Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nicotiana tabacum cv. NC 196 Growth Conditions
2.2. Targeting TSWV Genome Sequences for dsRNA Production
2.3. Two-Step PCR Approach and In Vitro Transcription
2.4. Topical Application of N and NSs dsRNA on Tobacco Leaves
2.5. Stability of dsRNA and Transport in Nicotiana tabacum
2.6. RT-qPCR Assay for the Detection of Viral RNA Copy Number in Inoculated and Non-Inoculated Leaves
2.7. Detection of TSWV siRNA by Stem-Loop RT-PCR
2.8. Statistical Analysis
3. Results
3.1. Production for dsRNA for TSWV N and NSs Genes
3.2. dsRNA-Dedicated Resistance in Tobacco against TSWV
3.3. Systemic Movement of TSWV dsRNA_N
3.4. Detection of a siRNA of N Gene by Stem-Loop RT-PCR
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliwel, R.S.; Philley, G. Spotted wilt of peanut in Texas. Plant Dis. Report. 1974, 58, 23–25. [Google Scholar]
- Black, M.C.; Lummus, P.F.; Smith, D.H.; Demski, J.W. An epidemic of spotted wilt disease in south Texas peanuts in 1985. Proc. Am. Peanut Res. Ed. Soc. 1986, 18, 66. [Google Scholar]
- Rotenberg, D.; Jacobson, A.L.; Schneweis, D.J.; Whitfield, A.E. Thrips transmission of tospoviruses. Curr. Opin. Virol. 2015, 15, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Riley, D.G.; Joseph, S.V.; Srinivasan, R.; Diffie, S. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2011, 2, 1–10. [Google Scholar]
- Culbreath, A.K.; Csinos, A.S.; Bertrand, P.F.; Demski., J.W. Tomato Spotted Wilt Virus Epidemic in Flue-Cured Tobacco in Georgia. Plant Dis. 1991, 75, 483–485. [Google Scholar] [CrossRef]
- Gitaitis, R.D.; Dowler, C.C.; Chalfant, R.B. Epidemiology of tomato spotted wilt in pepper and tomato in southern Georgia. Plant Dis. 1998, 82, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A. Georgia Plant Disease Loss Estimates; Univ. Georgia Coop. Ext. Special Bulletin: Athens, GA, USA, 2005. [Google Scholar]
- Olatinwo, R.O.; Paz, J.O.; Brown, S.L.; Kemerait, R.C., Jr.; Culbreath, A.K.; Beasley, J.P., Jr.; Hoogenboom, G. A predictive model for spotted wilt epidemics in peanut based on local weather conditions and the tomato spotted wilt virus risk. Phytopathology 2008, 98, 1066–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csinos, A.S.; Pappu, H.R.; McPherson, R.M.; Stephenson, M.G. Management of tomato spotted wilt tospovirus in flue-cured tobacco with acibenzolar-S-methyl and imidacloprid. Plant Dis. 2001, 85, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Pappu, H.R.; Csinos, A.S.; McPherson, R.M.; Jones, D.C.; Stephenson, M.G. Effect of acibenzolar-S-methyl and imidacloprid on suppression of tomato spotted wilt tospovirus in flue-cured tobacco. Crop Prot. 2000, 19, 349–354. [Google Scholar] [CrossRef]
- McPherson, R.M.; Pappu, H.R.; Csinos, A.S.; Bertrand, P.F. Influence of Dichloropene, volunteer peanuts, and thrips control practices on the abundance of insect pests and incidence of tomato spotted wilt in flue-cured tobacco. Tob. Sci. 1997, 41, 94–95. [Google Scholar]
- McPherson, R.M.; Pappu, H.R.; Jones, D.C. Occurrence of five thrips species on flue-cured tobacco and impact on spotted wilt disease incidence in Georgia. Plant Dis. 1999, 83, 765–767. [Google Scholar] [CrossRef] [Green Version]
- McPherson, R.M.; Jones, D.C.; Pappu, H.R.; Moore, J.M. Reducing the risks of spotted wilt virus in tobacco with selected thrips control practices. J. Agric. Urban Entomol. 2003, 11-23.–23. [Google Scholar]
- Nilon, A.; Robinson, K.; Pappu, H.R.; Mitter, N. Current status and potential of RNA interference for the management of tomato spotted wilt virus and thrips vectors. Pathogens 2021, 10, 320. [Google Scholar] [CrossRef]
