Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test
Abstract
:1. Introduction
2. Materials and Methods
2.1. Loop-Mediated Isothermal Amplification for SARS-CoV-2 Detection
2.2. Deep Nasopharyngeal Swab Samples (NPS) Stirred in PBS
2.3. Deep NPS in VTM with and without NA Extraction for LAMP
2.4. Viral Load in Different RT-PCRs Used by the Laboratories
3. Results
3.1. Swabs in VTM: Moderate Sensitivity, Good Specificity, Frequent Inhibition
3.2. Dry Swabs in PBS: Higher Detection Rate in Samples with Low Viral Load Compared to Swabs in VTM
3.3. Swabs in VTM after NA Extraction: Enhanced Detection Rate for Samples with a Low Viral Load, No Inhibition
3.4. Sous-Vide and LAMP: A Thermocycler Is Not Required
3.5. No Crossreactivity with Frequent Respiratory Viruses and Bacteria
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID-19 Situation Update Worldwide, as of Week 11, Updated 25 March 2021; European Centre for Disease Prevention and Control (ECDC): Solna, Sweden, 2021.
- Vandenberg, O.; Martiny, D.; Rochas, O.; van Belkum, A.; Kozlakidis, Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2020. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control and European Union Aviation Safety Agency. Guidelines for COVID-19 Testing and Quarantine of Air Travelers-Addendum to the Aviation Health Safety Protocol; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2020.
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP Diagnostics at the Point-of-Care: Emerging Trends and Perspectives for the Developer Community. Expert Rev. Mol. Diagn. 2021, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Thi, V.L.D.; Herbst, K.; Boerner, K.; Meurer, M.; Kremer, L.P.; Kirrmaier, D.; Freistaedter, A.; Papagiannidis, D.; Galmozzi, C.; Stanifer, M.L.; et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci. Transl. Med. 2020, 12, eabc7075. [Google Scholar]
- Ganguli, A.; Mostafa, A.; Berger, J.; Aydin, M.Y.; Sun, F.; de Ramirez, S.A.S.; Valera, E.; Cunningham, B.T.; King, W.P.; Bashir, R. Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 22727–22735. [Google Scholar] [CrossRef]
- Lee, J.Y.; Best, N.; McAuley, J.; Porter, J.L.; Seemann, T.; Schultz, M.B.; Sait, M.; Orlando, N.; Mercoulia, K.; Ballard, S.A.; et al. Validation of a single-step, single-tube reverse transcription loop-mediated isothermal amplification assay for rapid detection of SARS-CoV-2 RNA. J. Med. Microbiol. 2020, 69, 1169–1178. [Google Scholar] [CrossRef]
- Kellner, M.J.; Ross, J.J.; Schnabl, J.; Dekens, M.P.; Heinen, R.; Tanner, N.A.; Fritsche-Polanz, R.; Traugott, M.; Seitz, T.; Zoufaly, A.; et al. Scalable, rapid and highly sensitive isothermal detection of SARS-CoV-2 for laboratory and home testing. bioRxiv 2020. [Google Scholar] [CrossRef]
- Nagura-Ikeda, M.; Imai, K.; Tabata, S.; Miyoshi, K.; Murahara, N.; Mizuno, T.; Horiuchi, M.; Kato, K.; Imoto, Y.; Iwata, M.; et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription–Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J. Clin. Microbiol. 2020, 58, e01438-20. [Google Scholar] [CrossRef]
- Jang, W.S.; Lim, D.H.; Yoon, J.; Kim, A.; Lim, M.; Nam, J.; Yanagihara, R.; Ryu, S.W.; Jung, B.K.; Ryoo, N.H.; et al. Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) assay for on-site diagnosis of SARS CoV-2. PLoS ONE 2021, 16, e0248042. [Google Scholar] [CrossRef]
