HIV Protease: Historical Perspective and Current Research
Abstract
:1. Introduction
2. Historical Background: Structure and Specificity of HIV Protease
3. Antiviral Protease Inhibitors for HIV/AIDS
4. HIV Drug Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- World Health Organization, HIV/AIDS Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 1 March 2021).
- Tozser, J. Stages of HIV Replication and Targets for Therapeutic Intervention. Curr. Top. Med. Chem. 2003, 3, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Update of Recommendations on First- and Second-Line Antiretroviral Regimens. Available online: https://www.who.int/hiv/pub/arv/arv-update-2019-policy/en/ (accessed on 1 March 2021).
- Clutter, D.S.; Jordan, M.R.; Bertagnolio, S.; Shafer, R.W. HIV-1 Drug Resistance and Resistance Testing. Infect. Genet. Evol. 2016, 46, 292–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, S.Y.; Gonzales, M.J.; Kantor, R.; Betts, B.J.; Ravela, J.; Shafer, R.W. Human Immunodeficiency Virus Reverse Transcriptase and Protease Sequence Database. Nucleic Acids Res. 2003, 31, 298–303. [Google Scholar] [CrossRef] [Green Version]
- Oroszlan, S.; Luftig, R.B. Retroviral Proteinases. Curr. Top. Microbiol. Immunol. 1990, 157, 153–185. [Google Scholar] [PubMed]
- Konvalinka, J.; Krausslich, H.G.; Muller, B. Retroviral Proteases and Their Roles in Virion Maturation. Virology 2015, 479, 403–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krausslich, H.G.; Ingraham, R.H.; Skoog, M.T.; Wimmer, E.; Pallai, P.V.; Carter, C.A. Activity of Purified Biosynthetic Proteinase of Human Immunodeficiency Virus on Natural Substrates and Synthetic Peptides. Proc. Natl. Acad. Sci. USA 1989, 86, 807–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huff, J.R. HIV Protease: A Novel Chemotherapeutic Target for AIDS. J. Med. Chem. 1991, 34, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Toh, H.; Ono, M.; Saigo, K.; Miyata, T. Retroviral Protease-like Sequence in the Yeast Transposon Ty 1. Nature 1985, 315, 691. [Google Scholar] [CrossRef]
- Wiegers, K.; Rutter, G.; Kottler, H.; Tessmer, U.; Hohenberg, H.; Krausslich, H.G. Sequential Steps in Human Immunodeficiency Virus Particle Maturation Revealed by Alterations of Individual Gag Polyprotein Cleavage Sites. J. Virol. 1998, 72, 2846–2854. [Google Scholar] [CrossRef] [Green Version]
- Pettit, S.C.; Lindquist, J.N.; Kaplan, A.H.; Swanstrom, R. Processing Sites in the Human Immunodeficiency Virus Type 1 (HIV-1) Gag-Pro-Pol Precursor are Cleaved by the Viral Protease at Different Rates. Retrovirology 2005, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, L.; Tugarinov, V.; Louis, J.M.; Clore, G.M. Binding Kinetics and Substrate Selectivity in HIV-1 Protease-Gag Interactions Probed at Atomic Resolution by Chemical Exchange NMR. Proc. Natl. Acad. Sci. USA 2017, 114, E9855–E9862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, T.D.; Oroszlan, S. Genetic Locus, Primary Structure, and Chemical Synthesis of Human Immunodeficiency Virus Protease. Gene Anal. Tech. 1988, 5, 109–115. [Google Scholar] [CrossRef]
