Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story
Abstract
:1. Introduction
2. General Mechanisms of Virus-Induced Autoimmunity
3. Role of Specific Viral Infections in SLE
3.1. Epstein–Barr Virus (EBV)
- (a)
- Lytic phase. It occurs during primary infection and subsequent EBV reactivations from the latent state. The viral DNA is replicated and most viral genes are expressed, allowing spread to other cells. Key lytic phase proteins are ZEBRA protein (BZLF-1), which can deregulate immune surveillance [61]; an IL-10-homologue virokine, which inhibits IFN-γ production, CD8+ cytotoxic T-cells and MHC-I expression [62]; restricted early antigen (EA/R), a viral homologue of Bcl-2 oncogene which makes infected epithelial and B-cells resistant to apoptosis [63].
- (b)
- Latent phase. It develops after primary infection, as a result of the host’s EBV-specific immune response. The expression of latent phase viral proteins is epigenetically controlled and results in an almost complete silencing of the EBV genome in memory B lymphocytes [64,65], thus avoiding recognition by T cells. Only a few genes are expressed [66], coding for three latent membrane proteins (LMPs)—LMP-1, LMP-2A and LMP-2B—and 5 EBV nuclear antigens (EBNA)—EBNA 1, -2, -3A, -3B and -3C. This limited set of proteins is critical for self-reactive memory B lymphocyte “immortalization”, autoimmunity induction [14] and EBV-driven oncogenesis [59].
Alterations of EBV-Specific Immune Response in SLE
3.2. Parvovirus B19 (B19V)
- VP-1, which includes a “VP-1 unique region” (VP-1u) characterized by a phospholipase A2-like activity, probably playing a role in viral entry into the cell [108] and the generation of inflammatory mediators (leukotrienes and prostaglandins) and phospholipids epitopes, potentially triggering antiphospholipid (aPL) antibodies [109]. Of note is the fact that VP1-unique region contains many epitopes recognized by neutralizing antibodies, which determine life-long protection [106].
3.3. Retroviruses
- (a)
- The presence of retroviral-like particles in the tissues of SLE patients;
- (b)
- The presence of antiretroviral antibodies in an important proportion of SLE patients;
- (c)
- Clinically overlapping features between retroviral infections and SLE.
3.3.1. Human Endogenous RVs (HERVs)
- (a)
- They produce neosynthesized viral antigens, which can stimulate autoimmune response through the molecular mimicry of self-proteins, determining the production of polyclonal antibodies and nephritogenic immunocomplexes; in some cases, they act as superantigens.
- (b)
- They can directly stimulate intracellular sensor molecules (e.g., TLRs) through their NAs, triggering inflammatory cascades.
- (c)
- They promote the transcription of IFN-γ-related and other immune-related genes. This epigenetic control is often mediated by HERV retroviral long terminal repeats (LTRs) domains, which are co-opted by their mammalian hosts as specific regulatory sequences.
- (a)
- Molecular mimicry and production of pathogenic antibodies.
- (b) Direct stimulation of intracellular sensor molecules by viral NAs.
- (c) Epigenetic control of host immune genes and other mechanisms of immunomodulation.
3.3.2. Exogenous RVs: Human T-Cell Lymphotropic Virus Type I (HTLV-1) and Human Immunodeficiency Virus (HIV)
HTLV-1
HIV
3.4. Torque Teno Virus (TTV)
3.5. Cytomegalovirus (CMV)
- Phosphoprotein 65 (pp65422–439). This protein contains an epitope region which has a homology with TATA-box binding protein associated factor 9 (TAF9134–144). Consequently, antibodies against pp65422–439 cross-react with TAF9134–144 and also with ANA and anti-dsDNA in immunized BALB/c mice, in which they determine typical histological LN lesions. Furthermore, SLE patients appear to have higher anti-TAF9 antibody titers compared to HCs. Overall pp65 acts can induce autoantibodies production in susceptible animals [176,177].
- UL44 is nonstructural intranuclear protein which is essential for CMV replication. A human monoclonal antibody from CMV seropositive donor immunoprecipitates UL44 with other SLE nuclear antigens including nucleolin, dsDNA and ku70. UL44 appears to be relocated at cell surface complexed with these molecules during CMV-induced apoptosis, suggesting a mechanism of bystander autoantigen presentation [178].
- US31 is highly expressed in PBMC of SLE patients and can skew macrophage differentiation toward an M1 phenotype, activating inflammation through a direct interaction with NF-κB2 [179].
3.6. Other Viruses
3.6.1. HCV, Measles, Influenza A and Dengue Virus
3.6.2. Human Papillomavirus
4. Future Perspectives
4.1. Anti-EBV Therapies
4.2. Anti-B19V Therapies
4.3. Antiretroviral Therapies
4.4. T Lymphocyte Modulating Therapies
4.5. Inhibition of TLRs and Other Innate Immunity Modulators
4.6. Inhibition of miRNAs
4.7. Analysis and Modulation of Microbiota
4.8. Antiviral Vaccines
5. Conclusions
Authors Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AID | autoimmune disorders |
ADE | antibody-dependent enhancement |
ANA | antinuclear antigens |
APC | antigen-presenting cell |
aPL | antiphospholipid |
APS | antiphospholipid syndrome |
BAFF | B-lymphocyte activating factor of the TNF family |
BCR | B-cell receptor |
BM | Bone Marrow |
BMT | Bone Marrow Transplant |
cGAS | cyclic GMP-AMP synthase |
CMV | Cytomegalovirus |
CTL | Cytotoxic T lymphocytes |
DAMP | Damage Associated Molecular Patterns |
DC | Dendritic Cell |
DENV | Dengue Virus |
dsDNA | double-stranded DNA |
EA/D | Diffuse early antigen |
EA/R | Restricted early antigen |
EBER | Ebstein-Barr encoded RNA-1 |
EBNA | Ebstein-Barr nuclear antigen |
EBV | Ebstein-Barr Virus |
ENV gp70 | Envelop glycoprotein 70 |
ER | Estrogen Receptor |
ERS | Endogenous Retroviral Sequence |
GN | glomerulonephritis |
CVB | Coxsackieviruses B (CVB) |
GWAS | genomewide association study |
HAART | Highy Active Antiretroviral Therapy |
HAM/TSP | HTLV-1–associated myelopathy/tropical spastic paraparesis |
HCV | Hepatitis C Virus |
HERVs | Human Endogenous Retroviruses |
HIV | Human Immunodeficiency Virus |
HIVAN | Human Immunodeficiency Virus Associated-Nephropathy |
HPV | Human Papillomavirus |
HRES-1 | HTLV-1-related endogenous sequence |
IFN | Interferon |
IM | Infectious Mononucleosis |
IVIg | Intravenous Immunoglobulins |
LAC | Lupus Anticoagulant |
LINEs | Long Interspersed Nuclear Elements |
LN | Lupus Nephritis |
LTR | Long Terminal Repeat |
MAVS | mitochondrial antiviral signaling protein |
MDA-5 | melanoma differentiation associated gene 5 |
MHC | major histocompatibility complex |
MeV | measles virus |
MS | Multiple Sclerosis |
NA | Nucleic Acid |
NFAT | Nuclear Factor of activated T cells |
NLS | Nuclear Localization Signal |
miRNA | microRNA |
mTOR | mammalian Target of Rapamycin |
PAMPs | Pathogen Associated Molecular Patterns |
PBMC | peripheral blood mononuclear cell |
pDC | plasmacytoid dendritic cell |
PD-1L | Programmed Death Ligand-1 |
pp65422–439 | phosphoprotein 65422–439 |
PRRs | Pattern Recognition Receptors |
B19V | Parvovirus B19 |
RA | Rheumatoid Arthritis |
RIG-I | retinoic acid-inducible gene-I |
RLRs | RIG-I-like receptors |
RVs | Retroviruses |
SLE | Lupus Erythematosus Systemicus |
SOT | Solid Organ Transplant |
SSc | Systemic Sclerosis |
TAF9134–144 | TATA-box binding protein associated factor |
T1D | type 1 diabetes |
TCR | T-cell receptor |
TF | Transcription Factor |
Th | T helper |
TLR | Toll-like receptor |
T-reg | T-regulatory cells |
VCA | Viral Capsid Antigen |
VP-1u | Viral Protein-1 unique region |
References
- Luo, S.; Long, H.; Lu, Q. Recent Advances in Understanding Pathogenesis and Therapeutic Strategies of Systemic Lupus Erythematosus. Int. Immunopharmacol. 2020, 89, 107028. [Google Scholar] [CrossRef]
- Aringer, M.; Johnson, S.R. Classifying and Diagnosing Systemic Lupus Erythematosus in the 21st Century. Rheumatology 2020, 59, v4–v11. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.V.; Almaani, S.; Brodsky, S.; Rovin, B.H. Update on Lupus Nephritis: Core Curriculum 2020. Am. J. Kidney Dis. 2020, 76, 265–281. [Google Scholar] [CrossRef] [PubMed]
- Lateef, A.; Petri, M. Unmet Medical Needs in Systemic Lupus Erythematosus. Arthritis Res. Ther. 2012, 14 (Suppl. 4), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macejova, Z.; Madarasova Geckova, A.; Husarova, D.; Zarikova, M.; Kotradyova, Z. Living with Systematic Lupus Erythematosus: A Profile of Young Female Patients. Int. J. Environ. Res. Public Health 2020, 17, 1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Bosis, S.; Semino, M.; Rigante, D. Infections and Systemic Lupus Erythematosus. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1467–1475. [Google Scholar] [CrossRef]
