Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review
Abstract
:1. Introduction
2. HCV Virology
3. HCV Treatment
3.1. Viral Target and DAAs
3.2. Treatment Indication and Current Regimens
4. Impact of the Most Frequent RASs on the Virological Response to the latest DAAs
5. Retreatment Strategy in Patients Who Failed the Latest DAA Regimens
5.1. Retreatment after Failure to Grazoprevir/Elbasvir
5.2. Retreatment after Failure to Glecaprevir/Pibrentasvir
5.3. Retreatment after Failure to Sofosbuvir/Velpatasvir
5.4. Retreatment after Failure to Sofosbuvir/Velpatasvir/Voxilaprevir
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar] [CrossRef]
- Spearman, C.W.; Dusheiko, G.M.; Hellard, M.; Sonderup, M. Hepatitis C. Lancet 2019, 394, 1451–1466. [Google Scholar] [CrossRef]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.-W.; et al. Forecasting life expectancy, years of life lost, and all-Cause and cause-Specific mortality for 250 causes of death: Reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Health Sector Strategy on Viral Hepatitis 2016–2021; Glob Hepat Program Dep HIV/AIDS 2016; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Pawlotsky, J.M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef] [PubMed]
- Catanese, M.T.; Uryu, K.; Kopp, M.; Edwards, T.J.; Andrus, L.; Rice, W.J.; Silvestry, M.; Kuhn, R.J.; Rice, C.M. Ultrastructural analysis of hepatitis C virus particles. Proc. Natl. Acad. Sci. USA 2013, 110, 9505–9510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Choo, Q.L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science (80-) 1989, 244, 359–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.T.; Murray, C.L.; Eastman, D.K.; Tassello, J.; Rice, C.M. Hepatitis C Virus p7 and NS2 Proteins Are Essential for Production of Infectious Virus. J. Virol. 2007, 81, 8374–8383. [Google Scholar] [CrossRef] [Green Version]
- Moradpour, D.; Penin, F. Hepatitis C virus proteins: From structure to function. Curr. Top. Microbiol. Immunol. 2013, 369, 113–142. [Google Scholar] [CrossRef]
- Friebe, P.; Lohmann, V.; Krieger, N.; Bartenschlager, R. Sequences in the 5′ Nontranslated Region of Hepatitis C Virus Required for RNA Replication. J. Virol. 2001, 75, 12047–12057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friebe, P.; Bartenschlager, R. Genetic Analysis of Sequences in the 3′ Nontranslated Region of Hepatitis C Virus That Are Important for RNA Replication. J. Virol. 2002, 76, 5326–5338. [Google Scholar] [CrossRef] [Green Version]
- Pirakitikulr, N.; Kohlway, A.; Lindenbach, B.D.; Pyle, A.M. The Coding Region of the HCV Genome Contains a Network of Regulatory RNA Structures. Mol. Cell 2016, 62, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Foy, E.; Ferreon, J.C.; Nakamura, M.; Ferreon, A.C.M.; Ikeda, M.; Ray, S.C.; Gale Jr, M.; Lemon, S.M. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 2005, 102, 2992–2997. [Google Scholar] [CrossRef] [Green Version]
- Vieyres, G.; Thomas, X.; Descamps, V.; Duverlie, G.; Patel, A.H.; Dubuisson, J. Characterization of the Envelope Glycoproteins Associated with Infectious Hepatitis C Virus. J. Virol. 2010, 84, 10159–10168. [Google Scholar] [CrossRef] [Green Version]
- Bruening, J.; Lasswitz, L.; Banse, P.; Kahl, S.; Marinach, C.; Vondran, F.W.; Kaderali, L.; Silvie, O.; Pietschmann, T.; Meissner, F.; et al. Hepatitis C virus enters liver cells using the CD81 receptor complex proteins calpain-5 and CBLB. PLoS Pathog. 2018, 14, e1007111. [Google Scholar] [CrossRef]
- Dustin, L.B.; Bartolini, B.; Capobianchi, M.R.; Pistello, M. Hepatitis C virus: life cycle in cells, infection and host response, and analysis of molecular markers influencing the outcome of infection and response to therapy. Clin. Microbiol. Infect. 2016, 22, 826–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, D.G.; Sablon, E.; Chamberland, J.; Fournier, E.; Dandavino, R.; Tremblay, C.L. Hepatitis C Virus Genotype 7, a New Genotype Originating from Central Africa. J. Clin. Microbiol. 2015, 53, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgia, S.M.; Hedskog, C.; Parhy, B.; Hyland, R.H.; Stamm, L.M.; Brainard, D.M.; Subramanian, M.G.; McHutchison, J.G.; Mo, H.; Svarovskaia, E.; et al. Identification of a novel hepatitis C virus genotype from Punjab, India: Expanding classification of hepatitis C virus into 8 genotypes. J. Infect. Dis. 2018, 218, 1722–1729. [Google Scholar] [CrossRef] [Green Version]