- Henderson, L.E.; Sowder, R.C.; Copeland, T.D.; Oroszlan, S.; Benveniste, R.E. Gag Precursors of HIV and SIV are Cleaved into Six Proteins Found in the Mature Virions. J. Med. Primatol. 1990, 19, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.M.; Wondrak, E.M.; Copeland, T.D.; Smith, C.A.; Mora, P.T.; Oroszlan, S. Chemical Synthesis and Expression of the HIV-1 Protease Gene in E. Coli. Biochem. Biophys. Res. Commun. 1989, 159, 87–94. [Google Scholar] [CrossRef]
- Wondrak, E.M.; Louis, J.M.; Mora, P.T.; Oroszlan, S. Purification of HIV-1 Wild-Type Protease and Characterization of Proteolytically Inactive HIV-1 Protease Mutants by Pepstatin A Affinity Chromatography. FEBS Lett. 1991, 280, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Nashed, N.T.; Louis, J.M.; Sayer, J.M.; Wondrak, E.M.; Mora, P.T.; Oroszlan, S.; Jerina, D.M. Continuous Spectrophotometric Assay for Retroviral Proteases of HIV-1 and AMV. Biochem. Biophys. Res. Commun. 1989, 163, 1079–1085. [Google Scholar] [CrossRef]
- Blumenstein, J.J.; Copeland, T.D.; Oroszlan, S.; Michejda, C.J. Synthetic Non-peptide Inhibitors of HIV Protease. Biochem. Biophys. Res. Commun. 1989, 163, 980–987. [Google Scholar] [CrossRef]
- Copeland, T.D.; Wondrak, E.M.; Tozser, J.; Roberts, M.M.; Oroszlan, S. Substitution of Proline with Pipecolic Acid at the Scissile Bond Converts a Peptide Substrate of HIV Proteinase into a Selective Inhibitor. Biochem. Biophys. Res. Commun. 1990, 169, 310–314. [Google Scholar] [CrossRef]
- Grobelny, D.; Wondrak, E.M.; Galardy, R.E.; Oroszlan, S. Selective Phosphinate Transition-State Analogue Inhibitors of the Protease of Human Immunodeficiency Virus. Biochem. Biophys. Res. Commun. 1990, 169, 1111–1116. [Google Scholar] [CrossRef]
- Navia, M.A.; Fitzgerald, P.M.; McKeever, B.M.; Leu, C.T.; Heimbach, J.C.; Herber, W.K.; Sigal, I.S.; Darke, P.L.; Springer, J.P. Three-dimensional Structure of Aspartyl Protease from Human Immunodeficiency Virus HIV-1. Nature 1989, 337, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Wlodawer, A.; Miller, M.; Jaskolski, M.; Sathyanarayana, B.K.; Baldwin, E.; Weber, I.T.; Selk, L.M.; Clawson, L.; Schneider, J.; Kent, S.B. Conserved Folding in Retroviral Proteases: Crystal Structure of a Synthetic HIV-1 Protease. Science 1989, 245, 616–621. [Google Scholar] [CrossRef]
- Lapatto, R.; Blundell, T.; Hemmings, A.; Overington, J.; Wilderspin, A.; Wood, S.; Merson, J.R.; Whittle, P.J.; Danley, D.E.; Geoghegan, K.F.; et al. X-ray Analysis of HIV-1 Proteinase at 2.7 A Resolution Confirms Structural Homology among Retroviral Enzymes. Nature 1989, 342, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.; Schneider, J.; Sathyanarayana, B.K.; Toth, M.V.; Marshall, G.R.; Clawson, L.; Selk, L.; Kent, S.B.; Wlodawer, A. Structure of Complex of Synthetic HIV-1 Protease with a Substrate-Based Inhibitor at 2.3 A Resolution. Science 1989, 246, 1149–1152. [Google Scholar] [CrossRef]
- Wlodawer, A.; Vondrasek, J. Inhibitors of HIV-1 Protease: A Major Success of Structure-Assisted Drug Design. Annu. Rev. Biophys. Biomol. Struct. 1998, 27, 249–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustchina, A.; Weber, I.T. Comparison of Inhibitor Binding in HIV-1 Protease and in Non-Viral Aspartic Proteases: The Role of the Flap. FEBS Lett. 1990, 269, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Weber, I.T. Structural Alignment of Retroviral Protease Sequences. Gene 1989, 85, 565–566. [Google Scholar] [CrossRef]