- Nelson, P.; Rylance, P.; Roden, D.; Trela, M.; Tugnet, N. Viruses as Potential Pathogenic Agents in Systemic Lupus Erythematosus. Lupus 2014, 23, 596–605. [Google Scholar] [CrossRef]
- Rigante, D.; Mazzoni, M.B.; Esposito, S. The Cryptic Interplay between Systemic Lupus Erythematosus and Infections. Autoimmun. Rev. 2014, 13, 96–102. [Google Scholar] [CrossRef]
- Rigante, D.; Esposito, S. Infections and Systemic Lupus Erythematosus: Binding or Sparring Partners? Int. J. Mol. Sci. 2015, 16, 17331–17343. [Google Scholar] [CrossRef] [Green Version]
- Illescas-Montes, R.; Corona-Castro, C.C.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Infectious Processes and Systemic Lupus Erythematosus. Immunology 2019, 158, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Lossius, A.; Johansen, J.N.; Torkildsen, Ø.; Vartdal, F.; Holmøy, T. Epstein-Barr Virus in Systemic Lupus Erythematosus, Rheumatoid Arthritis and Multiple Sclerosis—Association and Causation. Viruses 2012, 4, 3701–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Q.; Xing, X.; Lu, Z.; Li, X. Clinical Characteristics and Risk Factors of Infection in Patients with Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis of Observational Studies. Semin. Arthritis Rheum. 2020, 50, 1022–1039. [Google Scholar] [CrossRef] [PubMed]
- Vassia, V.; Croce, A.; Ravanini, P.; Leutner, M.; Saglietti, C.; Fangazio, S.; Quaglia, M.; Smirne, C. Unusual Presentation of Fatal Disseminated Varicella Zoster Virus Infection in a Patient with Lupus Nephritis: A Case Report. BMC Infect. Dis. 2020, 20, 538. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Z.; Liao, S.; Ye, L.; Lu, X.; Chen, X.; Li, Z.; Li, X.; Xu, Y.-Z.; Liu, H. Current Mechanistic Insights into the Role of Infection in Systemic Lupus Erythematosus. Biomed. Pharmacother. 2019, 117, 109122. [Google Scholar] [CrossRef] [PubMed]
- Kanduc, D.; Shoenfeld, Y. From Anti-EBV Immune Responses to the EBV Diseasome via Cross-Reactivity. Glob. Med. Genet. 2020, 7, 51–63. [Google Scholar] [CrossRef]
- Dreyfus, D.H.; Farina, A.; Farina, G.A. Molecular Mimicry, Genetic Homology, and Gene Sharing Proteomic “Molecular Fingerprints” Using an EBV (Epstein-Barr Virus)-Derived Microarray as a Potential Diagnostic Method in Autoimmune Disease. Immunol. Res. 2018, 66, 686–695. [Google Scholar] [CrossRef] [Green Version]
- Tu, J.; Wang, X.; Geng, G.; Xue, X.; Lin, X.; Zhu, X.; Sun, L. The Possible Effect of B-Cell Epitopes of Epstein-Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Migliorini, P.; Baldini, C.; Rocchi, V.; Bombardieri, S. Anti-Sm and Anti-RNP Antibodies. Autoimmunity 2005, 38, 47–54. [Google Scholar] [CrossRef]
- Cornaby, C.; Gibbons, L.; Mayhew, V.; Sloan, C.S.; Welling, A.; Poole, B.D. B Cell Epitope Spreading: Mechanisms and Contribution to Autoimmune Diseases. Immunol. Lett. 2015, 163, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, Y.; Acosta-Ampudia, Y.; Monsalve, D.M.; Chang, C.; Gershwin, M.E.; Anaya, J.-M. Bystander Activation and Autoimmunity. J. Autoimmun. 2019, 103, 102301. [Google Scholar] [CrossRef] [PubMed]
- Barrat, F.J.; Su, L. A Pathogenic Role of Plasmacytoid Dendritic Cells in Autoimmunity and Chronic Viral Infection. J. Exp. Med. 2019, 216, 1974–1985. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimmons, L.; Kelly, G.L. EBV and Apoptosis: The Viral Master Regulator of Cell Fate? Viruses 2017, 9, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zan, H.; Tat, C.; Casali, P. MicroRNAs in Lupus. Autoimmunity 2014, 47, 272–285. [Google Scholar] [CrossRef]
- Lanata, C.M.; Chung, S.A.; Criswell, L.A. DNA Methylation 101: What Is Important to Know about DNA Methylation and Its Role in SLE Risk and Disease Heterogeneity. Lupus Sci. Med. 2018, 5, e000285. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chang, C.; Peng, M.; Lu, Q. Translating Epigenetics into Clinic: Focus on Lupus. Clin. Epigenetics 2017, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Yin, H.; Wang, L.; Gershwin, M.E.; Lu, Q. The Critical Role of Epigenetics in Systemic Lupus Erythematosus and Autoimmunity. J. Autoimmun. 2016, 74, 118–138. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, N.; Kawaguchi, Y. Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses. Viruses 2020, 12, 1354. [Google Scholar] [CrossRef]
- Randall, R.E.; Griffin, D.E. Within Host RNA Virus Persistence: Mechanisms and Consequences. Curr. Opin. Virol. 2017, 23, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Levet, S.; Charvet, B.; Bertin, A.; Deschaumes, A.; Perron, H.; Hober, D. Human Endogenous Retroviruses and Type 1 Diabetes. Curr. Diab. Rep. 2019, 19, 141. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, K.M.; Wang, C. Post-Infectious Neurological Disorders. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420952901. [Google Scholar] [CrossRef] [PubMed]
- Kontaki, E.; Boumpas, D.T. Innate Immunity in Systemic Lupus Erythematosus: Sensing Endogenous Nucleic Acids. J. Autoimmun. 2010, 35, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Crowl, J.T.; Gray, E.E.; Pestal, K.; Volkman, H.E.; Stetson, D.B. Intracellular Nucleic Acid Detection in Autoimmunity. Annu. Rev. Immunol. 2017, 35, 313–336. [Google Scholar] [CrossRef]
- Hejrati, A.; Rafiei, A.; Soltanshahi, M.; Hosseinzadeh, S.; Dabiri, M.; Taghadosi, M.; Taghiloo, S.; Bashash, D.; Khorshidi, F.; Zafari, P. Innate Immune Response in Systemic Autoimmune Diseases: A Potential Target of Therapy. Inflammopharmacology 2020, 28, 1421–1438. [Google Scholar] [CrossRef]
- Smatti, M.K.; Cyprian, F.S.; Nasrallah, G.K.; Al Thani, A.A.; Almishal, R.O.; Yassine, H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019, 11, 762. [Google Scholar] [CrossRef] [Green Version]
- Curran, C.S.; Gupta, S.; Sanz, I.; Sharon, E. PD-1 Immunobiology in Systemic Lupus Erythematosus. J. Autoimmun. 2019, 97, 1–9. [Google Scholar] [CrossRef] [PubMed]
- James, J.A.; Kaufman, K.M.; Farris, A.D.; Taylor-Albert, E.; Lehman, T.J.; Harley, J.B. An Increased Prevalence of Epstein-Barr Virus Infection in Young Patients Suggests a Possible Etiology for Systemic Lupus Erythematosus. J. Clin. Investig. 1997, 100, 3019–3026. [Google Scholar] [CrossRef] [Green Version]
- Arbuckle, M.R.; Gross, T.; Scofield, R.H.; Hinshaw, L.B.; Chang, A.C.; Taylor, F.B.; Harley, J.B.; James, J.A. Lupus Humoral Autoimmunity Induced in a Primate Model by Short Peptide Immunization. J. Investig. Med. 1998, 46, 58–65. [Google Scholar]
- Dostál, C.; Newkirk, M.M.; Duffy, K.N.; Palecková, A.; Bosák, V.; Cerná, M.; Zd’arský, E.; Zvárová, J. Herpes Viruses in Multicase Families with Rheumatoid Arthritis and Systemic Lupus Erythematosus. Ann. N. Y. Acad. Sci. 1997, 815, 334–337. [Google Scholar] [CrossRef]
- Britt, W.J.; Prichard, M.N. New Therapies for Human Cytomegalovirus Infections. Antivir. Res. 2018, 159, 153–174. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Chen, P.; Lin, Q.; Zhu, X.; Zhang, L.; Xue, X. Correlation between Systemic Lupus Erythematosus and Cytomegalovirus Infection Detected by Different Methods. Clin. Rheumatol. 2015, 34, 691–698. [Google Scholar] [CrossRef]
- Hsu, T.C.; Tsay, G.J. Human Parvovirus B19 Infection in Patients with Systemic Lupus Erythematosus. Rheumatology 2001, 40, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Hod, T.; Zandman-Goddard, G.; Langevitz, P.; Rudnic, H.; Grossman, Z.; Rotman-Pikielny, P.; Levy, Y. Does Parvovirus Infection Have a Role in Systemic Lupus Erythematosus? Immunol. Res. 2017, 65, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Gergely, P.; Pullmann, R.; Stancato, C.; Otvos, L.; Koncz, A.; Blazsek, A.; Poor, G.; Brown, K.E.; Phillips, P.E.; Perl, A. Increased Prevalence of Transfusion-Transmitted Virus and Cross-Reactivity with Immunodominant Epitopes of the HRES-1/P28 Endogenous Retroviral Autoantigen in Patients with Systemic Lupus Erythematosus. Clin. Immunol. 2005, 116, 124–134. [Google Scholar] [CrossRef]
- Gergely, P.; Perl, A.; Poór, G. Possible Pathogenic Nature of the Recently Discovered TT Virus: Does It Play a Role in Autoimmune Rheumatic Diseases? Autoimmun. Rev. 2006, 6, 5–9. [Google Scholar] [CrossRef]
- Stölzel, U.; Schuppan, D.; Tillmann, H.L.; Manns, M.P.; Tannapfel, A.; Doss, M.O.; Zimmer, T.; Köstler, E. Autoimmunity and HCV Infection in Porphyria Cutanea Tarda: A Controlled Study. Cell. Mol. Biol. 2002, 48, 43–47. [Google Scholar]