- Srinivasan, R.; Abney, M.R.; Culbreath, A.K.; Kemerait, R.C.; Tubbs, R.S.; Monfort, W.S.; Pappu, H.R. Three decades of managing tomato spotted wilt virus in peanut in southeastern United States. Virus Res. 2017, 241, 203–212. [Google Scholar] [CrossRef]
- Black, L.L.; Hobbs, H.A.; Kammerlohr, D.S. Resistance of Capsicum chinenselines to tomato spotted wilt virus from Louisiana, USA, and inheritance of resistance. Acta Hortic. 1996, 431, 393–401. [Google Scholar] [CrossRef]
- Boiteux, L.S. Allelic relationships between genes for resistance to tomato spotted wilt tospovirus in Capsicum chinense. Theor. Appl. Genet. 1995, 90, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Boiteux, L.S.; de Avila, A.C. Inheritance of a resistance specific to tomato spotted wilt tospovirus in Capsicum chinense. Euphytica 1994, 75, 139–142. [Google Scholar] [CrossRef]
- Moury, B.; Palloix, A.; Selassie, K.G.; Marchoux, G. Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 1997, 94, 45–52. [Google Scholar] [CrossRef]
- Batuman, O.; Turini, T.A.; Oliveira, P.V.; Rojas, M.R.; Macedo, M.; Mellinger, H.C.; Adkins, S.; Gilbertson, R.L. First report of a resistance-breaking strain of tomato spotted wilt virus infecting tomatoes with the Sw-5 tospovirus-resistance gene in California. Plant Dis. 2017, 101, 637. [Google Scholar] [CrossRef]
- Macedo, M.A.; Rojas, M.R.; Gilbertson, R.L. First report of a resistance-breaking strain of tomato spotted wilt orthotospovirus infecting sweet pepper with the Tsw resistance gene in California, USA. Plant Dis. 2019, 103, 1048. [Google Scholar] [CrossRef]
- Patil, B.L.; Ogwok, E.; Wagaba, H.; Mohammed, I.U.; Yadav, J.S.; Bagewadi, B.; Taylor, N.J.; Kreuze, J.F.; Maruthi, M.N.N.; Alicai, T.; et al. RNAi-mediated resistance to diverse isolates belonging to two virus species involved in cassava brown streak disease. Mol. Plant. Pathol. 2011, 12, 31–41. [Google Scholar] [CrossRef]
- Jia, R.; Zhao, H.; Huang, J.; Kong, H.; Zhang, Y.; Guo, J.; Huang, Q.; Guo, Y.; Wei, Q.; Zuo, J.; et al. Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fermin, G.A.; Castro, L.T.; Tennant, P.F. CP-transgenic and non-transgenic approaches for the control of papaya ringspot: Current situation and challenges. Transgenic Plant J. 2010, 4, 1–15. [Google Scholar]
- Lin, H.T.; Yen, G.C.; Huang, T.T.; Chan, L.F.; Cheng, Y.H.; Wu, J.H.; Yeh, S.D.; Wang, S.Y.; Liao, J.W. Toxicity assessment of transgenic papaya ringspot virus of 823-2210 line papaya fruits. J. Agric. Food Chem. 2013, 61, 1585–1596. [Google Scholar] [CrossRef]
- Hamim, I.; Borth, W.B.; Marquez, J.; Green, J.C.; Melzer, M.J.; Hu, J.S. Transgene-mediated resistance to papaya ringspot virus: Challenges and solutions. Phytoparasitica 2018, 46, 1–18. [Google Scholar] [CrossRef]
- Liu, H.M.; Zhu, C.X.; Zhu, X.P.; Guo, X.Q.; Song, Y.Z.; Wen, F.J. A link between PVYN CP gene-mediated virus resistance and transgene arrangement. J. Phytopathol. 2017, 155, 676–682. [Google Scholar] [CrossRef]
- Zhu, C.X.; Song, Y.Z.; Yin, G.H.; Wen, F.J. Induction of RNA-mediated Multiple Virus Resistance to Potato virus Y, tobacco mosaic virus and cucumber mosaic virus. J. Phytopathol. 2009, 157, 101–107. [Google Scholar] [CrossRef]