- Tsukiyama-Kohara, K.; Kohara, M. Hepatitis C virus: Viral quasispecies and genotypes. Int. J. Mol. Sci. 2018, 19, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, R.T.; Ghany, M.G.; Kim, A.Y.; Marks, K.M.; Naggie, S.; Vargas, H.E.; Aronsohn, A.I.; Bhattacharya, D.; Broder, T.; Falade-Nwulia, O.O.; et al. Hepatitis C guidance 2018 update: Aasld-idsa recommendations for testing, managing, and treating Hepatitis C Virus infection. Clin. Infect. Dis. 2018, 67, 1477–1492. [Google Scholar] [CrossRef] [Green Version]
- Carrat, F.; Fontaine, H.; Dorival, C.; Simony, M.; Diallo, A.; Hezode, C.; De Ledinghen, V.; Larrey, D.; Haour, G.; Bronowicki, J.-P.; et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: A prospective cohort study. Lancet 2019, 393, 1453–1464. [Google Scholar] [CrossRef]
- Mandorfer, M.; Kozbial, K.; Schwabl, P.; Chromy, D.; Semmler, G.; Stättermayer, A.F.; Pinter, M.; Hernández-Gea, V.; Fritzer-Szekeres, M.; Steindl-Munda, P.; et al. Changes in Hepatic Venous Pressure Gradient Predict Hepatic Decompensation in Patients Who Achieved Sustained Virologic Response to Interferon-Free Therapy. Hepatology 2020, 71, 1023–1036. [Google Scholar] [CrossRef] [Green Version]
- Petruzziello, A.; Coppola, N.; Diodato, A.M.; Iervolino, V.; Azzaro, R.; Di Costanzo, G.; Di Macchia, C.A.; Di Meo, T.; Loquercio, G.; Pasquale, G.; et al. Age and gender distribution of hepatitis C virus genotypes in the metropolitan area of Naples. Intervirology 2013, 56, 206–212. [Google Scholar] [CrossRef]
- Martinot-Peignoux, M.; Stern, C.; Maylin, S.; Ripault, M.P.; Boyer, N.; Leclere, L.; Castelnau, C.; Giuily, N.; El Ray, A.; Cardoso, A.-C.; et al. Twelve weeks posttreatment follow-up is as relevant as 24 weeks to determine the sustained virologic response in patients with hepatitis c virus receiving pegylated interferon and ribavirin. Hepatology 2010, 51, 1122–1126. [Google Scholar] [CrossRef]
- Sarrazin, C.; Isakov, V.; Svarovskaia, E.S.; Hedskog, C.; Martin, R.; Chodavarapu, K.; Brainard, D.M.; Miller, M.D.; Mo, H.; Molina, J.-M.; et al. Late relapse versus hepatitis c virus reinfection in patients with sustained virologic response after sofosbuvir-based therapies. Clin. Infect. Dis. 2017, 64, 44–52. [Google Scholar] [CrossRef]
- Frías, M.; Rivero-Juárez, A.; Téllez, F.; Palacios, R.; Jiménez-Arranz, Á.; Pineda, J.A.; Merino, D.; Gómez-Vidal, M.A.; Pérez-Camacho, I.; Camacho, A.; et al. Evaluation of hepatitis C viral RNA persistence in HIV-infected patients with long-term sustained virological response by droplet digital PCR. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Waziry, R.; Hajarizadeh, B.; Grebely, J.; Amin, J.; Law, M.; Danta, M.; George, J.; Dore, G.J. Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: A systematic review, meta-analyses, and meta-regression. J. Hepatol. 2017, 67, 1204–1212. [Google Scholar] [CrossRef]
- Nahon, P.; Bourcier, V.; Layese, R.; Audureau, E.; Cagnot, C.; Marcellin, P.; Guyader, D.; Fontaine, H.; Larrey, D.; De Lédinghen, V.; et al. Eradication of Hepatitis C Virus Infection in Patients With Cirrhosis Reduces Risk of Liver and Non-Liver Complications. Gastroenterology 2017, 152, 142–156.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwal, F.; Kramer, J.R.; Asch, S.M.; Cao, Y.; Li, L.; El-Serag, H.B. Long-Term Risk of Hepatocellular Carcinoma in HCV Patients Treated With Direct Acting Antiviral Agents. Hepatology 2020, 71, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Ruta, S.; Cernescu, C. Injecting drug use: A vector for the introduction of new hepatitis C virus genotypes. World J. Gastroenterol. 2015, 21, 10811–10823. [Google Scholar] [CrossRef] [PubMed]
- Wölk, B.; Sansonno, D.; Kräusslich, H.-G.; Dammacco, F.; Rice, C.M.; Blum, H.E.; Moradpour, D. Subcellular Localization, Stability, andtrans-Cleavage Competence of the Hepatitis C Virus NS3-NS4A Complex Expressed in Tetracycline-Regulated Cell Lines. J. Virol. 2000, 74, 2293–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross-Thriepland, D.; Harris, M. Hepatitis C virus NS5A: Enigmatic but still promiscuous 10 years on! J. Gen. Virol. 2015, 96, 727–738. [Google Scholar] [CrossRef]
- Sesmero, E.; Thorpe, I.F. Using the hepatitis C virus RNA-dependent RNA polymerase as a model to understand viral polymerase structure, function and dynamics. Viruses 2015, 7, 3974–3994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zając, M.; Muszalska, I.; Sobczak, A.; Dadej, A.; Tomczak, S.; Jelińska, A. Hepatitis C—New drugs and treatment prospects. Eur. J. Med. Chem. 2019, 165, 225–249. [Google Scholar] [CrossRef]