- Talib, S.; Bhattu, S.; Bhattu, R.; Deshpande, S.; Dahiphale, D. Dengue Fever Triggering Systemic Lupus Erythematosus and Lupus Nephritis: A Case Report. Int. Med. Case Rep. J. 2013, 6, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajadhyaksha, A.; Mehra, S. Dengue Fever Evolving into Systemic Lupus Erythematosus and Lupus Nephritis: A Case Report. Lupus 2012, 21, 999–1002. [Google Scholar] [CrossRef]
- Emlen, W.; Niebur, J.; Kadera, R. Accelerated in Vitro Apoptosis of Lymphocytes from Patients with Systemic Lupus Erythematosus. J. Immunol. 1994, 152, 3685–3692. [Google Scholar]
- Carter, C.J. Extensive Viral Mimicry of 22 AIDS-Related Autoantigens by HIV-1 Proteins and Pathway Analysis of 561 Viral/Human Homologues Suggest an Initial Treatable Autoimmune Component of AIDS. FEMS Immunol. Med. Microbiol. 2011, 63, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Getts, D.R.; Chastain, E.M.L.; Terry, R.L.; Miller, S.D. Virus Infection, Antiviral Immunity, and Autoimmunity. Immunol. Rev. 2013, 255, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Quaresma, J.A.S.; Yoshikawa, G.T.; Koyama, R.V.L.; Dias, G.A.S.; Fujihara, S.; Fuzii, H.T. HTLV-1, Immune Response and Autoimmunity. Viruses 2015, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Pullmann, R.; Bonilla, E.; Phillips, P.E.; Middleton, F.A.; Perl, A. Haplotypes of the HRES-1 Endogenous Retrovirus Are Associated with Development and Disease Manifestations of Systemic Lupus Erythematosus. Arthritis Rheum. 2008, 58, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Stetson, D.B.; Ko, J.S.; Heidmann, T.; Medzhitov, R. Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity. Cell 2008, 134, 587–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perl, A.; Fernandez, D.; Telarico, T.; Phillips, P.E. Endogenous Retroviral Pathogenesis in Lupus. Curr. Opin. Rheumatol. 2010, 22, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draborg, A.H.; Duus, K.; Houen, G. Epstein-Barr Virus and Systemic Lupus Erythematosus. Clin. Dev. Immunol. 2012, 2012, 370516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, J.A.; Robertson, J.M. Lupus and Epstein-Barr. Curr. Opin. Rheumatol. 2012, 24, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.E.; Tarakanova, V.L. Gammaherpesviruses and B Cells: A Relationship That Lasts a Lifetime. Viral Immunol. 2020, 33, 316–326. [Google Scholar] [CrossRef]
- Buschle, A.; Hammerschmidt, W. Epigenetic Lifestyle of Epstein-Barr Virus. Semin. Immunopathol. 2020, 42, 131–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münz, C. Latency and Lytic Replication in Epstein-Barr Virus-Associated Oncogenesis. Nat. Rev. Microbiol. 2019, 17, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Niller, H.H.; Wolf, H.; Minarovits, J. Regulation and Dysregulation of Epstein-Barr Virus Latency: Implications for the Development of Autoimmune Diseases. Autoimmunity 2008, 41, 298–328. [Google Scholar] [CrossRef]
- Germini, D.; Sall, F.B.; Shmakova, A.; Wiels, J.; Dokudovskaya, S.; Drouet, E.; Vassetzky, Y. Oncogenic Properties of the EBV ZEBRA Protein. Cancers 2020, 12, 1479. [Google Scholar] [CrossRef]
- Jog, N.R.; Chakravarty, E.F.; Guthridge, J.M.; James, J.A. Epstein Barr Virus Interleukin 10 Suppresses Anti-Inflammatory Phenotype in Human Monocytes. Front. Immunol. 2018, 9, 2198. [Google Scholar] [CrossRef] [Green Version]
- Khanim, F.; Dawson, C.; Meseda, C.A.; Dawson, J.; Mackett, M.; Young, L.S. BHRF1, a Viral Homologue of the Bcl-2 Oncogene, Is Conserved at Both the Sequence and Functional Level in Different Epstein-Barr Virus Isolates. J. Gen. Virol. 1997, 78 Pt 11, 2987–2999. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, N.S.; Draborg, A.H.; Nielsen, C.T.; Jacobsen, S.; Houen, G. Antibodies to Early EBV, CMV, and HHV6 Antigens in Systemic Lupus Erythematosus Patients. Scand. J. Rheumatol. 2015, 44, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Babcock, G.J.; Hochberg, D.; Thorley-Lawson, A.D. The Expression Pattern of Epstein-Barr Virus Latent Genes in Vivo Is Dependent upon the Differentiation Stage of the Infected B Cell. Immunity 2000, 13, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Arcipowski, K.M.; Bishop, G.A. Roles of the Kinase TAK1 in TRAF6-Dependent Signaling by CD40 and Its Oncogenic Viral Mimic, LMP1. PLoS ONE 2012, 7, e42478. [Google Scholar] [CrossRef]
- Minamitani, T.; Yasui, T.; Ma, Y.; Zhou, H.; Okuzaki, D.; Tsai, C.-Y.; Sakakibara, S.; Gewurz, B.E.; Kieff, E.; Kikutani, H. Evasion of Affinity-Based Selection in Germinal Centers by Epstein-Barr Virus LMP2A. Proc. Natl. Acad. Sci. USA 2015, 112, 11612–11617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Zhang, Y.; Wang, Q.; Xin, M.; Yang, K.; Lei, K.; Sun, M. Epstein-Barr Virus Infection and Type I Interferon Signature in Patients with Systemic Lupus Erythematosus. Lupus 2018, 27, 947–954. [Google Scholar] [CrossRef]
- Quan, T.E.; Roman, R.M.; Rudenga, B.J.; Holers, V.M.; Craft, J.E. Epstein-Barr Virus Promotes Interferon-Alpha Production by Plasmacytoid Dendritic Cells. Arthritis Rheum. 2010, 62, 1693–1701. [Google Scholar] [CrossRef] [Green Version]
- Valente, R.M.; Ehlers, E.; Xu, D.; Ahmad, H.; Steadman, A.; Blasnitz, L.; Zhou, Y.; Kastanek, L.; Meng, B.; Zhang, L. Toll-like Receptor 7 Stimulates the Expression of Epstein-Barr Virus Latent Membrane Protein 1. PLoS ONE 2012, 7, e43317. [Google Scholar] [CrossRef] [Green Version]
- Murayama, G.; Furusawa, N.; Chiba, A.; Yamaji, K.; Tamura, N.; Miyake, S. Enhanced IFN-α Production Is Associated with Increased TLR7 Retention in the Lysosomes of Palasmacytoid Dendritic Cells in Systemic Lupus Erythematosus. Arthritis Res. Ther. 2017, 19, 234. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.-X.; Yao, C.-W.; Tao, J.-L.; Yang, C.; Luo, M.-N.; Li, S.-M.; Liu, H.-F. The Expression of Renal Epstein-Barr Virus Markers in Patients with Lupus Nephritis. Exp. Ther. Med. 2014, 7, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; He, X.; Liao, W.; Yi, Z.; Yang, H.; Xiang, W. The Expression of EBV-Encoded LMP1 in Young Patients with Lupus Nephritis. Int. J. Clin. Exp. Med. 2015, 8, 6073–6078. [Google Scholar]
- Csorba, K.; Schirmbeck, L.A.; Tuncer, E.; Ribi, C.; Roux-Lombard, P.; Chizzolini, C.; Huynh-Do, U.; Vanhecke, D.; Trendelenburg, M. Anti-C1q Antibodies as Occurring in Systemic Lupus Erythematosus Could Be Induced by an Epstein-Barr Virus-Derived Antigenic Site. Front. Immunol. 2019, 10, 2619. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.T.; Poole, B.D.; Bruner, B.F.; Kaufman, K.M.; Harley, J.B.; James, J.A. An Altered Immune Response to Epstein-Barr Nuclear Antigen 1 in Pediatric Systemic Lupus Erythematosus. Arthritis Rheum. 2006, 54, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.B.; Chen, X.; Pujato, M.; Miller, D.; Maddox, A.; Forney, C.; Magnusen, A.F.; Lynch, A.; Chetal, K.; Yukawa, M.; et al. Transcription Factors Operate across Disease Loci, with EBNA2 Implicated in Autoimmunity. Nat. Genet. 2018, 50, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.L.; Stunz, L.L.; Meyerholz, D.K.; Mohan, C.; Bishop, G.A. Latent Membrane Protein 1, the EBV-Encoded Oncogenic Mimic of CD40, Accelerates Autoimmunity in B6.Sle1 Mice. J. Immunol. 2010, 185, 4053–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draborg, A.H.; Jacobsen, S.; Westergaard, M.; Mortensen, S.; Larsen, J.L.; Houen, G.; Duus, K. Reduced Response to Epstein-Barr Virus Antigens by T-Cells in Systemic Lupus Erythematosus Patients. Lupus Sci. Med. 2014, 1, e000015. [Google Scholar] [CrossRef] [Green Version]
- Draborg, A.H.; Sandhu, N.; Larsen, N.; Lisander Larsen, J.; Jacobsen, S.; Houen, G. Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients. J. Immunol. Res. 2016, 2016, 6473204. [Google Scholar] [CrossRef]
- Draborg, A.; Izarzugaza, J.M.G.; Houen, G. How Compelling Are the Data for Epstein-Barr Virus Being a Trigger for Systemic Lupus and Other Autoimmune Diseases? Curr. Opin. Rheumatol. 2016, 28, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Tsokos, G.C.; Magrath, I.T.; Balow, J.E. Epstein-Barr Virus Induces Normal B Cell Responses but Defective Suppressor T Cell Responses in Patients with Systemic Lupus Erythematosus. J. Immunol. 1983, 131, 1797–1801. [Google Scholar]