- Gibson, U.E.; Heid, C.A.; Williams, P.M. A novel method for real time quantitative RT-PCR. Genome Res. 1996, 6, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Fellahi, S.; El Harrak, M.; Kuhn, J.H.; Sebbar, G.; Bouaiti, E.A.; Khataby, K.; Fihri, O.F.; El Houadfi, M.; Ennaji, M.M. Comparison of SYBR green I real-time RT-PCR with conventional agarose gel-based RT-PCR for the diagnosis of infectious bronchitis virus infection in chickens in Morocco. BMC Res. Notes 2016, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, D.V.; Nguyen, V.H.; Seo, T.S. Quantification of Colorimetric Loop-mediated Isothermal Amplification Process. BioChip J. 2019, 13, 158–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, G.; Buss, J.; Barry, A.J.; Patton, G.C.; Tanner, N.A. Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. Biotechniques 2020, 69, 178–185. [Google Scholar] [CrossRef]
- Strömer, A.; Rose, R.; Schäfer, M.; Schön, F.; Vollersen, A.; Lorentz, T.; Fickenscher, H.; Krumbholz, A. Performance of a Point-of-Care Test for the Rapid Detection of SARS-CoV-2 Antigen. Microorganisms 2021, 9, 58. [Google Scholar] [CrossRef]
- Dudley, D.M.; Newman, C.M.; Weiler, A.M.; Ramuta, M.D.; Shortreed, C.G.; Heffron, A.S.; Accola, M.A.; Rehrauer, W.M.; Friedrich, T.C.; O’Connor, D.H. Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples. PLoS ONE 2021, 15, e0244882. [Google Scholar]
- Carvalho, A.F.; Rocha, R.P.; Gonçalves, A.P.; Silva, T.B.; Sato, H.I.; Vuitika, L.; Bagno, F.F.; Sérgio, S.A.; Figueiredo, M.M.; Martins, R.B.; et al. The use of denaturing solution as collection and transport media to improve SARS-CoV-2 RNA detection and reduce infection of laboratory personnel. Braz. J. Microbiol. 2021. [Google Scholar] [CrossRef]
- FDA. Transport Media Safety Risk-Use Compatible Transport Media with SARS-CoV-2 Tests That Use Bleach-Letter to Clinical Laboratory Staff and Health Care Providers; Letters to Health Care Providers; US Food and Drug Administration (FDA): Silver Spring, MD, USA, 2020.
- Druce, J.; Garcia, K.; Tran, T.; Papadakis, G.; Birch, C. Evaluation of swabs, transport media, and specimen transport conditions for optimal detection of viruses by PCR. J. Clin. Microbiol. 2012, 50, 1064–1065. [Google Scholar] [CrossRef] [Green Version]
- Garnett, L.; Bello, A.; Tran, K.N.; Audet, J.; Leung, A.; Schiffman, Z.; Griffin, B.D.; Tailor, N.; Kobasa, D.; Strong, J.E. Comparison analysis of different swabs and transport mediums suitable for SARS-CoV-2 testing following shortages. J. Virol. Methods 2020, 285, 113947. [Google Scholar] [CrossRef]
- Sharma, S.; Pardasani, D.; Dash, P.K.; Parida, M.; Dubey, D.K. Development of magnetic bead based sample extraction coupled polymerase spiral reaction for rapid on-site detection of Chikungunya virus. Sci. Rep. 2020, 10, 11651. [Google Scholar] [CrossRef]
- Ladha, A.; Joung, J.; Abudayyeh, O.O.; Gootenberg, J.S.; Zhang, F. A 5-min RNA preparation method for COVID-19 detection with RT-qPCR. medRxiv 2020. [Google Scholar] [CrossRef]
- Brümmer, L.E.; Katzenschlager, S.; Gaeddert, M.; Erdmann, C.; Schmitz, S.; Bota, M.; Grilli, M.; Larmann, J.; Weigand, M.A.; Pollock, N.; et al. The accuracy of novel antigen rapid diagnostics for SARS-CoV-2, a living systematic review and meta-analysis. medRxiv 2021. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Nagakubo, Y.; Hosaka, K.; Amemiya, K.; Sueki, H.; Hayakawa, M.; Mochizuki, H.; Tsutsui, T.; et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int. J. Infect. Dis. 2020, 99, 397–402. [Google Scholar] [CrossRef]
