–2009 | 2010 | 2015 | 2014–2015 | 2016–2019 | 2017–2019 | 2019–2020 | 2020–2021 (ongoing) | |||
Subtypes identified | H5N1 | H5N1 | H5N1 | H5N1 | H5N1 | H5N8 | H5N5 H5N6 H5N8 | H5N6 | H5N8 | H5N1 H5N3 H5N4 H5N5 H5N8 | |||
Order | Family | Species | Latin | ||||||||||
Anseriformes | Anatidae | Graylag goose | Anser anser | ∙ | ∙ | ∙ | ∙ | ||||||
Greater white-fronted goose | Anser albifrons | ∙ | ∙ | ||||||||||
Lesser white-fronted goose | Anser erythropus | ||||||||||||
Taiga bean-goose | Anser fabalis | • | |||||||||||
Tundra bean-goose | Anser serrirostris | ||||||||||||
Pink-footed goose | Anser brachyrhynchus | • | |||||||||||
Brant | Branta bernicla | • | |||||||||||
Barnacle goose | Branta leucopsis | • | |||||||||||
Canada goose | Branta canadensis | • | • | ||||||||||
Red-breasted goose | Branta ruficollis | ||||||||||||
Mute swan | Cygnus olor | • | • | • | • | • | • | ||||||
Black swan | Cygnus atratus | • | |||||||||||
Whooper swan | Cygnus cygnus | • | • | • | |||||||||
Tundra swan | Cygnus columbianus | • | |||||||||||
Egyptian goose | Alopochen aegyptiaca | ||||||||||||
Ruddy shelduck | Tadorna ferruginea | ||||||||||||
Common shelduck | Tadorna tadorna | • | • | ||||||||||
Muscovy duck | Cairina moschata | ||||||||||||
Northern shoveler | Spatula clypeata | ||||||||||||
Gadwall | Mareca strepera | ||||||||||||
Eurasian wigeon | Mareca penelope | • | • | • | |||||||||
Mallard | Anas platyrhynchos | • | • | • | • | ||||||||
Northern pintail | Anas acuta | ||||||||||||
Eurasian green-winged teal | Anas crecca | • | • | ||||||||||
Red-crested pochard | Netta rufina | ||||||||||||
Common pochard | Aythya ferina | • | • | • | |||||||||
Tufted duck | Aythya fuligula | • | • | • | • | ||||||||
Greater scaup | Aythya marila | ||||||||||||
Common eider | Somateria mollissima | • | |||||||||||
Common goldeneye | Bucephala clangula | ||||||||||||
Smew | Mergellus albellus | ||||||||||||
Common Merganser | Mergus merganser | • | • | ||||||||||
Galliformes | Phasianidae | Ring-necked Pheasant | Phasianus colchicus | • | |||||||||
Podicpediformes | Podicipedidae | Little grebe | Tachybaptus ruficollis | ||||||||||
Great crested grebe | Podiceps cristatus | • | • | • | |||||||||
Eared grebe | Podiceps nigricollis | ||||||||||||
Columbiformes | Columbidae | Rock pigeon | Columba livia | ||||||||||
Common wood-pigeon | Columba palumbus | ||||||||||||
Eurasian collared-dove | Streptopelia decaocto | ||||||||||||
Gruiformes | Rallidae | Eurasian moorhen | Gallinula chloropus | ||||||||||
Eurasian coot | Fulica atra | • | • | ||||||||||
Gruidae | Common crane | Grus grus | |||||||||||
Charadriiformes | Haematopodidae | Eurasian oystercatcher | Haematopus ostralegus | ||||||||||
Charadriidae | Northern lapwing | Vanellus vanellus | |||||||||||
Scolopacidae | Eurasian curlew | Numenius arquata | • | ||||||||||
Red knot | Calidris canutus | • | |||||||||||
Curlew sandpiper | Calidris ferruginea | ||||||||||||
Green sandpiper | Tringa ochropus | ||||||||||||
Laridae | Black-headed gull | Chroicocephalus ridibundus | • | • | • | ||||||||
Mew gull | Larus canus | • | |||||||||||
Herring gull | Larus argentatus | • | • | • | |||||||||
Armenian gull | Larus armenicus | ||||||||||||
Lesser black-backed gull | Larus fuscus | ||||||||||||
Great black-backed gull | Larus marinus | • | • | ||||||||||
Common tern | Sterna hirundo | ||||||||||||
Ciconiiformes | Ciconiidae | White stork | Ciconia ciconia | • | |||||||||
Suliformes | Sulidae | Northern gannet | Morus bassanus | ||||||||||
Phalacrocoracidae | Pygmy cormorant | Microcarbo pygmaeus | |||||||||||
Great cormorant | Phalacrocorax carbo | • | • | ||||||||||
Pelecaniformes | Pelecanidae | Dalmatian pelican | Pelecanus crispus | ||||||||||
Pelecaniformes | Ardeidae | Great bittern | Botaurus stellaris | ||||||||||
Gray heron | Ardea cinerea | • | • | ||||||||||
Great egret | Ardea alba | • | • | ||||||||||
Little egret | Egretta garzetta | ||||||||||||
Cattle egret | Bubulcus ibis | ||||||||||||
Threskiornithidae | Eurasian spoonbill | Platalea leucorodia | |||||||||||
Accipitriformes | Accipitridae | Hen harrier | Circus cyaneus | ||||||||||
Eurasian sparrowhawk | Accipiter nisus | • | |||||||||||
Northern goshawk | Accipiter gentilis | • | |||||||||||
White-tailed eagle | Haliaeetus albicilla | • | • | • | |||||||||
Common buzzard | Buteo buteo | • | • | • | • | ||||||||
Strigiformes | Strigidae | Eurasian eagle-owl | Bubo bubo | • | |||||||||
Tawny owl | Strix aluco | ||||||||||||
Short-eared owl | Asio flammeus | ||||||||||||
Falconiformes | Falconidae | Eurasian kestrel | Falco tinnunculus | • | |||||||||
Saker falcon | Falco cherrug | ||||||||||||
Peregrine falcon | Falco peregrinus | • | • | ||||||||||
Passeriformes | Corvidae | Eurasian magpie | Pica pica | • | |||||||||
Rook | Corvus frugilegus | • | |||||||||||
Hooded crow | Corvus cornix | ||||||||||||
Common raven | Corvus corax | ||||||||||||
Sturnidae | European starling | Sturnus vulgaris | |||||||||||
Turdidae | Song thrush | Turdus philomelos | |||||||||||
Eurasian blackbird | Turdus merula | ||||||||||||
Fieldfare | Turdus pilaris | ||||||||||||
Passeridae | House sparrow | Passer domesticus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhagen, J.H.; Fouchier, R.A.M.; Lewis, N. Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses 2021, 13, 212. https://doi.org/10.3390/v13020212
Verhagen JH, Fouchier RAM, Lewis N. Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses. 2021; 13(2):212. https://doi.org/10.3390/v13020212
Chicago/Turabian StyleVerhagen, Josanne H., Ron A. M. Fouchier, and Nicola Lewis. 2021. "Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance" Viruses 13, no. 2: 212. https://doi.org/10.3390/v13020212
APA StyleVerhagen, J. H., Fouchier, R. A. M., & Lewis, N. (2021). Highly Pathogenic Avian Influenza Viruses at the Wild–Domestic Bird Interface in Europe: Future Directions for Research and Surveillance. Viruses, 13(2), 212. https://doi.org/10.3390/v13020212