- Kang, I.; Quan, T.; Nolasco, H.; Park, S.-H.; Hong, M.S.; Crouch, J.; Pamer, E.G.; Howe, J.G.; Craft, J. Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. J. Immunol. 2004, 172, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.; Sauce, D.; Deback, C.; Arnaud, L.; Mathian, A.; Miyara, M.; Boutolleau, D.; Parizot, C.; Dorgham, K.; Papagno, L.; et al. Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus. PLoS Pathog. 2011, 7, e1002328. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Li, Z.; Wang, Y.; Liu, Y.; Zheng, X.; Gao, C.; Li, X.; Wang, C. Imbalance between Th17 and Regulatory T Cells in Patients with Systemic Lupus Erythematosus Combined EBV/CMV Viraemia. Clin. Exp. Rheumatol. 2020, 38, 864–873. [Google Scholar] [PubMed]
- Gross, A.J.; Hochberg, D.; Rand, W.M.; Thorley-Lawson, D.A. EBV and Systemic Lupus Erythematosus: A New Perspective. J. Immunol. 2005, 174, 6599–6607. [Google Scholar] [CrossRef]
- Moon, U.Y.; Park, S.J.; Oh, S.T.; Kim, W.-U.; Park, S.-H.; Lee, S.-H.; Cho, C.-S.; Kim, H.-Y.; Lee, W.-K.; Lee, S.K. Patients with Systemic Lupus Erythematosus Have Abnormally Elevated Epstein-Barr Virus Load in Blood. Arthritis Res. Ther. 2004, 6, R295–R302. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.-F.; Wu, H.-C.; Tsai, W.-C.; Yen, J.-H.; Chiang, W.; Yuo, C.-Y.; Lu, S.-N.; Chiang, L.-C.; Chen, C.-J. Detecting Epstein-Barr Virus DNA from Peripheral Blood Mononuclear Cells in Adult Patients with Systemic Lupus Erythematosus in Taiwan. Med. Microbiol. Immunol. 2005, 194, 115–120. [Google Scholar] [CrossRef]
- Poole, B.D.; Templeton, A.K.; Guthridge, J.M.; Brown, E.J.; Harley, J.B.; James, J.A. Aberrant Epstein-Barr Viral Infection in Systemic Lupus Erythematosus. Autoimmun. Rev. 2009, 8, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Draborg, A.H.; Jørgensen, J.M.; Müller, H.; Nielsen, C.T.; Jacobsen, S.; Iversen, L.V.; Theander, E.; Nielsen, L.P.; Houen, G.; Duus, K. Epstein-Barr Virus Early Antigen Diffuse (EBV-EA/D)-Directed Immunoglobulin A Antibodies in Systemic Lupus Erythematosus Patients. Scand. J. Rheumatol. 2012, 41, 280–289. [Google Scholar] [CrossRef]
- James, J.A.; Neas, B.R.; Moser, K.L.; Hall, T.; Bruner, G.R.; Sestak, A.L.; Harley, J.B. Systemic Lupus Erythematosus in Adults Is Associated with Previous Epstein-Barr Virus Exposure. Arthritis Rheum. 2001, 44, 1122–1126. [Google Scholar] [CrossRef]
- Vista, E.S.; Weisman, M.H.; Ishimori, M.L.; Chen, H.; Bourn, R.L.; Bruner, B.F.; Hamijoyo, L.; Tanangunan, R.D.; Gal, N.J.; Robertson, J.M.; et al. Strong Viral Associations with SLE among Filipinos. Lupus Sci. Med. 2017, 4, e000214. [Google Scholar] [CrossRef]
- Cui, J.; Yan, W.; Xu, S.; Wang, Q.; Zhang, W.; Liu, W.; Ni, A. Anti-Epstein-Barr Virus Antibodies in Beijing during 2013-2017: What We Have Found in the Different Patients. PLoS ONE 2018, 13, e0193171. [Google Scholar] [CrossRef] [Green Version]
- Hanlon, P.; Avenell, A.; Aucott, L.; Vickers, M.A. Systematic Review and Meta-Analysis of the Sero-Epidemiological Association between Epstein-Barr Virus and Systemic Lupus Erythematosus. Arthritis Res. Ther. 2014, 16, R3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-X.; Zeng, S.; Wu, H.-X.; Zhou, Y. The Risk of Systemic Lupus Erythematosus Associated with Epstein-Barr Virus Infection: A Systematic Review and Meta-Analysis. Clin. Exp. Med. 2019, 19, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Esen, B.A.; Yılmaz, G.; Uzun, S.; Ozdamar, M.; Aksözek, A.; Kamalı, S.; Türkoğlu, S.; Gül, A.; Ocal, L.; Aral, O.; et al. Serologic Response to Epstein-Barr Virus Antigens in Patients with Systemic Lupus Erythematosus: A Controlled Study. Rheumatol. Int. 2012, 32, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Chougule, D.; Nadkar, M.; Rajadhyaksha, A.; Pandit-Shende, P.; Surve, P.; Dawkar, N.; Khadilkar, P.; Patwardhan, M.; Kaveri, S.; Ghosh, K.; et al. Association of Clinical and Serological Parameters of Systemic Lupus Erythematosus Patients with Epstein-Barr Virus Antibody Profile. J. Med. Virol. 2018, 90, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, N.S.; Nielsen, C.T.; Houen, G.; Jacobsen, S. Humoral Markers of Active Epstein-Barr Virus Infection Associate with Anti-Extractable Nuclear Antigen Autoantibodies and Plasma Galectin-3 Binding Protein in Systemic Lupus Erythematosus. Lupus 2016, 25, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H.; Draborg, A.H.; Sternbæk, L.; Troelsen, L.; Larsen, J.L.; Jacobsen, S.; Houen, G. EBNA1 IgM-Based Discrimination Between Rheumatoid Arthritis Patients, Systemic Lupus Erythematosus Patients and Healthy Controls. Antibodies 2019, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-J.; Lin, K.-H.; Lin, S.-C.; Tsai, W.-C.; Yen, J.-H.; Chang, S.-J.; Lu, S.-N.; Liu, H.-W. High Prevalence of Immunoglobulin A Antibody against Epstein-Barr Virus Capsid Antigen in Adult Patients with Lupus with Disease Flare: Case Control Studies. J. Rheumatol. 2005, 32, 44–47. [Google Scholar] [PubMed]
- Sternbæk, L.; Draborg, A.H.; Østerlund, M.T.; Iversen, L.V.; Troelsen, L.; Theander, E.; Nielsen, C.T.; Jacobsen, S.; Houen, G. Increased Antibody Levels to Stage-Specific Epstein-Barr Virus Antigens in Systemic Autoimmune Diseases Reveal a Common Pathology. Scand. J. Clin. Lab. Investig. 2019, 79, 7–16. [Google Scholar] [CrossRef]
- Watad, A.; Azrielant, S.; Bragazzi, N.L.; Sharif, K.; David, P.; Katz, I.; Aljadeff, G.; Quaresma, M.; Tanay, G.; Adawi, M.; et al. Seasonality and Autoimmune Diseases: The Contribution of the Four Seasons to the Mosaic of Autoimmunity. J. Autoimmun. 2017, 82, 13–30. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; James, J.A. Early Events in Lupus Humoral Autoimmunity Suggest Initiation through Molecular Mimicry. Nat. Med. 2005, 11, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Jog, N.R.; Young, K.A.; Munroe, M.E.; Harmon, M.T.; Guthridge, J.M.; Kelly, J.A.; Kamen, D.L.; Gilkeson, G.S.; Weisman, M.H.; Karp, D.R.; et al. Association of Epstein-Barr Virus Serological Reactivation with Transitioning to Systemic Lupus Erythematosus in at-Risk Individuals. Ann. Rheum. Dis. 2019, 78, 1235–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agmon-Levin, N.; Dagan, A.; Peri, Y.; Anaya, J.-M.; Selmi, C.; Tincani, A.; Bizzaro, N.; Stojanovich, L.; Damoiseaux, J.; Cohen Tervaert, J.W.; et al. The Interaction between Anti-Ro/SSA and Anti-La/SSB Autoantibodies and Anti-Infectious Antibodies in a Wide Spectrum of Auto-Immune Diseases: Another Angle of the Autoimmune Mosaic. Clin. Exp. Rheumatol. 2017, 35, 929–935. [Google Scholar] [PubMed]
- Maślińska, M. The Role of Epstein-Barr Virus Infection in Primary Sjögren’s Syndrome. Curr. Opin. Rheumatol. 2019, 31, 475–483. [Google Scholar] [CrossRef]
- Young, N.S.; Brown, K.E. Parvovirus B19. N. Engl. J. Med. 2004, 350, 586–597. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Qiu, J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front. Cell. Infect. Microbiol. 2018, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Dorsch, S.; Liebisch, G.; Kaufmann, B.; von Landenberg, P.; Hoffmann, J.H.; Drobnik, W.; Modrow, S. The VP1 Unique Region of Parvovirus B19 and Its Constituent Phospholipase A2-like Activity. J. Virol. 2002, 76, 2014–2018. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-Y.; Chiu, C.-C.; Cheng, J.; Lin, C.-Y.; Shi, Y.-F.; Tsai, C.-C.; Tzang, B.-S.; Hsu, T.-C. Antigenicity Analysis of Human Parvovirus B19-VP1u Protein in the Induction of Anti-Phospholipid Syndrome. Virulence 2018, 9, 208–216. [Google Scholar] [CrossRef]
- Moffatt, S.; Tanaka, N.; Tada, K.; Nose, M.; Nakamura, M.; Muraoka, O.; Hirano, T.; Sugamura, K. A Cytotoxic Nonstructural Protein, NS1, of Human Parvovirus B19 Induces Activation of Interleukin-6 Gene Expression. J. Virol. 1996, 70, 8485–8491. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.A. Parvovirus B19 Nonstructural (NS1) Protein as a Transactivator of Interleukin-6 Synthesis: Common Pathway in Inflammatory Sequelae of Human Parvovirus Infections? J. Med. Virol. 2002, 67, 267–274. [Google Scholar] [CrossRef]
- Marco, H.; Guermah, I.; Matas, L.; Hernández, A.; Navarro, M.; Lopez, D.; Bonet, J. Postinfectious Glomerulonephritis Secondary to Erythrovirus B19 (Parvovirus B19): Case Report and Review of the Literature. Clin. Nephrol. 2016, 85, 238–244. [Google Scholar] [CrossRef]
- Kauffmann, M.; Bobot, M.; Daniel, L.; Torrents, J.; Knefati, Y.; Moranne, O.; Burtey, S.; Zandotti, C.; Jourde-Chiche, N. Parvovirus B19 Infection and Kidney Injury: Report of 4 Cases and Analysis of Immunization and Viremia in an Adult Cohort of 100 Patients Undergoing a Kidney Biopsy. BMC Nephrol. 2020, 21, 260. [Google Scholar] [CrossRef] [PubMed]