- Worrall, E.A.; Bravo-Cazar, A.; Nilon, A.T.; Fletcher, S.J.; Robinson, K.E.; Carr, J.P.; Mitter, N. Exogenous application of RNAi-inducing double-stranded RNA inhibits aphid-mediated transmission of a plant virus. Front. Plant Sci. 2019, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Dykxhoorn, D.M.; Novina, C.D.; Sharp, P.A. Killing the messenger: Short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 2003, 4, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Meister, G.; Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, C.; Zhang, X.; Jin, H. Host small RNAs are big contributors to plant innate immunity. Curr. Opin. Plant Biol. 2009, 4, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.B.; Masuta, C.; Smith, N.A.; Shimura, H. RNA silencing and plant viral diseases. Mol. Plant Microbe Interact. 2012, 25, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, P.; Voinnet, O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006, 22, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Blevins, T.; Rajeswaran, R.; Shivaprasad, P.V.; Beknazariants, D.; Si-Ammour, A.; Park, H.S.; Vazquez, F.; Robertson, D.; Meins, F., Jr.; Hohn, T.; et al. Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 2006, 34, 6233–6246. [Google Scholar] [CrossRef] [Green Version]
- Deleris, A.; Gallego-Bartolome, J.; Bao, J.; Kasschau, K.D.; Carrington, J.C.; Voinnet, O. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 2006, 313, 68–71. [Google Scholar] [CrossRef]
- Tabara, H.; Sarkissian, M.; Kelly, W.G.; Fleenor, J.; Grishok, A.; Timmons, L.; Fire, A.; Mello, C.C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999, 99, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Hammond, S.M.; Boettcher, S.; Caudy, A.A.; Kobayashi, R.; Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001, 293, 1146–1150. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Carmell, M.A.; Rivas, F.V.; Marsden, C.G.; Thomson, J.M.; Song, J.; Hammond, S.M.; Joshua-Tor, L.; Hannon, G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305, 1437–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadlamudi, T.; Patil, B.L.; Kaldis, A.; Gopal, D.V.R.S.; Mishra, R.; Berbati, M.; Voloudakis, A. DsRNA-mediated protection against two isolates of papaya ringspot virus through topical application of dsRNA in papaya. J. Virol. Methods. 2020, 275, 113750. [Google Scholar] [CrossRef]
- Patil, B.L.; Raghu, R.; Dangwal, M.; Byregowda, M.; Voloudakis, A. Exogenous dsRNA-mediated field protection against pigeonpea sterility mosaic emaravirus. J. Plant Biochem. Biotechnol. 2021, 1–6. [Google Scholar]
- Konakalla, N.C.; Kaldis, A.; Masarapu, H.; Voloudakis, A.E. Topical application of double stranded RNA molecules deriving from sesbania mosaic virus (SeMV) CP and MP genes protects sesbania plants against SeMV. Eur. J. Plant Pathol. 2019, 155, 1345–1352. [Google Scholar] [CrossRef]
- Yin, G.; Sun, Z.; Liu, N.; Zhang, L.; Song, Y.; Zhu, C.; Wen, F. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl. Microbiol. Biotechnol. 2009, 84, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Konakalla, N.C.; Kaldis, A.; Berbati, M.; Masarapu, H.; Voloudakis, A.E. Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 2016, 244, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Kaldis, A.; Berbati, M.; Melita, O.; Reppa, C.; Holeva, M.; Otten, P.; Voloudakis, A. Exogenously applied dsRNA molecules deriving from the zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. Mol. Plant. Pathol. 2018, 19, 883–895. [Google Scholar] [CrossRef] [Green Version]
- Aalto, A.P.; Sarin, L.P.; Van Dijk, A.; Saarma, M.; Poranen, M.M.; Arumäe, U.; Bamford, D.H. Large-scale production of dsRNA and siRNA pools for RNA interference utilizing bacteriophage ϕ6 RNA-dependent RNA polymerase. RNA 2007, 13, 422–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voloudakis, A.E.; Holeva, M.C.; Sarin, L.P.; Bamford, D.H.; Vargas, M.; Poranen, M.M.; Tenllado, F. Efficient double-stranded RNA production methods for utilization in plant virus control. In Plant Virology Protocols; Methods in Molecular Biology (Methods and Protocols); Uyeda, I., Masuta, C., Eds.; Humana Press: New York, NY, USA, 2015; Volume 1236, pp. 255–274. [Google Scholar]