- Tomasselli, A.G.; Hui, J.O.; Sawyer, T.K.; Staples, D.J.; Bannow, C.; Reardon, I.M.; Howe, W.J.; DeCamp, D.L.; Craik, C.S.; Heinrikson, R.L. Specificity and Inhibition of Proteases from Human Immunodeficiency Viruses 1 and 2. J. Biol. Chem. 1990, 265, 14675–14683. [Google Scholar] [CrossRef]
- Gustchina, A.; Weber, I.T. Comparative Analysis of the Sequences and Structures of HIV-1 and HIV-2 Proteases. Proteins 1991, 10, 325–339. [Google Scholar] [CrossRef]
- Tozser, J.; Blaha, I.; Copeland, T.D.; Wondrak, E.M.; Oroszlan, S. Comparison of the HIV-1 and HIV-2 Proteinases Using Oligopeptide Substrates Representing Cleavage Sites in Gag and Gag-Pol Polyproteins. FEBS Lett. 1991, 281, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Tozser, J.; Gustchina, A.; Weber, I.T.; Blaha, I.; Wondrak, E.M.; Oroszlan, S. Studies on the Role of the S4 Substrate Binding Site of HIV Proteinases. FEBS Lett. 1991, 279, 356–360. [Google Scholar] [CrossRef] [Green Version]
- Tozser, J.; Weber, I.T.; Gustchina, A.; Blaha, I.; Copeland, T.D.; Louis, J.M.; Oroszlan, S. Kinetic and Modeling Studies of S3-S3′ Subsites of HIV Proteinases. Biochemistry 1992, 31, 4793–4800. [Google Scholar] [CrossRef]
- Tie, Y.; Wang, Y.F.; Boross, P.I.; Chiu, T.Y.; Ghosh, A.K.; Tozser, J.; Louis, J.M.; Harrison, R.W.; Weber, I.T. Critical Differences in HIV-1 and HIV-2 Protease Specificity for Clinical Inhibitors. Protein Sci. 2012, 21, 339–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schechter, I.; Berger, A. On the Size of the Active Site in Proteases. I. Papain. Biochem. Biophys. Res. Commun. 1967, 27, 157–162. [Google Scholar] [CrossRef]
- Weber, I.T.; Tozser, J.; Wu, J.; Friedman, D.; Oroszlan, S. Molecular Model of Equine Infectious Anemia Virus Proteinase and Kinetic Measurements for Peptide Substrates with Single Amino Acid Substitutions. Biochemistry 1993, 32, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Tozser, J.; Friedman, D.; Weber, I.T.; Blaha, I.; Oroszlan, S. Studies on the Substrate Specificity of the Proteinase of Equine Infectious Anemia Virus Using Oligopeptide Substrates. Biochemistry 1993, 32, 3347–3353. [Google Scholar] [CrossRef]
- Menendez-Arias, L.; Gotte, D.; Oroszlan, S. Moloney Murine Leukemia Virus Protease: Bacterial Expression and Characterization of the Purified Enzyme. Virology 1993, 196, 557–563. [Google Scholar] [CrossRef]
- Menendez-Arias, L.; Weber, I.T.; Soss, J.; Harrison, R.W.; Gotte, D.; Oroszlan, S. Kinetic and Modeling Studies of Subsites S4-S3′ of Moloney Murine Leukemia Virus Protease. J. Biol. Chem. 1994, 269, 16795–16801. [Google Scholar] [CrossRef]
- Menendez-Arias, L.; Weber, I.T.; Oroszlan, S. Mutational Analysis of the Substrate Binding Pocket of Murine Leukemia Virus Protease and Comparison with Human Immunodeficiency Virus Proteases. J. Biol. Chem. 1995, 270, 29162–29168. [Google Scholar] [CrossRef] [Green Version]