- Sève, P.; Ferry, T.; Koenig, M.; Cathebras, P.; Rousset, H.; Broussolle, C. Lupus-like Presentation of Parvovirus B19 Infection. Semin. Arthritis Rheum. 2005, 34, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Severin, M.C.; Levy, Y.; Shoenfeld, Y. Systemic Lupus Erythematosus and Parvovirus B-19: Casual Coincidence or Causative Culprit? Clin. Rev. Allergy Immunol. 2003, 25, 41–48. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Cuadrado, M.J.; Alba, P.; Sanna, G.; Brito-Zerón, P.; Bertolaccini, L.; Babini, A.; Moreno, A.; D’Cruz, D.; Khamashta, M.A. Acute Viral Infections in Patients with Systemic Lupus Erythematosus: Description of 23 Cases and Review of the Literature. Medicine 2008, 87, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Page, C.; François, C.; Goëb, V.; Duverlie, G. Human Parvovirus B19 and Autoimmune Diseases. Review of the Literature and Pathophysiological Hypotheses. J. Clin. Virol. 2015, 72, 69–74. [Google Scholar] [CrossRef]
- Aslanidis, S.; Pyrpasopoulou, A.; Kontotasios, K.; Doumas, S.; Zamboulis, C. Parvovirus B19 Infection and Systemic Lupus Erythematosus: Activation of an Aberrant Pathway? Eur. J. Intern. Med. 2008, 19, 314–318. [Google Scholar] [CrossRef]
- Kerr, J.R.; Barah, F.; Mattey, D.L.; Laing, I.; Hopkins, S.J.; Hutchinson, I.V.; Tyrrell, D.A.J. Circulating Tumour Necrosis Factor-Alpha and Interferon-Gamma Are Detectable during Acute and Convalescent Parvovirus B19 Infection and Are Associated with Prolonged and Chronic Fatigue. J. Gen. Virol. 2001, 82, 3011–3019. [Google Scholar] [CrossRef]
- Petri, M. Antiphospholipid Syndrome. Transl. Res. 2020, 225, 70–81. [Google Scholar] [CrossRef]
- Kalt, M.; Gertner, E. Antibodies to Beta 2-Glycoprotein I and Cardiolipin with Symptoms Suggestive of Systemic Lupus Erythematosus in Parvovirus B19 Infection. J. Rheumatol. 2001, 28, 2335–2336. [Google Scholar]
- Lehmann, H.W.; Plentz, A.; von Landenberg, P.; Küster, R.-M.; Modrow, S. Different Patterns of Disease Manifestations of Parvovirus B19-Associated Reactive Juvenile Arthritis and the Induction of Antiphospholipid-Antibodies. Clin. Rheumatol. 2008, 27, 333–338. [Google Scholar] [CrossRef]
- Chen, D.-Y.; Chen, Y.-M.; Tzang, B.-S.; Lan, J.-L.; Hsu, T.-C. Th17-Related Cytokines in Systemic Lupus Erythematosus Patients with Dilated Cardiomyopathies: A Possible Linkage to Parvovirus B19 Infection. PLoS ONE 2014, 9, e113889. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Gong, L.; Huang, G.; Zhang, W. Review of correlation between human parvovirus B19 and autoimmune disease etiology. Chin. J. Cell. Mol. Immunol. 2020, 36, 75–80. [Google Scholar]
- Talotta, R.; Atzeni, F.; Laska, M.J. Retroviruses in the Pathogenesis of Systemic Lupus Erythematosus: Are They Potential Therapeutic Targets? Autoimmunity 2020, 53, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Greenig, M. HERVs, Immunity, and Autoimmunity: Understanding the Connection. PeerJ 2019, 7, e6711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelman, M.K.; Marchalonis, J.J. Endogenous Retroviruses in Systemic Lupus Erythematosus: Candidate Lupus Viruses. Clin. Immunol. 2002, 102, 107–116. [Google Scholar] [CrossRef]
- Katoh, I.; Kurata, S.-I. Association of Endogenous Retroviruses and Long Terminal Repeats with Human Disorders. Front. Oncol. 2013, 3, 234. [Google Scholar] [CrossRef] [Green Version]
- Perl, A.; Colombo, E.; Dai, H.; Agarwal, R.; Mark, K.A.; Banki, K.; Poiesz, B.J.; Phillips, P.E.; Hoch, S.O.; Reveille, J.D. Antibody Reactivity to the HRES-1 Endogenous Retroviral Element Identifies a Subset of Patients with Systemic Lupus Erythematosus and Overlap Syndromes. Correlation with Antinuclear Antibodies and HLA Class II Alleles. Arthritis Rheum. 1995, 38, 1660–1671. [Google Scholar] [CrossRef]
- Mustelin, T.; Ukadike, K.C. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front. Immunol. 2020, 11, 593891. [Google Scholar] [CrossRef]
- Chuong, E.B.; Elde, N.C.; Feschotte, C. Regulatory Evolution of Innate Immunity through Co-Option of Endogenous Retroviruses. Science 2016, 351, 1083–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, M.; Shoenfeld, Y.; Perl, A. Cross-Talk of the Environment with the Host Genome and the Immune System through Endogenous Retroviruses in Systemic Lupus Erythematosus. Lupus 2009, 18, 1136–1143. [Google Scholar] [CrossRef]
- Tokuyama, M.; Kong, Y.; Song, E.; Jayewickreme, T.; Kang, I.; Iwasaki, A. ERVmap Analysis Reveals Genome-Wide Transcription of Human Endogenous Retroviruses. Proc. Natl. Acad. Sci. USA 2018, 115, 12565–12572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godavarthy, A.; Kelly, R.; Jimah, J.; Beckford, M.; Caza, T.; Fernandez, D.; Huang, N.; Duarte, M.; Lewis, J.; Fadel, H.J.; et al. Lupus-Associated Endogenous Retroviral LTR Polymorphism and Epigenetic Imprinting Promote HRES-1/RAB4 Expression and MTOR Activation. JCI Insight 2020, 5, e134010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perl, A.; Nagy, G.; Koncz, A.; Gergely, P.; Fernandez, D.; Doherty, E.; Telarico, T.; Bonilla, E.; Phillips, P.E. Molecular Mimicry and Immunomodulation by the HRES-1 Endogenous Retrovirus in SLE. Autoimmunity 2008, 41, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, D.R.; Telarico, T.; Bonilla, E.; Li, Q.; Banerjee, S.; Middleton, F.A.; Phillips, P.E.; Crow, M.K.; Oess, S.; Muller-Esterl, W.; et al. Activation of Mammalian Target of Rapamycin Controls the Loss of TCRzeta in Lupus T Cells through HRES-1/Rab4-Regulated Lysosomal Degradation. J. Immunol. 2009, 182, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Mak, A.; Kow, N.Y. The Pathology of T Cells in Systemic Lupus Erythematosus. J. Immunol. Res. 2014, 2014, 419029. [Google Scholar] [CrossRef]
- Baudino, L.; Yoshinobu, K.; Morito, N.; Santiago-Raber, M.-L.; Izui, S. Role of Endogenous Retroviruses in Murine SLE. Autoimmun. Rev. 2010, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Baudino, L.; Kihara, M.; Leroy, V.; Vyse, T.J.; Evans, L.H.; Izui, S. Three Sgp Loci Act Independently as Well as Synergistically to Elevate the Expression of Specific Endogenous Retroviruses Implicated in Murine Lupus. J. Autoimmun. 2013, 43, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Treger, R.S.; Pope, S.D.; Kong, Y.; Tokuyama, M.; Taura, M.; Iwasaki, A. The Lupus Susceptibility Locus Sgp3 Encodes the Suppressor of Endogenous Retrovirus Expression SNERV. Immunity 2019, 50, 334–347.e9. [Google Scholar] [CrossRef] [Green Version]
- Panova, V.; Attig, J.; Young, G.R.; Stoye, J.P.; Kassiotis, G. Antibody-Induced Internalisation of Retroviral Envelope Glycoproteins Is a Signal Initiation Event. PLoS Pathog. 2020, 16, e1008605. [Google Scholar] [CrossRef] [PubMed]
- Browne, E.P. The Role of Toll-Like Receptors in Retroviral Infection. Microorganisms 2020, 8, 1787. [Google Scholar] [CrossRef]
- Barral, P.M.; Sarkar, D.; Su, Z.; Barber, G.N.; DeSalle, R.; Racaniello, V.R.; Fisher, P.B. Functions of the Cytoplasmic RNA Sensors RIG-I and MDA-5: Key Regulators of Innate Immunity. Pharmacol. Ther. 2009, 124, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Shehab, M.; Sherri, N.; Hussein, H.; Salloum, N.; Rahal, E.A. Endosomal Toll-Like Receptors Mediate Enhancement of Interleukin-17A Production Triggered by Epstein-Barr Virus DNA in Mice. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [Green Version]
- Miyake, K.; Shibata, T.; Ohto, U.; Shimizu, T.; Saitoh, S.-I.; Fukui, R.; Murakami, Y. Mechanisms Controlling Nucleic Acid-Sensing Toll-like Receptors. Int. Immunol. 2018, 30, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Mei, X.; Zhao, D.; Sun, Y.; Song, J.; Pan, W.; Shi, W. DNA Methylation Modulates HERV-E Expression in CD4+ T Cells from Systemic Lupus Erythematosus Patients. J. Dermatol. Sci. 2015, 77, 110–116. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Zhang, C.; Mei, X.; Song, J.; Sun, Y.; Wu, Z.; Shi, W. Increased HERV-E Clone 4-1 Expression Contributes to DNA Hypomethylation and IL-17 Release from CD4+ T Cells via MiR-302d/MBD2 in Systemic Lupus Erythematosus. Cell Commun. Signal. 2019, 17, 94. [Google Scholar] [CrossRef] [Green Version]
- Talotta, R.; Atzeni, F.; Laska, M.J. The Contribution of HERV-E Clone 4-1 and Other HERV-E Members to the Pathogenesis of Rheumatic Autoimmune Diseases. APMIS 2020, 128, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, P.C.; Duriagin, S.; Jagodzinski, P.P. Expression of Human Endogenous Retrovirus Clone 4-1 May Correlate with Blood Plasma Concentration of Anti-U1 RNP and Anti-Sm Nuclear Antibodies. Clin. Rheumatol. 2005, 24, 620–624. [Google Scholar] [CrossRef]