- Sun, Y.; Qiao, X.; Mindich, L. Construction of carrier state viruses with partial genomes of the segmented dsRNA bacteriophages. Virology 2004, 319, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Makeyev, E.V.; Bamford, D.H. The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO J. 2000, 19, 6275–6284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, K.; Kobori, T.; Kosaka, Y.; Natsuaki, T.; Masuta, C. Characterization of silencing suppressor 2b of cucumber mosaic virus based on examination of its small RNA-binding abilities. Plant Cell Physiol. 2007, 48, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Soellick, T.R.; Uhrig, J.F.; Bucher, G.L.; Kellmann, J.W.; Schreier, P.H. The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 2000, 97, 2373–2378. [Google Scholar] [CrossRef] [Green Version]
- Takeda, A.; Sugiyama, K.; Nagano, H.; Mori, M.; Kaido, M.; Mise, K.; Tsuda, S.; Okuno, T. Identification of a novel RNA silencing suppressor, NSs protein of tomato spotted wilt virus. FEBS Lett. 2002, 532, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Gnanasekaran, P.; Pappu, H.R. Identification and characterization of plant-interacting targets of tomato spotted wilt virus silencing suppressor. Pathogens 2021, 10, 27. [Google Scholar] [CrossRef]
- Varkonyi-Gasic, E.; Wu, R.; Wood, M.; Walton, E.F.; Hellens, R.P. Protocol: A highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef] [PubMed]
- Koressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef] [PubMed]
- Sundaraj, S.; Srinivasan, R.; Culbreath, A.K.; Riley, D.G.; Pappu, H.R. Host plant resistance against tomato spotted wilt virus in peanut (Arachis hypogaea) and its impact on susceptibility to the virus, virus population genetics, and vector feeding behavior and survival. Phytopathology 2014, 104, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, A.; López, C.; Daròs, J.A. Fast-forward identification of highly effective artificial small RNAs against different tomato spotted wilt virus isolates. Mol. Plant Microbe Interact. 2019, 32, 142–156. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.J.; Ellis, P.J. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol. Plant Microbe Interact. 1992, 5, 34–40. [Google Scholar] [CrossRef]
- Vaira, A.M.; Semeria, L.; Crespi, S.; Lisa, V.; Allavena, A.; Accotto, G.P. Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: Correlation between transgene expression and protection in primary transformants. Mol. Plant Microbe Interact. 1995, 8, 66–73. [Google Scholar] [CrossRef]
- Prins, M.; Resende, R.D.; Anker, C.; van Schepen, A.; de Haan, P.; Goldbach, R. Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Mol. Plant Microbe Interact. 1996, 9, 416–418. [Google Scholar] [CrossRef]
- Herrero, S.; Culbreath, A.K.; Csinos, A.S.; Pappu, H.R.; Rufty, R.C.; Daub, M.E. Nucleocapsid gene-mediated transgenic resistance provides protection against tomato spotted wilt virus epidemics in the field. Phytopathology 2000, 90, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Jan, F.J.; Fagoaga, C.; Pang, S.Z.; Gonsalves, D. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 2000, 81, 235–242. [Google Scholar] [CrossRef]
- Turner, C.T.; Davy, M.W.; MacDiarmid, R.M.; Plummer, K.M.; Birch, N.P.; Newcomb, R.D. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol. Biol. 2006, 15, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Namgial, T.; Kaldis, A.; Chakraborty, S.; Voloudakis, A. Topical application of double-stranded RNA molecules containing sequences of tomato leaf curl virus and cucumber mosaic virus confers protection against the cognate viruses. Physiol. Mol. Plant Pathol. 2019, 108, 101432. [Google Scholar] [CrossRef]