- Sagnelli, E.; Starace, M.; Minichini, C.; Pisaturo, M.; Macera, M.; Sagnelli, C.; Coppola, N. Resistance detection and re-treatment options in hepatitis C virus-related chronic liver diseases after DAA-treatment failure. Infection 2018, 46, 761–783. [Google Scholar] [CrossRef] [PubMed]
- Schlabe, S.; Rockstroh, J.K. Advances in the treatment of HIV/HCV coinfection in adults. Expert Opin. Pharmacother. 2018, 19, 49–64. [Google Scholar] [CrossRef]
- Ryom, L.; Cotter, A.; De Miguel, R.; Béguelin, C.; Podlekareva, D.; Arribas, J.R.; Marzolini, C.; Mallon, P.; Rauch, A.; Kirk, O.; et al. 2019 update of the European AIDS Clinical Society Guidelines for treatment of people living with HIV version 10.0. HIV Med. 2020, 21, 617–624. [Google Scholar] [CrossRef]
- Ceccherini-Silberstein, F.; Cento, V.; Di Maio, V.C.; Perno, C.F.; Craxì, A. Viral resistance in HCV infection. Curr. Opin. Virol. 2018, 32, 115–127. [Google Scholar] [CrossRef]
- Hayes, C.N.; Imamura, M.; Chayama, K. Management of HCV patients in cases of direct-acting antiviral failure. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.; Pilot-Matias, T.; Tripathi, R.; Schnell, G.; Reisch, T.; Beyer, J.; Dekhtyar, T.; Wang, S.; Mensa, F.; Kort, J.; et al. Analysis of HCV Genotype 2 and 3 Variants in Patients Treated with Combination Therapy of Next Generation HCV Direct-Acting Antiviral Agents ABT-493 and ABT-530. J. Hepatol. 2016, 64, S409–S410. [Google Scholar] [CrossRef]
- Bertoli, A.; Sorbo, M.C.; Aragri, M.; Lenci, I.; Teti, E.; Polilli, E.; Di Maio, V.C.; Gianserra, L.; Biliotti, E.; Masetti, C.; et al. HCV Virology Italian Resistance Network (VIRONET-C). Prevalence of Single and Multiple Natural NS3, NS5A and NS5B Resistance-Associated Substitutions in Hepatitis C Virus Genotypes 1-4 in Italy. Sci. Rep. 2018, 8, 8988. [Google Scholar] [CrossRef]
- Ali, A.; Aydin, C.; Gildemeister, R.; Romano, K.P.; Cao, H.; Özen, A.; Soumana, D.; Newton, A.; Petropoulos, C.J.; Huang, W.; et al. Evaluating the role of macrocycles in the susceptibility of hepatitis C virus NS3/4A protease inhibitors to drug resistance. ACS Chem. Biol. 2013, 8, 1469–1478. [Google Scholar] [CrossRef] [Green Version]
- Hézode, C.; Fried, M.W.; Colombo, M.; Bourlière, M.; Spengler, U.; Ben-Ari, Z.; Strasser, S.I.; Perumalswami, P.; Zamor, P.; Lee, W.M.; et al. Efficacy and Safety of Elbasvir/Grazoprevir in Patients with Chronic Hepatitis C Virus Infection and Inherited Blood Disorders: Final Data from the C-Edge Ibld Study. Blood 2016, 128, 1303. [Google Scholar] [CrossRef]
- Serre, S.B.N.; Jensen, S.B.; Ghanem, L.; Humes, D.G.; Ramirez, S.; Li, Y.P.; Krarup, H.; Bukh, J.; Gottwein, J.M. Hepatitis C Virus Genotype 1 to 6 Protease Inhibitor Escape Variants: In Vitro Selection, Fitness, and Resistance Patterns in the Context of the Infectious Viral Life Cycle. Antimicrob. Agents Chemother. 2016, 60, 3563–3578. [Google Scholar] [CrossRef] [Green Version]
- Summa, V.; Ludmerer, S.W.; McCauley, J.A.; Fandozzi, C.; Burlein, C.; Claudio, G.; Coleman, P.J.; Dimuzio, J.M.; Ferrara, M.; Di Filippo, M.; et al. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob. Agents Chemother. 2012, 56, 3563–3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, A.Y.M.; Black, S.; Curry, S.; Ludmerer, S.W.; Liu, R.; Barnard, R.J.O.; Newhard, W.; Hwang, P.M.T.; Nickle, D.; Gilbert, C.; et al. Virologic resistance analysis from a phase 2 study of MK-5172 combined with pegylated interferon/ribavirin in treatment-naive patients with hepatitis c virus genotype 1 infection. Clin. Infect. Dis. 2014, 59, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Lahser, F.C.; Bystol, K.; Curry, S.; McMonagle, P.; Xia, E.; Ingravallo, P.; Chase, R.; Liu, R.; Black, T.; Hazuda, D.; et al. The combination of grazoprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor, demonstrates a high genetic barrier to resistance in HCV genotype 1a replicons. Antimicrob. Agents Chemother. 2016, 60, 2954–2964. [Google Scholar] [CrossRef] [Green Version]