- Mavragani, C.P.; Sagalovskiy, I.; Guo, Q.; Nezos, A.; Kapsogeorgou, E.K.; Lu, P.; Liang Zhou, J.; Kirou, K.A.; Seshan, S.V.; Moutsopoulos, H.M.; et al. Expression of Long Interspersed Nuclear Element 1 Retroelements and Induction of Type I Interferon in Patients With Systemic Autoimmune Disease. Arthritis Rheumatol. 2016, 68, 2686–2696. [Google Scholar] [CrossRef]
- Huang, X.; Su, G.; Wang, Z.; Shangguan, S.; Cui, X.; Zhu, J.; Kang, M.; Li, S.; Zhang, T.; Wu, F.; et al. Hypomethylation of Long Interspersed Nucleotide Element-1 in Peripheral Mononuclear Cells of Juvenile Systemic Lupus Erythematosus Patients in China. Int. J. Rheum. Dis. 2014, 17, 280–290. [Google Scholar] [CrossRef]
- Sukapan, P.; Promnarate, P.; Avihingsanon, Y.; Mutirangura, A.; Hirankarn, N. Types of DNA Methylation Status of the Interspersed Repetitive Sequences for LINE-1, Alu, HERV-E and HERV-K in the Neutrophils from Systemic Lupus Erythematosus Patients and Healthy Controls. J. Hum. Genet. 2014, 59, 178–188. [Google Scholar] [CrossRef]
- Emmer, A.; Staege, M.S.; Kornhuber, M.E. The Retrovirus/Superantigen Hypothesis of Multiple Sclerosis. Cell. Mol. Neurobiol. 2014, 34, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Belgaumkar, V.A.; Chavan, R.B.; Suryataley, P.R.; Salunke, A.S.; Patil, P.P.; Borade, S.M. Systemic Lupus Erythematosus in HIV: An Insight into Clinical Implications and Management. Indian J. Sex. Transm. Dis. AIDS 2019, 40, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.J.; Troldborg, A.; Hauge, E.-M.; Bahrami, S.; Stengaard-Pedersen, K. Human Endogenous Retroviral Genetic Element With Immunosuppressive Activity in Both Human Autoimmune Diseases and Experimental Arthritis. Arthritis Rheumatol. 2017, 69, 398–409. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, S.; Gryz, E.A.; Graversen, J.H.; Troldborg, A.; Stengaard Pedersen, K.; Laska, M.J. Immunomodulating Peptides Derived from Different Human Endogenous Retroviruses (HERVs) Show Dissimilar Impact on Pathogenesis of a Multiple Sclerosis Animal Disease Model. Clin. Immunol. 2018, 191, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakui, H.; Masai, R.; Okuyama, S.; Ohtani, H.; Komatsuda, A.; Toyoshima, I.; Watanabe, S.; Sawada, K.-I. Development of Lupus Nephritis in a Patient with Human T-Cell Lymphotropic Virus Type I-Associated Myelopathy. Am. J. Kidney Dis. 2005, 46, e25–e29. [Google Scholar] [CrossRef]
- Akimoto, M.; Matsushita, K.; Suruga, Y.; Aoki, N.; Ozaki, A.; Uozumi, K.; Tei, C.; Arima, N. Clinical Manifestations of Human T Lymphotropic Virus Type I-Infected Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2007, 34, 1841–1848. [Google Scholar]
- Banki, K.; Maceda, J.; Hurley, E.; Ablonczy, E.; Mattson, D.H.; Szegedy, L.; Hung, C.; Perl, A. Human T-Cell Lymphotropic Virus (HTLV)-Related Endogenous Sequence, HRES-1, Encodes a 28-KDa Protein: A Possible Autoantigen for HTLV-I Gag-Reactive Autoantibodies. Proc. Natl. Acad. Sci. USA 1992, 89, 1939–1943. [Google Scholar] [CrossRef] [Green Version]
- Lebrun, D.; Hentzien, M.; Cuzin, L.; Rey, D.; Joly, V.; Cotte, L.; Allavena, C.; Dellamonica, P.; Servettaz, A.; Bani-Sadr, F.; et al. Epidemiology of Autoimmune and Inflammatory Diseases in a French Nationwide HIV Cohort. AIDS 2017, 31, 2159–2166. [Google Scholar] [CrossRef]
- Gindea, S.; Schwartzman, J.; Herlitz, L.C.; Rosenberg, M.; Abadi, J.; Putterman, C. Proliferative Glomerulonephritis in Lupus Patients with Human Immunodeficiency Virus Infection: A Difficult Clinical Challenge. Semin. Arthritis Rheum. 2010, 40, 201–209. [Google Scholar] [CrossRef]
- Wiegersma, J.S.; Franssen, C.F.M.; Diepstra, A. Nephrotic Syndrome Due to Lupus-like Glomerulonephritis in an HIV-Positive Patient. Neth. J. Med. 2017, 75, 412–414. [Google Scholar]
- Hamid, C.K.; Hameed, R.A.; Khaliq, B.I.; Manzoor, R.; Hamid, C.Q. HIV Associated Lupus like Nephropathy. Ethiop. J. Health Sci. 2014, 24, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Bonsignori, M.; Wiehe, K.; Grimm, S.K.; Lynch, R.; Yang, G.; Kozink, D.M.; Perrin, F.; Cooper, A.J.; Hwang, K.-K.; Chen, X.; et al. An Autoreactive Antibody from an SLE/HIV-1 Individual Broadly Neutralizes HIV-1. J. Clin. Investig. 2014, 124, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Frank, M.; Glynn, M.; Altman, R.D. Rheumatic Manifestations in HIV-1 Infected in-Patients and Literature Review. Clin. Exp. Rheumatol. 2008, 26, 799–806. [Google Scholar]
- Nardacci, R.; Ciccosanti, F.; Marsella, C.; Ippolito, G.; Piacentini, M.; Fimia, G.M. Role of Autophagy in HIV Infection and Pathogenesis. J. Intern. Med. 2017, 281, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.-Y.; Zhou, X.-J.; Zhang, H. Autophagy and Immunological Aberrations in Systemic Lupus Erythematosus. Eur. J. Immunol. 2019, 49, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Oaks, Z.; Winans, T.; Huang, N.; Banki, K.; Perl, A. Activation of the Mechanistic Target of Rapamycin in SLE: Explosion of Evidence in the Last Five Years. Curr. Rheumatol. Rep. 2016, 18, 73. [Google Scholar] [CrossRef] [Green Version]
- Lolomadze, E.A.; Rebrikov, D.V. Constant Companion: Clinical and Developmental Aspects of Torque Teno Virus Infections. Arch. Virol. 2020, 165, 2749–2757. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Rakibuzzaman, A.; Ramamoorthy, S. Torque Teno Viruses in Health and Disease. Virus Res. 2020, 285, 198013. [Google Scholar] [CrossRef]
- Garbuglia, A.R.; Iezzi, T.; Capobianchi, M.R.; Pignoloni, P.; Pulsoni, A.; Sourdis, J.; Pescarmona, E.; Vitolo, D.; Mandelli, F. Detection of TT Virus in Lymph Node Biopsies of B-Cell Lymphoma and Hodgkin’s Disease, and Its Association with EBV Infection. Int. J. Immunopathol. Pharmacol. 2003, 16, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Sospedra, M.; Zhao, Y.; zur Hausen, H.; Muraro, P.A.; Hamashin, C.; de Villiers, E.-M.; Pinilla, C.; Martin, R. Recognition of Conserved Amino Acid Motifs of Common Viruses and Its Role in Autoimmunity. PLoS Pathog. 2005, 1, e41. [Google Scholar] [CrossRef] [Green Version]
- Dioverti, M.V.; Razonable, R.R. Cytomegalovirus. Microbiol. Spectr. 2016, 4, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Halenius, A.; Hengel, H. Human Cytomegalovirus and Autoimmune Disease. Biomed. Res. Int. 2014, 2014, 472978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazaki, S.; Endo, A.; Iso, T.; Abe, S.; Aoyagi, Y.; Suzuki, M.; Fujii, T.; Haruna, H.; Ohtsuka, Y.; Shimizu, T. Cytomegalovirus as a Potential Trigger for Systemic Lupus Erythematosus: A Case Report. BMC Res. Notes 2015, 8, 487. [Google Scholar] [CrossRef] [Green Version]
- HoHsieh, A.; Wang, C.M.; Wu, Y.-J.J.; Chen, A.; Chang, M.-I.; Chen, J.-Y. B Cell Epitope of Human Cytomegalovirus Phosphoprotein 65 (HCMV Pp65) Induced Anti-DsDNA Antibody in BALB/c Mice. Arthritis Res. Ther. 2017, 19, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, A.-H.; Kuo, C.-F.; Chou, I.-J.; Tseng, W.-Y.; Chen, Y.-F.; Yu, K.-H.; Luo, S.-F. Human Cytomegalovirus Pp65 Peptide-Induced Autoantibodies Cross-Reacts with TAF9 Protein and Induces Lupus-like Autoimmunity in BALB/c Mice. Sci. Rep. 2020, 10, 9662. [Google Scholar] [CrossRef]
- Neo, J.Y.J.; Wee, S.Y.K.; Bonne, I.; Tay, S.H.; Raida, M.; Jovanovic, V.; Fairhurst, A.-M.; Lu, J.; Hanson, B.J.; MacAry, P.A. Characterisation of a Human Antibody That Potentially Links Cytomegalovirus Infection with Systemic Lupus Erythematosus. Sci. Rep. 2019, 9, 9998. [Google Scholar] [CrossRef]
- Guo, G.; Ye, S.; Xie, S.; Ye, L.; Lin, C.; Yang, M.; Shi, X.; Wang, F.; Li, B.; Li, M.; et al. The Cytomegalovirus Protein US31 Induces Inflammation through Mono-Macrophages in Systemic Lupus Erythematosus by Promoting NF-ΚB2 Activation. Cell Death Dis. 2018, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Rozenblyum, E.V.; Allen, U.D.; Silverman, E.D.; Levy, D.M. Cytomegalovirus Infection in Childhood-Onset Systemic Lupus Erythematosus. Int. J. Clin. Rheumtol. 2013, 8, 137–146. [Google Scholar] [CrossRef]
- Janahi, E.M.A.; Das, S.; Bhattacharya, S.N.; Haque, S.; Akhter, N.; Jawed, A.; Wahid, M.; Mandal, R.K.; Lohani, M.; Areeshi, M.Y.; et al. Cytomegalovirus Aggravates the Autoimmune Phenomenon in Systemic Autoimmune Diseases. Microb. Pathog. 2018, 120, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Draborg, A.H.; Rasmussen, N.S.; Larsen, J.L.; Jørgensen, C.S.; Sandhu, N.; Skogstrand, K.; Jacobsen, S.; Houen, G. Immune Responses to an Early Lytic Cytomegalovirus Antigen in Systemic Lupus Erythematosus Patients: T-Cell Responses, Cytokine Secretions and Antibody Status. PLoS ONE 2018, 13, e0193244. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-S.; Chyuan, I.-T.; Chiu, Y.-L.; Chen, W.-L.; Shen, C.-Y.; Hsu, P.-N. Preserved Specific Anti-Viral T-Cell Response but Associated with Decreased Lupus Activity in SLE Patients with Cytomegalovirus Infection. Rheumatology 2020, 59, 3340–3349. [Google Scholar] [CrossRef] [PubMed]