- Feher, A.; Boross, P.; Sperka, T.; Miklossy, G.; Kadas, J.; Bagossi, P.; Oroszlan, S.; Weber, I.T.; Tozser, J. Characterization of the Murine Leukemia Virus Protease and Its Comparison with the Human Immunodeficiency Virus Type 1 Protease. J. Gen. Virol. 2006, 87, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Oroszlan, S.; Tozser, J.; Weber, I.T. The Proteinase of Bovine Leukemia Virus and Equine Infectious Anemia Virus. Int. Antivir. News 1993, 1, 22–23. [Google Scholar]
- Menendez-Arias, L.; Young, M.; Oroszlan, S. Purification and Characterization of the Mouse Mammary Tumor Virus Protease Expressed in Escherichia Coli. J. Biol. Chem. 1992, 267, 24134–24139. [Google Scholar] [CrossRef]
- Dunn, B.M.; Gustchina, A.; Wlodawer, A.; Kay, J. Subsite Preferences of Retroviral Proteinases. Methods Enzymol. 1994, 241, 254–278. [Google Scholar] [PubMed]
- Tozser, J.; Zahuczky, G.; Bagossi, P.; Louis, J.M.; Copeland, T.D.; Oroszlan, S.; Harrison, R.W.; Weber, I.T. Comparison of the Substrate Specificity of the Human T-Cell Leukemia Virus and Human Immunodeficiency Virus Proteinases. Eur. J. Biochem. 2000, 267, 6287–6295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadas, J.; Weber, I.T.; Bagossi, P.; Miklossy, G.; Boross, P.; Oroszlan, S.; Tozser, J. Narrow Substrate Specificity and Sensitivity Toward Ligand-binding Site Mutations of Human T-Cell Leukemia Virus Type 1 Protease. J. Biol. Chem. 2004, 279, 27148–27157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinde, B.; Cameron, C.E.; Leis, J.; Weber, I.T.; Wlodawer, A.; Burstein, H.; Bizub, D.; Skalka, A.M. Mutations that Alter the Activity of the Rous Sarcoma Virus Protease. J. Biol. Chem. 1992, 267, 9481–9490. [Google Scholar] [CrossRef]
- Grinde, B.; Cameron, C.E.; Leis, J.; Weber, I.T.; Wlodawer, A.; Burstein, H.; Skalka, A.M. Analysis of Substrate Interactions of the Rous Sarcoma Virus Wild Type and Mutant Proteases and Human Immunodeficiency Virus-1 Protease Using a Set of Systematically Altered Peptide Substrates. J. Biol. Chem. 1992, 267, 9491–9498. [Google Scholar] [CrossRef]
- Cameron, C.E.; Grinde, B.; Jacques, P.; Jentoft, J.; Leis, J.; Wlodawer, A.; Weber, I.T. Comparison of the Substrate-binding Pockets of the Rous Sarcoma Virus and Human Immunodeficiency Virus Type 1 Proteases. J. Biol. Chem. 1993, 268, 11711–11720. [Google Scholar] [CrossRef]
- Cameron, C.E.; Ridky, T.W.; Shulenin, S.; Leis, J.; Weber, I.T.; Copeland, T.; Wlodawer, A.; Burstein, H.; Bizub-Bender, D.; Skalka, A.M. Mutational Analysis of the Substrate Binding Pockets of the Rous Sarcoma Virus and Human Immunodeficiency Virus-1 Proteases. J. Biol. Chem. 1994, 269, 11170–11177. [Google Scholar] [CrossRef]
- Ridky, T.W.; Cameron, C.E.; Cameron, J.; Leis, J.; Copeland, T.; Wlodawer, A.; Weber, I.T.; Harrison, R.W. Human Immunodeficiency Virus, Type 1 Protease Substrate Specificity is Limited by Interactions between Substrate Amino Acids Bound in Adjacent Enzyme Subsites. J. Biol. Chem. 1996, 271, 4709–4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridky, T.W.; Bizub-Bender, D.; Cameron, C.E.; Weber, I.T.; Wlodawer, A.; Copeland, T.; Skalka, A.M.; Leis, J. Programming the Rous Sarcoma Virus Protease to Cleave New Substrate Sequences. J. Biol. Chem. 1996, 271, 10538–10544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridky, T.W.; Kikonyogo, A.; Leis, J.; Gulnik, S.; Copeland, T.; Erickson, J.; Wlodawer, A.; Kurinov, I.; Harrison, R.W.; Weber, I.T. Drug-resistant HIV-1 Proteases Identify Enzyme Residues Important for Substrate Selection and Catalytic Rate. Biochemistry 1998, 37, 13835–13845. [Google Scholar] [CrossRef]