- Tabein, S.; Jansen, M.; Noris, E.; Vaira, A.M.; Marian, D.; Behjatnia, S.A.A.; Accotto, G.P.; Miozzi, L. The induction of an effective dsRNA-mediated resistance against tomato spotted wilt virus by exogenous application of double-stranded RNA largely depends on the selection of the viral RNA target region. Front. Plant Sci. 2020, 11, 1896. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhao, J.H.; Guo, H.S. Recent advances in understanding plant antiviral RNAi and viral suppressors of RNAi. Curr. Opin. Virol. 2021, 46, 65–72. [Google Scholar]
- Taliansky, M.; Samarskaya, V.; Zavriev, S.K.; Fesenko, I.; Kalinina, N.O.; Love, A.J. RNA-Based Technologies for Engineering Plant Virus Resistance. Plants 2021, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.; Robinson, K. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants. 2017, 3, 16207. [Google Scholar] [CrossRef]
- Itaya, A.; Zhong, X.; Bundschuh, R.; Qi, Y.; Wang, Y.; Takeda, R.; Harris, A.R.; Molina, C.; Nelson, R.S.; Ding, B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J. Virol. 2007, 81, 2980–2994. [Google Scholar] [CrossRef] [Green Version]
- Sjolund, R.D. The phloem sieve element: A river runs through it. Plant Cell 1997, 9, 1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, W.B.; Glick, E.; Paldi, N.; Bextine, B.R. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest. Entomol. 2012, 37, 85–87. [Google Scholar] [CrossRef]
- San Miguel, K.; Scott, J.G. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 2016, 72, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, A.; Sarmah, N.; Kaldis, A.; Perdikis, D.; Voloudakis, A. Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Planta 2017, 246, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Kehr, J.; Kragler, F. Long distance RNA movement. New Phytol. 2018, 218, 29–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenllado, F.; Dıaz-Ruız, J.R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol. 2001, 75, 12288–12297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer | Oligonucleotide Sequence (5′-3′) | Target Gene | Amplicon Size (bp) |
---|---|---|---|
TSWV N-F | GTCTAAGGTTAAGCTCACTAA | Nucleocapsid (N) | 717 |
TSWV N-R | AAGAGTTTCACTGTAATGTTC | ||
TSWV NSs-F | AGTCTGGGGATCAACTGCATC | Nonstructural protein (NSs) | 646 |
TSWV NSs-R | GATGTTGTTTTCTGCTGACAT | ||
T7-Linker-F | GAGAATTCTAATACGACTCACTATAGGGGATCC | N/Nss | |
qTSWV_N_SYBR_F | GCTTCCCACCCTTTGATTC | N | 139 |
qTSWV_N_SYBR_R | ATAGCCAAGACAACACTGATC | ||
siRNA3S_F | GCGGCGTGTGAGTGAGCTTAAC | N | 60 |
siRNA3S_RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCG- CACTGGATACGACTCTAAG | ||
Universal-R | GTGCAGGGTCCGAGGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konakalla, N.C.; Bag, S.; Deraniyagala, A.S.; Culbreath, A.K.; Pappu, H.R. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses 2021, 13, 662. https://doi.org/10.3390/v13040662
Konakalla NC, Bag S, Deraniyagala AS, Culbreath AK, Pappu HR. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses. 2021; 13(4):662. https://doi.org/10.3390/v13040662
Chicago/Turabian StyleKonakalla, Naga Charan, Sudeep Bag, Anushi Suwaneththiya Deraniyagala, Albert K. Culbreath, and Hanu R. Pappu. 2021. "Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA" Viruses 13, no. 4: 662. https://doi.org/10.3390/v13040662
APA StyleKonakalla, N. C., Bag, S., Deraniyagala, A. S., Culbreath, A. K., & Pappu, H. R. (2021). Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses, 13(4), 662. https://doi.org/10.3390/v13040662