- Cassaniti, I.; Cavagna, L.; Calarota, S.A.; Adzasehoun, K.M.G.; Comolli, G.; Montecucco, C.; Baldanti, F. Evaluation of EBV- and HCMV-Specific T Cell Responses in Systemic Lupus Erythematosus (SLE) Patients Using a Normalized Enzyme-Linked Immunospot (ELISPOT) Assay. J. Immunol. Res. 2019, 2019, 4236503. [Google Scholar] [CrossRef]
- Bano, A.; Pera, A.; Almoukayed, A.; Clarke, T.H.S.; Kirmani, S.; Davies, K.A.; Kern, F. CD28 Null CD4 T-Cell Expansions in Autoimmune Disease Suggest a Link with Cytomegalovirus Infection. F1000Resarch 2019, 8, 327. [Google Scholar] [CrossRef]
- Dolcino, M.; Puccetti, A.; Barbieri, A.; Bason, C.; Tinazzi, E.; Ottria, A.; Patuzzo, G.; Martinelli, N.; Lunardi, C. Infections and Autoimmunity: Role of Human Cytomegalovirus in Autoimmune Endothelial Cell Damage. Lupus 2015, 24, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Stratta, P.; Canavese, C.; Ciccone, G.; Santi, S.; Quaglia, M.; Ghisetti, V.; Marchiaro, G.; Barbui, A.; Fop, F.; Cavallo, R.; et al. Correlation between Cytomegalovirus Infection and Raynaud’s Phenomenon in Lupus Nephritis. Nephron 1999, 82, 145–154. [Google Scholar] [CrossRef]
- Labarca, J.A.; Rabaggliati, R.M.; Radrigan, F.J.; Rojas, P.P.; Perez, C.M.; Ferrés, M.V.; Acuna, G.G.; Bertin, P.A. Antiphospholipid Syndrome Associated with Cytomegalovirus Infection: Case Report and Review. Clin. Infect. Dis. 1997, 24, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Avcin, T.; Toplak, N. Antiphospholipid Antibodies in Response to Infection. Curr. Rheumatol. Rep. 2007, 9, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Sarnow, P.; Sagan, S.M. Unraveling the Mysterious Interactions Between Hepatitis C Virus RNA and Liver-Specific MicroRNA-122. Annu. Rev. Virol. 2016, 3, 309–332. [Google Scholar] [CrossRef]
- Rosenthal, E.; Cacoub, P. Extrahepatic Manifestations in Chronic Hepatitis C Virus Carriers. Lupus 2015, 24, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Böröcz, K.; Simon, D.; Erdő-Bonyár, S.; Kovács, K.T.; Tuba, É.; Czirják, L.; Németh, P.; Berki, T. Relationship between Natural and Infection-Induced Antibodies in Systemic Autoimmune Diseases (SAD): SLE, SSc and RA. Clin. Exp. Immunol. 2020, 203, 32–40. [Google Scholar] [CrossRef]
- Joo, Y.B.; Lim, Y.-H.; Kim, K.-J.; Park, K.-S.; Park, Y.-J. Association of Influenza Infection with Hospitalisation-Related Systemic Lupus Erythematosus Flares: A Time Series Analysis. Clin. Exp. Rheumatol. 2020. [Google Scholar]
- Kanduc, D. The Comparative Biochemistry of Viruses and Humans: An Evolutionary Path towards Autoimmunity. Biol. Chem. 2019, 400, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Zainal, N.; Tan, K.-K.; Johari, J.; Hussein, H.; Wan Musa, W.R.; Hassan, J.; Lin, Y.-S.; AbuBakar, S. Sera of Patients with Systemic Lupus Erythematosus Cross-Neutralizes Dengue Viruses. Microbiol. Immunol. 2018, 62, 659–672. [Google Scholar] [CrossRef]
- Segal, Y.; Dahan, S.; Calabrò, M.; Kanduc, D.; Shoenfeld, Y. HPV and Systemic Lupus Erythematosus: A Mosaic of Potential Crossreactions. Immunol. Res. 2017, 65, 564–571. [Google Scholar] [CrossRef]
- Wilson, J.B.; Manet, E.; Gruffat, H.; Busson, P.; Blondel, M.; Fahraeus, R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yiu, S.P.T.; Dorothea, M.; Hui, K.F.; Chiang, A.K.S. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers 2020, 12, 2142. [Google Scholar] [CrossRef]
- Kerr, J.R. Epstein-Barr Virus (EBV) Reactivation and Therapeutic Inhibitors. J. Clin. Pathol. 2019, 72, 651–658. [Google Scholar] [CrossRef]
- Münz, C. Redirecting T Cells against Epstein-Barr Virus Infection and Associated Oncogenesis. Cells 2020, 9, 1400. [Google Scholar] [CrossRef]
- Manaresi, E.; Gallinella, G. Advances in the Development of Antiviral Strategies against Parvovirus B19. Viruses 2019, 11, 659. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, S.; Wang, M.; Cheng, A. The Role of Nuclear Localization Signal in Parvovirus Life Cycle. Virol. J. 2017, 14, 80. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.-F.; Chuang, P.-H.; Jen, I.-A.; Chen, M.; Lan, Y.-C.; Liu, Y.-L.; Lee, Y.; Chen, Y.-H.; Chen, Y.-M.A. Incidence of Autoimmune Diseases in a Nationwide HIV/AIDS Patient Cohort in Taiwan, 2000-2012. Ann. Rheum. Dis. 2017, 76, 661–665. [Google Scholar] [CrossRef]
- Contreras-Galindo, R.; Dube, D.; Fujinaga, K.; Kaplan, M.H.; Markovitz, D.M. Susceptibility of Human Endogenous Retrovirus Type K to Reverse Transcriptase Inhibitors. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Chanouzas, D.; Sagmeister, M.; Faustini, S.; Nightingale, P.; Richter, A.; Ferro, C.J.; Morgan, M.D.; Moss, P.; Harper, L. Subclinical Reactivation of Cytomegalovirus Drives CD4+CD28null T-Cell Expansion and Impaired Immune Response to Pneumococcal Vaccination in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. J. Infect. Dis. 2019, 219, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Chanouzas, D.; Dyall, L.; Nightingale, P.; Ferro, C.; Moss, P.; Morgan, M.D.; Harper, L. Valaciclovir to Prevent Cytomegalovirus Mediated Adverse Modulation of the Immune System in ANCA-Associated Vasculitis (CANVAS): Study Protocol for a Randomised Controlled Trial. Trials 2016, 17, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, E.F.; Lee, J.C.; Jayne, D.R.W.; Lyons, P.A.; Smith, K.G.C. T-Cell Exhaustion, Co-Stimulation and Clinical Outcome in Autoimmunity and Infection. Nature 2015, 523, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilstra, J.S.; Avery, L.; Menk, A.V.; Gordon, R.A.; Smita, S.; Kane, L.P.; Chikina, M.; Delgoffe, G.M.; Shlomchik, M.J. Kidney-Infiltrating T Cells in Murine Lupus Nephritis Are Metabolically and Functionally Exhausted. J. Clin. Investig. 2018, 128, 4884–4897. [Google Scholar] [CrossRef]
- Linsley, P.S.; Long, S.A. Enforcing the Checkpoints: Harnessing T-Cell Exhaustion for Therapy of T1D. Curr. Opin. Endocrinol. Diabetes Obes. 2019, 26, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Angarita, A.; Aragón, C.C.; Tobón, G.J. Cathelicidin LL-37: A New Important Molecule in the Pathophysiology of Systemic Lupus Erythematosus. J. Transl. Autoimmun. 2020, 3, 100029. [Google Scholar] [CrossRef]
- Mishra, R.; Bhattacharya, S.; Rawat, B.S.; Kumar, A.; Kumar, A.; Niraj, K.; Chande, A.; Gandhi, P.; Khetan, D.; Aggarwal, A.; et al. MicroRNA-30e-5p Has an Integrated Role in the Regulation of the Innate Immune Response during Virus Infection and Systemic Lupus Erythematosus. iScience 2020, 23, 101322. [Google Scholar] [CrossRef]
- Bogdanos, D.P.; Sakkas, L.I. From Microbiome to Infectome in Autoimmunity. Curr. Opin. Rheumatol. 2017, 29, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Jia, X.-M.; Xu, J.-Y.; Zhao, L.-D.; Ji, J.-Y.; Wu, B.-X.; Ma, Y.; Li, H.; Zuo, X.-X.; Pan, W.-Y.; et al. The Gut Microbiota of Non-Treated Patients with SLE Defines an Autoimmunogenic and Proinflammatory Profile. Arthritis Rheumatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-W.; Kwok, S.-K.; Choe, J.-Y.; Park, S.-H. Recent Advances in Our Understanding of the Link between the Intestinal Microbiota and Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2019, 20, 4871. [Google Scholar] [CrossRef] [Green Version]
- Carvalho-Queiroz, C.; Johansson, M.A.; Persson, J.-O.; Jörtsö, E.; Kjerstadius, T.; Nilsson, C.; Saghafian-Hedengren, S.; Sverremark-Ekström, E. Associations between EBV and CMV Seropositivity, Early Exposures, and Gut Microbiota in a Prospective Birth Cohort: A 10-Year Follow-Up. Front. Pediatr. 2016, 4, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steed, A.L.; Stappenbeck, T.S. Role of Viruses and Bacteria-Virus Interactions in Autoimmunity. Curr. Opin. Immunol. 2014, 31, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Ye, L.; Shi, X.; Yan, K.; Huang, J.; Lin, K.; Xing, D.; Ye, S.; Wu, Y.; Li, B.; et al. Dysbiosis in Peripheral Blood Mononuclear Cell Virome Associated With Systemic Lupus Erythematosus. Front. Cell. Infect. Microbiol. 2020, 10, 131. [Google Scholar] [CrossRef]
- Marietta, E.; Mangalam, A.K.; Taneja, V.; Murray, J.A. Intestinal Dysbiosis in, and Enteral Bacterial Therapies for, Systemic Autoimmune Diseases. Front. Immunol. 2020, 11, 573079. [Google Scholar] [CrossRef]