- Wu, J.; Adomat, J.M.; Ridky, T.W.; Louis, J.M.; Leis, J.; Harrison, R.W.; Weber, I.T. Structural Basis for Specificity of Retroviral Proteases. Biochemistry 1998, 37, 4518–4526. [Google Scholar] [CrossRef]
- Bagossi, P.; Sperka, T.; Feher, A.; Kadas, J.; Zahuczky, G.; Miklossy, G.; Boross, P.; Tozser, J. Amino Acid Preferences for a Critical Substrate Binding Subsite of Retroviral Proteases in Type 1 Cleavage Sites. J. Virol. 2005, 79, 4213–4218. [Google Scholar] [CrossRef] [Green Version]
- Potempa, M.; Lee, S.K.; Kurt Yilmaz, N.; Nalivaika, E.A.; Rogers, A.; Spielvogel, E.; Carter, C.W., Jr.; Schiffer, C.A.; Swanstrom, R. HIV-1 Protease Uses Bi-Specific S2/S2′ Subsites to Optimize Cleavage of Two Classes of Target Sites. J. Mol. Biol. 2018, 430, 5182–5195. [Google Scholar] [CrossRef]
- Wensing, A.M.; Calvez, V.; Ceccherini-Silberstein, F.; Charpentier, C.; Gunthard, H.F.; Paredes, R.; Shafer, R.W.; Richman, D.D. 2019 Update of the Drug Resistance Mutations in HIV-1. Top. Antivir. Med. 2019, 27, 111–121. [Google Scholar] [PubMed]
- Roberts, N.A.; Martin, J.A.; Kinchington, D.; Broadhurst, A.V.; Craig, J.C.; Duncan, I.B.; Galpin, S.A.; Handa, B.K.; Kay, J.; Krohn, A.; et al. Rational Design of Peptide-Based HIV Proteinase Inhibitors. Science 1990, 248, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Cevik, M.; Orkin, C. Fixed Dose Darunavir Boosted with Cobicistat Combined with Emtricitabine and Tenofovir Alafenamide Fumarate. Curr. Opin. HIV AIDS 2018, 13, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Anderson, D.D.; Weber, I.T.; Mitsuya, H. Enhancing Protein Backbone Binding--a Fruitful Concept for Combating Drug-resistant HIV. Angew. Chem. Int. Ed. 2012, 51, 1778–1802. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.K.; Osswald, H.L.; Prato, G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J. Med. Chem. 2016, 59, 5172–5208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, M.; Hayashi, H.; Rao, K.V.; Das, D.; Higashi-Kuwata, N.; Bulut, H.; Aoki-Ogata, H.; Takamatsu, Y.; Yedidi, R.S.; Davis, D.A.; et al. A Novel Central Nervous System-Penetrating Protease Inhibitor Overcomes Human Immunodeficiency Virus 1 Resistance with Unprecedented aM to pM Potency. Elife 2017, 6, e28020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; Rao, K.V.; Nyalapatla, P.R.; Kovela, S.; Brindisi, M.; Osswald, H.L.; Sekhara Reddy, B.; Agniswamy, J.; Wang, Y.F.; Aoki, M.; et al. Design of Highly Potent, Dual-Acting and Central-Nervous-System-Penetrating HIV-1 Protease Inhibitors with Excellent Potency against Multidrug-Resistant HIV-1 Variants. ChemMedChem 2018, 13, 803–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; Sarkar, A.; Mitsuya, H. HIV-Associated Neurocognitive Disorder (HAND) and the Prospect of Brain-Penetrating Protease Inhibitors for Antiretroviral Treatment. Med. Res. Arch. 2017, 5, 1113–1134. [Google Scholar]