- Romano, K.P.; Ali, A.; Aydin, C.; Soumana, D.; Özen, A.; Deveau, L.M.; Silver, C.; Cao, H.; Newton, A.; Petropoulos, C.J.; et al. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog. 2012, 8, e1002832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawitz, E.; Yang, J.C.; Stamm, L.M.; Taylor, J.G.; Cheng, G.; Brainard, D.M.; Miller, M.D.; Mo, H.; Dvory-Sobol, H. Characterization of HCV resistance from a 3-day monotherapy study of voxilaprevir, a novel pangenotypic NS3/4A protease inhibitor. Antivir. Ther. 2018, 23, 325–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawitz, E.; Gane, E.; Pearlman, B.; Tam, E.; Ghesquiere, W.; Guyader, D.; Alric, L.; Bronowicki, J.-P.; Lester, L.; Sievert, W.; et al. Efficacy and safety of 12 weeks versus 18 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin for hepatitis C virus genotype 1 infection in previously untreated patients with cirrhosis and patients with previous null response with or without cirrhosis (C-WORTHY): A randomised, open-label phase 2 trial. Lancet 2015, 385, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.; Hezode, C.; Gerstoft, J.; Vierling, J.M.; Mallolas, J.; Pol, S.; Kugelmas, M.; Murillo, A.; Weis, N.; Nahass, R.; et al. Efficacy and safety of 8 weeks versus 12 weeks of treatment with grazoprevir (MK-5172) and elbasvir (MK-8742) with or without ribavirin in patients with hepatitis C virus genotype 1 mono-infection and HIV/hepatitis C virus co-infection (C-WORTHY): A randomised, open-label phase 2 trial. Lancet 2015, 385, 1087–1097. [Google Scholar] [CrossRef]
- Black, S.; Pak, I.; Ingravallo, P.; McMonagle, P.; Chase, R.; Shaughnessy, M.; Hwang, P.; Haber, B.; Harrigan, P.R.; Brumme, C.; et al. P0891: Resistance analysis of virologic failures in Hepatitis C genotype 1 infected patients treated with grazoprevir/elbasvir +/− ribavirin: The C-worthy study. J. Hepatol. 2015, 62, S677–S678. [Google Scholar] [CrossRef]
- Buti, M.; Gordon, S.C.; Zuckerman, E.; Lawitz, E.; Calleja, J.L.; Hofer, H.; Gilbert, C.; Palcza, J.; Howe, A.Y.M.; DiNubile, M.J.; et al. Grazoprevir, Elbasvir, and Ribavirin for Chronic Hepatitis C Virus Genotype 1 Infection after Failure of Pegylated Interferon and Ribavirin with an Earlier-Generation Protease Inhibitor: Final 24-Week Results from C-SALVAGE. Clin. Infect. Dis. 2016, 62, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T.E.; Boyd, S.; Sherwat, A.; Tracy, L.R.; Naeger, L.K.; O’Rear, J.J.; Harrington, P.R. Regulatory Analysis of Effects of Hepatitis C Virus NS5A Polymorphisms on Efficacy of Elbasvir and Grazoprevir. Gastroenterology 2017, 152, 586–597. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.; Sherman, K.E.; Hézode, C.; Pol, S.; Zeuzem, S.; De Ledinghen, V.; Tran, A.; Elkhashab, M.; Younes, Z.H.; Kugelmas, M.; et al. Daclatasvir and asunaprevir plus peginterferon alfa and ribavirin in HCV genotype 1 or 4 non-responders. J. Hepatol. 2015, 63, 30–37. [Google Scholar] [CrossRef]
- Di Maio, V.C.; Cento, V.; Lenci, I.; Aragri, M.; Rossi, P.; Barbaliscia, S.; Melis, M.; Verucchi, G.; Magni, C.F.; Teti, E.; et al. Multiclass HCV resistance to direct-acting antiviral failure in real-life patients advocates for tailored second-line therapies. Liver Int. 2017, 37, 514–528. [Google Scholar] [CrossRef]
- Wilson, E.M.; Kattakuzhy, S.; Sidharthan, S.; Sims, Z.; Tang, L.; Mclaughlin, M.; Price, A.; Nelson, A.; Silk, R.; Gross, C.; et al. Successful retreatment of chronic HCV genotype-1 infection with ledipasvir and sofosbuvir after initial short course therapy with direct-acting antiviral regimens. Clin. Infect. Dis. 2016, 62, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawitz, E.; Flamm, S.; Yang, J.C.; Pang, P.S.; Zhu, Y.; Svarovskaia, E.; McHutchison, J.G.; Wyles, D.; Pockros, P. O005: Retreatment of patients who failed 8 or 12 weeks of ledipasvir/sofosbuvir-based regimens with ledipasvir/sofosbuvir for 24 weeks. J. Hepatol. 2015, 62, S192. [Google Scholar] [CrossRef]
- Tong, X.; Le Pogam, S.; Li, L.; Haines, K.; Piso, K.; Baronas, V.; Yan, J.-M.; So, S.-S.; Klumpp, K.; Nájera, I. In vivo emergence of a novel mutant L159F/L320F in the NS5B polymerase confers low-level resistance to the HCV polymerase inhibitors mericitabine and sofosbuvir. J. Infect. Dis. 2014, 209, 668–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svarovskaia, E.S.; Dvory Sobol, H.; Parkin, N.; Hebner, C.; Gontcharova, V.; Martin, R.; Ouyang, W.; Han, B.; Xu, S.; Ku, K.; et al. Infrequent development of resistance in genotype 1-6 hepatitis c virus-infected subjects treated with sofosbuvir in phase 2 and 3 clinical trials. Clin. Infect. Dis. 2014, 59, 1666–1674. [Google Scholar] [CrossRef] [Green Version]
- Abergel, A.; Metivier, S.; Samuel, D.; Jiang, D.; Kersey, K.; Pang, P.S.; Svarovskaia, E.; Knox, S.J.; Loustaud-Ratti, V.; Asselah, T. Ledipasvir plus sofosbuvir for 12 weeks in patients with hepatitis C genotype 4 infection. Hepatology 2016, 64, 1049–1056. [Google Scholar] [CrossRef]