- Corman, V.M.; Haage, V.C.; Bleicker, T.; Schmidt, M.L.; Mühlemann, B.; Zuchowski, M.; Lei, W.K.J.; Tscheak, P.; Möncke-Buchner, E.; Mueller, M.A.; et al. Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests. Lancet Microbe 2021. [Google Scholar] [CrossRef]
- Schwob, J.M.; Miauton, A.; Petrovic, D.; Perdrix, J.; Senn, N.; Jaton, K.; Opota, O.; Maillard, A.; Minghelli, G.; Cornuz, J.; et al. Antigen rapid tests, nasopharyngeal PCR and saliva PCR to detect SARS-CoV-2, A prospective comparative clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Liotti, F.M.; Menchinelli, G.; Lalle, E.; Palucci, I.; Marchetti, S.; Colavita, F.; La Sorda, M.; Sberna, G.; Bordi, L.; Sanguinetti, M.; et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin. Microbiol. Infect. 2021, 27, 487–488. [Google Scholar] [CrossRef]
- RKI. Hinweise zur Testung von Patienten auf Infektion mit dem Neuartigen Coronavirus SARS-CoV-2; Robert Koch-Institut: Berlin, Germany, 2021. [Google Scholar]
- WHO. COVID-19 Target Product Profiles for Priority Diagnostics to Support Response to the COVID-19 Pandemic v.0.1; WHO: Geneva, Switzerland, 2020. [Google Scholar]
Pathogen | Ct of the RT-PCR (If Available) | Number of Samples Tested Directly | Number of Samples Tested after Preparation of NA | Result of the LAMP for SARS-CoV-2 |
---|---|---|---|---|
HCoV HKU1 | 18.6–28.5 | 4 | - | negative |
HCoV NL63 | 18.3–28 | 4 | 10 | negative |
HCoV 229E | 17.1–27.8 | 3 | - | negative |
HCoV OC43 | 18.6–24.9 | 2 | 1 | negative |
IAV H1N1 | 18.8–24.3 | 3 | - | negative |
IAV H3N2 | 23.2 | 1 | - | negative |
IAV not typed | 19.5–24.7 | 5 | - | negative |
RSV | 18–22.3 | 12 | - | negative |
RSV + HRV | 20.7–23 + 30.1–35 | 3 | - | negative |
RSV + HBoV1 | 18.8–20.6 + 35–35 | 2 | - | negative |
HMPV | 15.3–23.6 | 3 | 3 | negative |
HMPV + HRV | 24.5 + 20.2 | 1 | - | negative |
HBoV1 | 13.1–14.6 | 2 | - | negative |
Haemophilus influenzae | n.a. | 1 | - | negative |
Bordetella pertussis | n.a. | 1 | - | negative |
Streptococcus pneumoniae | n.a. | 1 | - | negative |
Streptococcus pyogenes | n.a. | 1 | - | negative |
Staphylococcus aureus | n.a. | 1 | - | negative |
Escherichia coli | n.a. | 1 | - | negative |
Klebsiella pneumoniae | n.a. | 1 | - | negative |
Mycoplasma pneumoniae | n.a. | 1 | - | negative |
Chlamydia pneumoniae | n.a. | 1 | - | negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anastasiou, O.E.; Holtkamp, C.; Schäfer, M.; Schön, F.; Eis-Hübinger, A.M.; Krumbholz, A. Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test. Viruses 2021, 13, 801. https://doi.org/10.3390/v13050801
Anastasiou OE, Holtkamp C, Schäfer M, Schön F, Eis-Hübinger AM, Krumbholz A. Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test. Viruses. 2021; 13(5):801. https://doi.org/10.3390/v13050801
Chicago/Turabian StyleAnastasiou, Olympia E., Caroline Holtkamp, Miriam Schäfer, Frieda Schön, Anna Maria Eis-Hübinger, and Andi Krumbholz. 2021. "Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test" Viruses 13, no. 5: 801. https://doi.org/10.3390/v13050801
APA StyleAnastasiou, O. E., Holtkamp, C., Schäfer, M., Schön, F., Eis-Hübinger, A. M., & Krumbholz, A. (2021). Fast Detection of SARS-CoV-2 RNA Directly from Respiratory Samples Using a Loop-Mediated Isothermal Amplification (LAMP) Test. Viruses, 13(5), 801. https://doi.org/10.3390/v13050801