- Buonaguro, L.; Tornesello, M.L.; Buonaguro, F.M. Human Immunodeficiency Virus Type 1 Subtype Distribution in the WorldWide Epidemic: Pathogenetic and Therapeutic Implications. J. Virol. 2007, 81, 10209–10219. [Google Scholar] [CrossRef] [Green Version]
- Smyth, R.P.; Davenport, M.P.; Mak, J. The Origin of Genetic Diversity in HIV-1. Virus Res. 2012, 169, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S.B.; Kent, S.J.; Winnall, W.R. The High Cost of Fidelity. AIDS Res. Hum. Retrovir. 2014, 30, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafer, R.W. Rationale and Uses of a Public HIV Drug-resistance Database. J. Infect. Dis. 2006, 194, S51–S58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menendez-Arias, L. Molecular Basis of Human Immunodeficiency Virus Type 1 Drug Resistance: Overview and Recent Developments. Antivir. Res. 2013, 98, 93–120. [Google Scholar] [CrossRef]
- Doyon, L.; Croteau, G.; Thibeault, D.; Poulin, F.; Pilote, L.; Lamarre, D. Second Locus Involved in Human Immunodeficiency Virus Type 1 Resistance to Protease Inhibitors. J. Virol. 1996, 70, 3763–3769. [Google Scholar] [CrossRef] [Green Version]
- Nijhuis, M.; van Maarseveen, N.M.; Boucher, C.A. HIV Protease Resistance and Viral Fitness. Curr. Opin. HIV AIDS 2007, 2, 108–115. [Google Scholar] [CrossRef]
- Zhang, T.H.; Dai, L.; Barton, J.P.; Du, Y.; Tan, Y.; Pang, W.; Chakraborty, A.K.; Lloyd-Smith, J.O.; Sun, R. Predominance of Positive Epistasis among Drug Resistance-Associated Mutations in HIV-1 Protease. PLoS Genet. 2020, 16, e1009009. [Google Scholar] [CrossRef]
- Weber, I.T.; Agniswamy, J. HIV-1 Protease: Structural Perspectives on Drug Resistance. Viruses 2009, 1, 1110–1136. [Google Scholar] [CrossRef]
- Yu, X.; Weber, I.T.; Harrison, R.W. Prediction of HIV Drug Resistance from Genotype with Encoded Three-Dimensional Protein Structure. BMC Genom. 2014, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Weber, I.T.; Harrison, R.W. Identifying Representative Drug Resistant Mutants of HIV. BMC Bioinform. 2015, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Yu, X.; Harrison, R.W.; Weber, I.T. Automated Prediction of HIV Drug Resistance from Genotype Data. BMC Bioinform. 2016, 17, 278. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Sayer, J.M.; Aniana, A.; Yu, X.; Weber, I.T.; Harrison, R.W.; Louis, J.M. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Biochemistry 2016, 55, 2390–2400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agniswamy, J.; Louis, J.M.; Roche, J.; Harrison, R.W.; Weber, I.T. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics. PLoS ONE 2016, 11, e0168616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneller, D.W.; Agniswamy, J.; Harrison, R.W.; Weber, I.T. Highly Drug-Resistant HIV-1 Protease Reveals Decreased Intra-subunit Interactions due to Clusters of Mutations. FEBS J. 2020, 287, 3235–3254. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Freas, C.; Weber, I.T.; Harrison, R.W. Evolution of Drug Resistance in HIV Protease. BMC Bioinform. 2020, 21, 497. [Google Scholar] [CrossRef]