- Gane, E.J.; Stedman, C.A.; Hyland, R.H.; Ding, X.; Svarovskaia, E.; Symonds, W.T.; Hindes, R.G.; Berrey, M.M. Nucleotide Polymerase Inhibitor Sofosbuvir plus Ribavirin for Hepatitis C. N. Engl. J. Med. 2013, 368, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Salazar, A.; Dietz, J.; di Maio, V.C.; Vermehren, J.; Paolucci, S.; Müllhaupt, B.; Coppola, N.; Cabezas, J.; Stauber, R.E.; Puoti, M.; et al. GEHEP-004 cohort, the European HCV Resistance Study Group and the HCV Virology Italian Resistance Network (VIRONET C). Prevalence of resistance-associated substitutions and retreatment of patients failing a glecaprevir/pibrentasvir regimen. J. Antimicrob. Chemother. 2020, 75, 3349–3358. [Google Scholar] [CrossRef]
- Zeuzem, S.; Ghalib, R.; Reddy, K.R.; Pockros, P.J.; Ari, Z.B.; Zhao, Y.; Brown, D.D.; Wan, S.; DiNubile, M.J.; Nguyen, B.-Y.; et al. Grazoprevir-Elbasvir combination therapy for treatment-naive cirrhotic and noncirrhotic patients with chronic hepatitis C virus genotype 1, 4, or 6 infection: A randomized trial. Ann. Intern. Med. 2015, 163, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Curry, S.; McMonagle, P.; Yeh, W.W.; Ludmerer, S.W.; Jumes, P.A.; Marshall, W.L.; Kong, S.; Ingravallo, P.; Black, S.; et al. Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir. Antimicrob. Agents Chemother. 2015, 59, 6922–6929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Maio, V.C.; Barbaliscia, S.; Teti, E.; Fiorentino, G.; Milana, M.; Paolucci, S.; Pollicino, T.; Morsica, G.; Starace, M.; Bruzzone, B.; et al. HCV Virology Italian Resistance Network Group (Vironet C). Resistance analysis and treatment outcomes in hepatitis C virus genotype 3 infected patients within the Italian network VIRONET-C. Liver Int. 2021. [Google Scholar] [CrossRef]
- Vierling, J.M.; Kugelmas, M.; Lawitz, E.; Hwang, P.; Robertson, M.; Wahl, J.; Barr, E.; Haber, B. P0769: Efficacy of an eight-week regimen of grazoprevir plus elbasvir with and without ribavirin in treatment-naive, noncirrhotic HCV genotype 1B infection. J. Hepatol. 2015, 62, S618. [Google Scholar] [CrossRef]
- Roth, D.; Nelson, D.R.; Bruchfeld, A.; Liapakis, A.; Silva, M.; Monsour, H.; Martin, P.; Pol, S.; Londoño, M.-C.; Hassanein, T.; et al. Grazoprevir plus elbasvir in treatment-naive and treatment-experienced patients with hepatitis C virus genotype 1 infection and stage 4-5 chronic kidney disease (the C-SURFER study): A combination phase 3 study. Lancet 2015, 386, S618. [Google Scholar] [CrossRef]
- Gane, E.J.; Schwabe, C.; Hyland, R.H.; Yang, Y.; Svarovskaia, E.; Stamm, L.M.; Brainard, D.M.; McHutchison, J.G.; Stedman, C.A. Efficacy of the Combination of Sofosbuvir, Velpatasvir, and the NS3/4A Protease Inhibitor GS-9857 in Treatment-Naïve or Previously Treated Patients With Hepatitis C Virus Genotype 1 or 3 Infections. Gastroenterology 2016, 151, 448–456.e1. [Google Scholar] [CrossRef] [Green Version]
- Lawitz, E.J.; Dvory-Sobol, H.; Doehle, B.P.; Worth, A.S.; McNally, J.; Brainard, D.M.; Link, J.O.; Miller, M.D.; Mo, H. Clinical resistance to velpatasvir (GS-5816), a novel pan-genotypic inhibitor of the hepatitis C virus NS5A protein. Antimicrob. Agents Chemother. 2016, 60, 5368–5378. [Google Scholar] [CrossRef] [Green Version]
- Curry, M.P.; O’Leary, J.G.; Bzowej, N.; Muir, A.J.; Korenblat, K.M.; Fenkel, J.M.; Reddy, K.R.; Lawitz, E.; Flamm, S.L.; Schiano, T.; et al. Sofosbuvir and Velpatasvir for HCV in Patients with Decompensated Cirrhosis. N. Engl. J. Med. 2015, 373, 2618–2628. [Google Scholar] [CrossRef]
- Feld, J.J.; Jacobson, I.M.; Hézode, C.; Asselah, T.; Ruane, P.J.; Gruener, N.; Abergel, A.; Mangia, A.; Lai, C.-L.; Chan, H.L.Y.; et al. Sofosbuvir and Velpatasvir for HCV Genotype 1, 2, 4, 5, and 6 Infection. N. Engl. J. Med. 2015, 373, 2599–2607. [Google Scholar] [CrossRef] [Green Version]
- Lawitz, E.; Freilich, B.; Link, J.; German, P.; Mo, H.; Han, L.; Brainard, D.M.; McNally, J.; Marbury, T.; Rodriguez-Torres, M. A phase 1, randomized, dose-ranging study of GS-5816, a once-daily NS5A inhibitor, in patients with genotype 1-4 hepatitis C virus. J. Viral Hepat. 2015, 22, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Susser, S.; Dietz, J.; Vermehren, J.; Peiffer, K.-H.; Passmann, S.; Perner, D.; Berkowski, C.; Ferenci, P.; Butí, M.; Müllhaupt, B.; et al. European Ravs Database: Frequency and Characteristics of Ravs in Treatment-Naïve and DAA-Experienced Patients. J. Hepatol. 2016, 64, S139. [Google Scholar] [CrossRef]