- Dreyfus, D.H. Autoimmune Disease: A Role for New Anti-Viral Therapies? Autoimmun. Rev. 2011, 11, 88–97. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Bridgewood, C.; Sharif, K.; Kamal, M.; Amital, H.; Watad, A.; Shoenfeld, Y. HPV Vaccines and Lupus: Current Approaches towards Preventing Adverse Immune Cross-Reactivity. Expert Rev. Vaccines 2019, 18, 31–42. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Description | References |
---|---|---|
Molecular mimicry | Viral antigens with structural similarity with self-antigens can be presented to and activate autoreactive T-lymphocytes. | [8,9,14,15,16,17,18] |
Epitope-spreading | Over time, persistent viral infection elicits autoantibodies directed not only towards initial antigens but also multiple epitopes of the same antigens or even different antigens, increasing breadth of immune response. | [8,9,14,19] |
Superantigen production | Superantigens lack antigenic specificity and bind to T-cell receptor (TCR) and major histocompatibility complex (MHC) class II molecules, activating T-lymphocytes with a wide range of specificities. | [8,9,14] |
Bystander activation | Release of cytokine by antigen-presenting cells (APCs) or virus-specific T- lymphocytes activates neighboring preprimed autoreactive T-lymphocytes. | [8,9,14,20] |
Altered apoptosis and clearance deficit | Viral infections can increase cell apoptosis, with activation of T-helper 17 (Th17) and release of nondigested nuclear material; if a clearance deficit is present, this process may stimulate autoreactive B-lymphocytes survival. | [8,9,14,22] |
Epigenetic factors | DNA methylation, histone modifications and RNA-based mechanisms are the three main epigenetic modalities which allow viruses to modulate expression of genes involved in immune response. | [8,9,14,23,24,25,26] |
Persistent or recurrent viral infection | Persistent infection by lymphotropic viruses can stimulate expansion of polyclonal lymphocytes, leading to autoantibody production Recurrent infections can trigger “facilitating antibodies” which enhance inflammation and antigen exposure in subsequent infective episodes, leading to autoimmunity (e.g.,T1D) | [8,9,14,27,28,29,30] |
Innate immunity activation | Viral DNA/RNA bind to different PRRs which initiate pathways leading to type I IFN response | [31,32,33] |
Direct cytotoxicity | Viruses can infect and directly kill target cells, causing AIDs | [29,34] |
Virus | Family (Type of Genome) | Proposed Pathogenetic Mechanism in SLE | Therapeutic Approaches | References | |
---|---|---|---|---|---|
Epstein–Barr virus (EBV, HHV4) | Herpesviridae (dsDNA, linear) | Molecular mimicry, epitope spreading | Synthetic nucleoside analogs (acyclovir/ganciclovir) effective against lytic infection only, not recommended. Corticosteroids possibly beneficial in patients with airway defects or EBV-induced autoimmune complications. | [36,37,38] | |
Cytomegalovirus (CMV, HHV5) | Herpesviridae (dsDNA, linear) | Epitope spreading | Synthetic nucleosides (ganciclovir or valganciclovir) drugs of choice for serious infections or treatment of immunocompromised hosts. Nucleotide (cidofovir) or pyrophosphate analogs (foscarnet) second-choice drugs. | [39,40] | |
Parvovirus B19 (B19V) | Parvoviridae (positive or negative ssDNA, linear) | Molecular mimicry | Supportive care with transfusion (severe anemia, chronic hemolytic disorders). Reduction of immunosuppression. | [41,42] | |
Torque Teno Virus (TTV) | Anelloviridae (negative ssDNA, circular) | Molecular mimicry | Not sensitive to current antiviral prophylaxis/therapy. Viral load reduction observed in HIV pts undergoing Highly active antiretroviral therapy (HAART). IFN associated with viral clearance during treatment of coinfecting hepatitis viruses | [43,44] | |
Hepatitis C virus (HCV) | Flaviviridae (positive ssRNA) | Epitope spreading | Direct-acting antivirals against viral proteases or polymerases. Ribavirin and IFN as second options. | [45] | |
Dengue virus (DENV) | Flaviviridae (positive ssRNA) | Epitope spreading | No specific treatment | [46,47] | |
Retroviruses(RVs) | Exogenous retroviruses (HIV, HTLV) | Retroviridae (positive diploid ssRNA, linear) | Dysregulation of apoptosis and molecular mimicry (HIV), regulation of CD4 expression (HTLV-1) | Highly active antiretroviral therapy (HAART) (HIV); nucleoside/nucleotide reverse transcriptase inhibitors associated with IFN useful in HTLV-associated haematological diseases, even if prone to relapses. Insufficient evidence to support use of antiretroviral therapy for the treatment of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) | [48,49,50,51] |
Human Endogenous Retroviruses (HERV) | Retroviridae (integrated in the host genome) | Molecular mimicry, defects in IFN-stimulatory DNA pathways | HAART therapy for HIV may also blunt activation of some HERVs | [43,52,53,54] |
Protein | Mechanism | References |
---|---|---|
Viral IL-10 homologue | It inhibits IFN-γ production, CD8+ cytotoxic T-cells and MHC-I expression | [62] |
EA/R | It is a viral Bcl-2 homologue which confers resistance to apoptosis | [64] |
LMP-1 and LMP-2A | They rescue infected B cells from apoptosis and are involved in molecular mimicry. LMP-1 triggers IFN-α production by pDCs through TLRs and mediates PDL-1 overexpression in neutrophils. LMP-1 renal expression is increased in LN and correlates with severity. | [17,66,67,68,69,70,71,72,73] |
EBNA-1 | It can induce autoimmunity through molecular mimicry with C1q | [74,75] |
EBNA-2 | It is a TF which controls all other latent viral genes. 50% of SLE-predisposing loci can be occupied by EBNA-2, suggesting a key role in AIDs | [76] |
Type of Alteration | Comment | References |
---|---|---|
Reduced EBV-specific CD8+ lymphocyte response and increased CD4+ lymphocyte response | Impaired cytotoxic potential of EBV-specific CD8+ lymphocytes is due to a SLE-intrinsic defect and is probably the primum movens of altered immune response | [78,79,80,81,82,83] |
Decreased Th17 and Treg response | Imbalance between Th17 and T reg is a major cause of AIDs and decrease in Th17 may be an important feature of EBV/CMV infection. | [84] |
Elevated EBV viral load in B cells and PBMC and aberrant expression of viral mRNAs of lytic (BZLF-1, BLLF-1) and latent phase proteins (LMP-1, LMP-2 and EBNA-1) | It is due to impaired control of EBV infection by CTLs, with frequent viral reactivations (BZLF-1, BLLF-1) and abnormal latency state (LMP-1, LMP-2, EBNA-1) | [82,85,86,87,88,89] |
Elevated EBV seroprevalence | EBV seroprevalence is very high especially in certain populations, in which prior EBV infection appears necessary to develop SLE | [90,91,92,93,94] |
Elevated titers of antibody against early lytic (EA/D; EA/R) and latent (EBNA) EBV antigens | This could represent an enhanced compensatory humoral response secondary to an inadequate T-cell control of a chronic EBV infection, with frequent reactivations. It can be associated with production of autoantibodies. | [75,89,91,95,96,97,98] |
Elevated prevalence of IgA against EA/D antigen and coexistence of different EBV-specific immunoglobulin isotypes | It may indicate disseminated EBV infection, with higher lytic rate of epithelial cells (IgA) and lymphocytes (IgG). | [89,99,100] |
Temporal relationship between anti-EBV antibodies and SLE manifestations | Anti-EBV humoral response can precede SLE onset or flareups. It identifies first-degree unaffected family members of SLE patients who are at risk of transitioning to SLE | [75,101,102,103] |
Coexistence of anti-EBV antibodies and SLE-specific autoantibodies | Cross-reactivity between EBV- and self-antigens explains associations between anti-EA/D and anti-Ro/anti-La antibodies, also observed in Sjögren’s syndrome, and between anti-EBNA-1 and anti-C1q. | [74,93,104,105] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaglia, M.; Merlotti, G.; De Andrea, M.; Borgogna, C.; Cantaluppi, V. Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses 2021, 13, 277. https://doi.org/10.3390/v13020277
Quaglia M, Merlotti G, De Andrea M, Borgogna C, Cantaluppi V. Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses. 2021; 13(2):277. https://doi.org/10.3390/v13020277
Chicago/Turabian StyleQuaglia, Marco, Guido Merlotti, Marco De Andrea, Cinzia Borgogna, and Vincenzo Cantaluppi. 2021. "Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story" Viruses 13, no. 2: 277. https://doi.org/10.3390/v13020277
APA StyleQuaglia, M., Merlotti, G., De Andrea, M., Borgogna, C., & Cantaluppi, V. (2021). Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses, 13(2), 277. https://doi.org/10.3390/v13020277