- Dierynck, I.; de Wit, M.; Gustin, E.; Keuleers, I.; Vandersmissen, J.; Hallenberger, S.; Hertogs, K. Binding Kinetics of Darunavir to Human Immunodeficiency Virus Type 1 Protease Explain the Potent Antiviral Activity and High Genetic Barrier. J. Virol. 2007, 81, 13845–13851. [Google Scholar] [CrossRef] [Green Version]
- Kožíšek, M.; Lepšík, M.; Grantz Šašková, K.; Brynda, J.; Konvalinka, J.; Řezáčová, P. Thermodynamic and Structural Analysis of HIV Protease Resistance to Darunavir–Analysis of Heavily Mutated Patient-Derived HIV-1 Proteases. FEBS J. 2014, 281, 1834–1847. [Google Scholar] [CrossRef]
- Louis, J.M.; Aniana, A.; Weber, I.T.; Sayer, J.M. Inhibition of Autoprocessing of Natural Variants and Multidrug Resistant Mutant Precursors of HIV-1 Protease by Clinical Inhibitors. Proc. Natl. Acad. Sci. USA 2011, 108, 9072–9077. [Google Scholar] [CrossRef] [Green Version]
- Agniswamy, J.; Shen, C.H.; Aniana, A.; Sayer, J.M.; Louis, J.M.; Weber, I.T. HIV-1 Protease with 20 Mutations Exhibits Extreme Resistance to Clinical Inhibitors through Coordinated Structural Rearrangements. Biochemistry 2012, 51, 2819–2828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agniswamy, J.; Kneller, D.W.; Brothers, R.; Wang, Y.F.; Harrison, R.W.; Weber, I.T. Highly Drug-Resistant HIV-1 Protease Mutant PRS17 Shows Enhanced Binding to Substrate Analogues. ACS Omega 2019, 4, 8707–8719. [Google Scholar] [CrossRef] [PubMed]
- Agniswamy, J.; Louis, J.M.; Shen, C.H.; Yashchuk, S.; Ghosh, A.K.; Weber, I.T. Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1 Protease PR20. J. Med. Chem. 2015, 58, 5088–5095. [Google Scholar] [CrossRef] [Green Version]
- Kneller, D.W.; Agniswamy, J.; Ghosh, A.K.; Weber, I.T. Potent Antiviral HIV-1 Protease Inhibitor Combats Highly Drug Resistant Mutant PR20. Biochem. Biophys. Res. Commun. 2019, 519, 61–66. [Google Scholar] [CrossRef] [PubMed]
Protease | Kd DRV (nM) | Relative Kd | Amino Acid Substitutions Major Resistance Mutations |
---|---|---|---|
Wild-Type | 0.005 | 1.0 | |
a PR20 | 41 | 8200 | L10F, I13V, I15V, D30N, V32I, L33F, E35D, M36I, S37N, I47V, I54L, Q58E, I62V, L63P, A71V, I84V, N88D, L89T, L90M |
b PRdrv4 | 35 | 7000 | L10F, I13V, K14R, V32I, L33F, K45T, M46I, I47V, I54L, I62V, L63P, A71T, I72T, G73T, V77I, P79S, I84V, L90M |
c PRS17 | 50 | 10,000 | L10I, K20R, E35D, M36I, S37D, M46L, G48V, I54V, D60E, I62V, L63P, A71V, I72V, V77I, V82S, L90M, I93L |
d PRS5B | 4.0 | 800 | L10I, V11I, E21D, A22V, L24M, E35N, M36I, S37D, R41K, M46L, I54V, Q61H, I62V, I63P, I64V, I66V, A71V, I72T, G73T, N83D, I84V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, I.T.; Wang, Y.-F.; Harrison, R.W. HIV Protease: Historical Perspective and Current Research. Viruses 2021, 13, 839. https://doi.org/10.3390/v13050839
Weber IT, Wang Y-F, Harrison RW. HIV Protease: Historical Perspective and Current Research. Viruses. 2021; 13(5):839. https://doi.org/10.3390/v13050839
Chicago/Turabian StyleWeber, Irene T., Yuan-Fang Wang, and Robert W. Harrison. 2021. "HIV Protease: Historical Perspective and Current Research" Viruses 13, no. 5: 839. https://doi.org/10.3390/v13050839
APA StyleWeber, I. T., Wang, Y. -F., & Harrison, R. W. (2021). HIV Protease: Historical Perspective and Current Research. Viruses, 13(5), 839. https://doi.org/10.3390/v13050839