- Papaluca, T.; O’Keefe, J.; Bowden, S.; Doyle, J.S.; Stoove, M.; Hellard, M.; Thompson, A.J. Prevalence of baseline HCV NS5A resistance associated substitutions in genotype 1a, 1b and 3 infection in Australia. J. Clin. Virol. 2019, 120, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Dietz, J.; Vermehren, J.; Matschenz, K.; Buggisch, P.; Klinker, H.; Schulze zur Wiesch, J.; Hinrichsen, H.; Peiffer, K.-H.; Graf, C.; Discher, T.; et al. Treatment outcomes in hepatitis C virus genotype 1a infected patients with and without baseline NS5A resistance-associated substitutions. Liver Int. 2020, 40, 2660–2671. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Abushouk, A.I.; Menshawy, A.; Attia, A.; Mohamed, A.; Negida, A.; Abdel-Daim, M.M. Meta-analysis of grazoprevir plus elbasvir for treatment of hepatitis C virus genotype 1 infection. Ann. Hepatol. 2018, 17, 18–32. [Google Scholar] [CrossRef]
- Liu, C.H.; Sun, H.Y.; Liu, C.J.; Sheng, W.H.; Hsieh, S.M.; Lo, Y.C.; Liu, W.-C.; Su, T.H.; Yang, H.-C.; Hong, C.-M.; et al. Generic velpatasvir plus sofosbuvir for hepatitis C virus infection in patients with or without human immunodeficiency virus coinfection. Aliment. Pharmacol. Ther. 2018, 47, 1690–1698. [Google Scholar] [CrossRef] [Green Version]
- Esteban, R.; Pineda, J.A.; Calleja, J.L.; Casado, M.; Rodríguez, M.; Turnes, J.; Morano Amado, L.E.; Morillas, R.M.; Forns, X.; Pascasio Acevedo, J.M.; et al. Efficacy of Sofosbuvir and Velpatasvir, With and Without Ribavirin, in Patients With Hepatitis C Virus Genotype 3 Infection and Cirrhosis. Gastroenterology 2018, 155, 1120–1127.e4. [Google Scholar] [CrossRef] [Green Version]
- von Felden, J.; Vermehren, J.; Ingiliz, P.; Mauss, S.; Lutz, T.; Simon, K.G.; Busch, H.W.; Baumgarten, A.; Schewe, K.; Hueppe, D.; et al. High efficacy of sofosbuvir/velpatasvir and impact of baseline resistance-associated substitutions in hepatitis C genotype 3 infection. Aliment. Pharmacol. Ther. 2018, 47, 1288–1295. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.D.; Maitra, S.; Singh, N.; Tyagi, P.; Ashraf, A.; Kumar, R.; Shalimar. Systematic review with meta-analysis: Impact of baseline resistance-associated substitutions on the efficacy of glecaprevir/pibrentasvir among chronic hepatitis C patients. Aliment. Pharmacol. Ther. 2020, 51, 490–504. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Zhao, Y.; Xu, Y. Effect of baseline resistance-associated substitutions on the efficiency of glecaprevir/pibrentasvir in chronic hepatitis C subjects: A meta-analysis. J. Viral. Hepat. 2020, 28, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Belperio, P.S.; Shahoumian, T.A.; Loomis, T.P.; Backus, L.I. Real-world effectiveness of sofosbuvir/velpatasvir/voxilaprevir in 573 direct-acting antiviral experienced hepatitis C patients. J. Viral. Hepat. 2019, 26, 980–990. [Google Scholar] [CrossRef]
- Abergel, A.; Asselah, T.; Mallat, A.; Chanteranne, B.; Faure, F.; Larrey, D.; Gournay, J.; Loustaud-Ratti, V.; Di Martino, V.; Fouchard-Hubert, I.; et al. Phase 3, Multicenter Open-Label study to investigate the efficacy of elbasvir and grazoprevir fixed-dose combination for 8 weeks in treatment-naïve, HCV GT1b-infected patients, with non-severe fibrosis. Liver Int. 2020, 40, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Pisaturo, M.; Starace, M.; Minichini, C.; De Pascalis, S.; Occhiello, L.; Di Fraia, A.; Messina, V.; Sangiovanni, V.; Claar, E.; Coppola, N.; et al. Virological patterns of hepatitis C virus patients with failure to the current-generation direct-acting antivirals. Int. J. Antimicrob. Agents 2020, 56, 106067. [Google Scholar] [CrossRef] [PubMed]
- Llaneras, J.; Riveiro-Barciela, M.; Lens, S.; Diago, M.; Cachero, A.; García-Samaniego, J.; Conde, I.; Arencibia, A.; Arenas, J.; Gea, F.; et al. Effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C previously treated with DAAs. J. Hepatol. 2019, 71, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Bacon, B.; Curry, M.; Flamm, S.; Milligan, S.; Tsai, N.; Wick, N.; Younossi, Z.M.; Afdhal, N.H. THU-116-Effectiveness of the salvage therapy sofosbuvir-velpatasvir-voxilaprevir (SOF-VEL-VOX) in chronic hepatitis C: Clinical practice experience from the TRIO Network. J. Hepatol. 2019, 70, e209. [Google Scholar] [CrossRef]
- Flamm, S.; Tsai, N.; Bacon, B.; Curry, M.; Milligan, S.; Wick, N.; Younossi, Z.M.; Afdhal, N.H. Pangenotypic therapies glecaprevir-pibrentasvir (G-P) and sofosbuvir-velpatasvir-voxilaprevir (S-V-V) after failure with interferon (IFN)-free direct-acting antiviral (DAA) treatment for hepatitis C. J. Hepatol. 2020, 73, S846–S847. [Google Scholar] [CrossRef]
- Wyles, D.; Weiland, O.; Yao, B.; Weilert, F.; Dufour, J.F.; Gordon, S.C.; Stoehr, A.; Brown, A.; Mauss, S.; Zhang, Z.; et al. Retreatment of patients who failed glecaprevir/pibrentasvir treatment for hepatitis C virus infection. J. Hepatol. 2019, 70, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearlman, B.; Perrys, M.; Hinds, A. Sofosbuvir/Velpatasvir/Voxilaprevir for Previous Treatment Failures With Glecaprevir/Pibrentasvir in Chronic Hepatitis C Infection. Am. J. Gastroenterol. 2019, 114, 1550–1552. [Google Scholar] [CrossRef]
- Degasperi, E.; Spinetti, A.; Lombardi, A.; Landonio, S.; Rossi, M.C.; Pasulo, L.; Pozzoni, P.; Giorgini, A.; Fabris, P.; Romano, A.; et al. Real-life effectiveness and safety of sofosbuvir/velpatasvir/voxilaprevir in hepatitis C patients with previous DAA failure. J. Hepatol. 2019, 71, 1106–1115. [Google Scholar] [CrossRef]
- Papaluca, T.; Roberts, S.K.; Strasser, S.I.; Stuart, K.A.; Farrell, G.; MacQuillan, G.; Dore, G.J.; Wade, A.J.; George, J.; Hazeldine, S.; et al. Efficacy and safety of sofosbuvir/velpatasvir/voxilaprevir for HCV NS5A-inhibitor experienced patients with difficult to cure characteristics. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Vermehren, J.; Stoehr, A.; zur Wiesch, J.S.; Klinker, H.; Cornberg, M.; Maria-Christina, J.; Simon, K.-G.; Serfert, Y.; Manns, M.P.; Wedemeye, H.; et al. THU-188-Retreatment with sofosbuvir/velpatasvir/voxilaprevir in patients with chronic hepatitis C virus infection and prior DAA failure: An analysis from the German hepatitis C registry (DHC-R). J. Hepatol. 2019, 70, e245. [Google Scholar] [CrossRef]
- Merli, M.; Rossotti, R.; Travi, G.; Ferla, F.; Lauterio, A.; Angelini Zucchetti, T.; Alcantarini, C.; Bargiacchi, O.; De Carlis, L.; Puoti, M. Sustained virological response with 16-week glecaprevir/pibrentasvir after failure to sofosbuvir/velpatasvir in post-transplant severe HCV recurrence in HIV. Transpl. Infect. Dis. 2019, 21, e13165. [Google Scholar] [CrossRef] [PubMed]
- Dietz, J.; Di Maio, V.C.; de Salazar, A.; Merino, D.; Vermehren, J.; Paolucci, S.; Kremer, A.E.; Lara, M.; Rofdríguez Pardo, M.; Zoller, H.; et al. Failure on voxilaprevir, velpatasvir, sofosbuvir and efficacy of rescue therapy. J. Hepatol. 2020. [Google Scholar] [CrossRef] [PubMed]
Genotype | Liver Diseases Stage | Recommended DAA Regimens | Durations in Weeks | References |
---|---|---|---|---|
1a, 1b, 2, 3, 4, 5, 6 1a, 1b, 2, 3, 4, 5, 6 1b 1b | No cirrhosis | Sofosbuvir/velpatasvir Glecaprevir/Pibrentasvir Grazoprevir/elbasvir Ledipasvir/sofosbuvir | 12 8 12 12 | [5,21] [5,21] [5,21] [21] |
1a, 1b, 2, 4, 5, 6 1a, 1b, 2, 4, 5, 6 1b 1b 1a,1b 3 | Compensated (Child-Pugh A) cirrhosis | Sofosbuvir/velpatasvir Glecaprevir/Pibrentasvir Grazoprevir/elbasvir for patients without baseline NS5A RASs for elbasvir Ledipasvir/sofosbuvir Sofosbuvir/Velpatasvir Sofosbuvir/velpatasvir/voxilaprevir | 12 8 12 12 12 with weight based ribavirin 12 | [5,21] [5,21] [5,21] [21] [5,21] [5,21] |
any genotype 1, 4, 5, 6 1, 4, 5, 6 | Decompensated (Child-Pugh B or C) cirrhosis | Sofosbuvir/Velpatasvir Sofosbuvir/Velpatasvir Ledipasvir/Sofosbuvir Ledipasvir/Sofosbuvir | 12 with low initial dose of ribavirin (600 mg, increase as tolerated to weight-based dose) 24 12 with low initial dose of ribavirin (600 mg, increase as tolerated to weight-based dose) 24 | [5,21] [5,21] [21] [21] |
Mutation | Reduced Sensibility to | Genotype | Mean Fold-Change Compared to Wild-Type [Substituted aa, Fold] | References |
---|---|---|---|---|
A156G/T/V | Glecaprevir | 1A | T: 1400 | [39,40,41] |
D/Q168A/V | [39,40] | |||
R155K/I/Q/S/T | Grazoprevir | K: 3–6 Q: 35 T: 10 | [39,42,43,44,45,46,47,48,49] | |
A156L/T/V | Voxilaprevir | L: <2.5 T: 581 V < 2.5 | [39,50] | |
R155G/K/L/T | Grazoprevir | 1B | K: 2 T: 10 | [39,42,43,44,45,46,47,48,49] |
A156T/V | T: 131–280 V: 375 | [39,42,43,44,45,49,51,52,53,54] | ||
D168A/E/G/H/K/V/Y | A: 14–30; G: 11; E: 3; H: 52; K: 120; V: 14; Y: 4–8 | [43,44,45,46,54,55,56] | ||
Q80K/R | Glecaprevir | 3 | [39,40] | |
R155K | Grazoprevir | 4 | K: 4–6 | [39,42,43,44,45,46,47,48,49] |
A156S/T | S: 6 | [39,40,42,43,44,45,51,52,53,54] | ||
D168A/V | [39,40] |
Mutation | Reduced Sensibility to | Genotype | Mean Fold-Change Compared to Wild-Type [Substituted aa, Fold (HCV Genotype)] | References |
---|---|---|---|---|
S282R/T | Sofosbuvir | 1A | T: 13–9 | [39,40,57,58,59,60,61,62,63] |
S282G/T | 1B | T: 8–10 | ||
S282T | 2 | T: 3–8 (2A) 16 (2B) | ||
S282T | 3 | T: 4 | ||
S282T/C | 4 | T: 6 | ||
S282T | 5 | T: 18 | ||
S282T | 6 | T: 9 |
Mutation | Reduced Sensibility to | Genotype | Mean Fold-Change Compared to Wild-type [Substituted aa, Fold] | References |
---|---|---|---|---|
M28A/G/S/T | Elbasvir | 1A | A: 61–91; G: 71429; T: 15–22 | [44,51,52,53,55,56,64,65,66] |
Q30D/E/G/H/K/R/Y | D: 1433; E: 56; G: 84; H: 6–8; R: 16–24–125 | [44,51,52,53,55,56,64,65,66] | ||
L31F/I/M/V | F: 20–96–131; M: 10–15; V: 1261–125 | [51,52,53,55,56,64,65,66,67] | ||
Y93C/H/N/S | C: 11–50; H: 220–351–600; N: 932–1333 | [44,51,52,53,56,64,65,66,67,68,69] | ||
H58D | Pibrentasvir | [39,40] | ||
Y93H/N | H: 7; N: 7 | [41] | ||
L31F/I/M/V | Velpatasvir | F < 100; I: 4 ; M: 16; V: 68 | [70,71,72,73] | |
Y93C/H/L/N/R/S/T/W | C: 4; H: 609; L: <100; N: 2758; R: 497; S: 64; T: <2,5; W: 999 | [70,71,72,73,74] | ||
Y93H | Pibrentasvir | 3 | H: 2–3 | [41] |
First Name, Year [Ref.] | N. of Patients | Age (Mean, SD) | Males, n. (%) | Genotype Distribution, n. (%) | Cirrhosis, n. (%) | Treatment Failed | Retreatment Regimens | SVR, n (%) |
---|---|---|---|---|---|---|---|---|
Belperio, 2019 [84] | 123 | 64 (5.6) | 1: 94 (76.4) 2: 14 (11.4) 3:13 (10.6) 4: 2 (1.6) | 72: GRZ/EBR 6: GRZ/EBR + SOF 45: SOF/VEL | SOF/VEL/VOX 12 weeks | 69 (95.8) 4 (66.7) 38 (84.4) | ||
Abergel, 2019 [85] | 5 | 1b: 5 (100) | GRZ/EBR | GLE/PIB + SOF 12 weeks GLE/PIB + SOF 16 weeks SOF/VEL/VOX 16 weeks | 3/3 (100) 1/1 (100) 1/1 (100) | |||
Pisaturo, 2020 [86] | 21 | 68 (9.5) | 16 (76.2) | 1a: 2 (9.5) 1b: 17 (81.0) 3a: 2 (9.5) | 6 (28.6) | 15: GRZ/EBR 5: SOF/VEL 1: GLE/PIB | SOF/VEL/VOX 12 weeks | 15 (100) 5 (100) 1 (100) |
LLaneras, 2019 [87] | 18 | 1a: 2 (11.1) 1b: 5 (27.8) 2: 3 (16.7) 3: 4 (22.2) 4: 4 (22.2) | 6 (33.3) | 9: GRZ/EBR 8: SOF/VEL 1: GLE/PIB | SOF/VEL/VOX 12 weeks | 8 (88.9) 7 (87.5) 1 (100) | ||
Bacon, 2019 [88] | 40 | 20 SOF/VEL 19 GRZ/EBR 1 GLE/PIB | SOF/VEL/VOX 12 weeks | 19 (95) 17 (89) 1 (100) | ||||
Flamm, 2020 [89] | 53 | 21 GRZ/EBR 28 SOF/VEL 4 GLE/PIB | 20 SOF/VEL/VOX 12 weeks 1 GLE/PIB 8–16 weeks 21 SOF/VEL/VOX 12 weeks 7 GLE/PIB 8–16 weeks 4 SOF/VEL/VOX 12 weeks | 18 (90) 1 (100) 20 (95.2) 5 (71.4) 3 (75) | ||||
Wyles, 2020 [90] | 23 | 56 (38–67) * | 18 (78) | 1: 7 (30.4) 2: 2 (8.7) 3: 14 (60.9) | 7 (30) | GLE/PIB | GLE/PIB+SOF+RBV 12–16 weeks | 22 (96.0) |
Pearlman, 2019 [91] | 31 | 22 (71) | 1a: 13 (42) 3a: 18 (58) | 18 (58) | GLE/PIB | SOF/VEL/VOX 12 weeks | 29 (93.5) | |
de Salazar, 2020 [64] | 50 | 1a: 13 (26) 1b: 5 (10) 2: 12 (24) 3a: 19 (38) 4d: 1 (2) | GLE/PIB | 46 SOF/VEL/VOX ± RBV 12–24 weeks 4 SOF/VEL | 42 (91.3) 3 (75) | |||
Degasperi, 2020 [92] | 64 | 31 SOF/VEL 23 GRZ/EBR 10 GLE/PIB | SOF/VEL/VOX ± RBV 12 weeks | 29 (93.5) 23 (100) 10 (100) | ||||
Papaluca, 2020 [93] | 24 | 19 SOF/VEL ± RBV 3 GRZ/EBR 2 GRZ/EBR + SOF ± RBV | SOF/VEL/VOX 12 weeks | 18 (94.7) 3 (100) 2 (100) | ||||
Vermehren, 2019 [94] | 19 | SOF/VEL ± RBV | SOF/VEL/VOX 12 weeks | 19 (100) | ||||
Merli, 2019 [95] | 2 | 54 (4.2) | 2 (100) | 1a: 1 (50) 4d: 1 (50) | LT recipient | SOF/VEL | GLE/PIB 16 weeks | 2 (100) |
Dietz, 2020 [96] | 22 | SOF/VEL/VOX 12 weeks | 13 GLE/PIB + SOF ± RBV 12–24 weeks 2 GLE/PIB 12 weeks 3 SOF/VEL/VOX ± RBV 24 weeks 1 SOF/VEL + RBV 24 weeks | 10 (76.9) 2 (100) 3 (100) 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onorato, L.; Pisaturo, M.; Starace, M.; Minichini, C.; Di Fraia, A.; Astorri, R.; Coppola, N. Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review. Viruses 2021, 13, 432. https://doi.org/10.3390/v13030432
Onorato L, Pisaturo M, Starace M, Minichini C, Di Fraia A, Astorri R, Coppola N. Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review. Viruses. 2021; 13(3):432. https://doi.org/10.3390/v13030432
Chicago/Turabian StyleOnorato, Lorenzo, Mariantonietta Pisaturo, Mario Starace, Carmine Minichini, Alessandra Di Fraia, Roberta Astorri, and Nicola Coppola. 2021. "Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review" Viruses 13, no. 3: 432. https://doi.org/10.3390/v13030432
APA StyleOnorato, L., Pisaturo, M., Starace, M., Minichini, C., Di Fraia, A., Astorri, R., & Coppola, N. (2021). Virological Factors Associated with Failure to the Latest Generation of Direct Acting Agents (DAA) and Re-Treatment Strategy: A Narrative Review. Viruses, 13(3), 432. https://doi.org/10.3390/v13030432