Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Data Synthesis
3. Results
3.1. Included Studies
3.2. Characteristics of Included Studies
3.3. Statistical and Random-Effects Model Results
4. Discussion
4.1. Plasma Potency: SARS-CoV-2 Antibody Inclusion Thresholds
4.2. CPT Intervention Time
4.3. Donor–Recipient Risks
4.4. Importance of Large-Scale RCTs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Coronavirus (COVID-19). Available online: https://who.sprinklr.com/ (accessed on 26 January 2021).
- Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Rochwerg, B.; Lamontagne, F.; Han, M.A. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020, 370, m2980. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, C.; Hall, N.; Ly, H.; Tyler, K.M. COVID-19 Evolution during the Pandemic–Implications of New SARS-CoV-2 Variants on Disease Control and Public Health Policies; Taylor & Francis: Milton Park/Abingdon, UK, 2021. [Google Scholar]
- WHO. Clinical Management of Severe Acute Respiratory Infections (SARI) When COVID-19 Disease Is Suspected; Interim Guidance; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- FDA. Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment; Food and Drug Administration: Silver Spring, MD, USA, 2020. [Google Scholar]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 104787. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, A.C.; Goh, H.P.; Koh, D. Treatment of COVID-19: Old Tricks for New Challenges; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Corum, J.; Grady, D.; Wee, S.-L.; Zimmer, C. Coronavirus Vaccine Tracker; The New York Times: New York, NY, USA, 2020; p. 5. [Google Scholar]
- Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. Nat. Med. 2021, 27, 205–211. [Google Scholar] [CrossRef]
- Newton, P.N.; Bond, K.C.; Adeyeye, M.; Antignac, M.; Ashenef, A.; Awab, G.R.; Bannenberg, W.J.; Bower, J.; Breman, J.; Brock, A. COVID-19 and risks to the supply and quality of tests, drugs, and vaccines. Lancet Glob. Health 2020, 8, e754–e755. [Google Scholar] [CrossRef]
- Koyama, T.; Weeraratne, D.; Snowdon, J.L.; Parida, L. Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment. Pathogens 2020, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.-P.; Lu, X.; Chen, Q.; Xu, K.; Chen, Y.; Cheng, L.; Liu, F.; Wu, Z.; Wu, H.; Jin, C. Patient-Derived Mutations Impact Pathogenicity of SARS-CoV-2. CELL-D-20-01124. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.04.14.20060160v2 (accessed on 6 May 2021).
- Lynch, M.; Ackerman, M.S.; Gout, J.-F.; Long, H.; Sung, W.; Thomas, W.K.; Foster, P.L. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 2016, 17, 704. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, J.; Bao, L.; Shi, Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect. Dis. 2020, 20, 398–400. [Google Scholar] [CrossRef]
- Luke, T.C.; Kilbane, E.M.; Jackson, J.L.; Hoffman, S.L. Meta-analysis: Convalescent blood products for Spanish influenza pneumonia: A future H5N1 treatment? Ann. Intern. Med. 2006, 145, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Marano, G.; Vaglio, S.; Pupella, S.; Facco, G.; Catalano, L.; Liumbruno, G.M.; Grazzini, G. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus. 2016, 14, 152. [Google Scholar] [PubMed] [Green Version]
- Bozzo, J.; Jorquera, J.I. Use of human immunoglobulins as an anti-infective treatment: The experience so far and their possible re-emerging role. Expert Rev. Anti-Infect. Ther. 2017, 15, 585–604. [Google Scholar] [CrossRef]
- Mair-Jenkins, J.; Saavedra-Campos, M.; Baillie, J.K.; Cleary, P.; Khaw, F.-M.; Lim, W.S.; Makki, S.; Rooney, K.D.; Group, C.P.S.; Nguyen-Van-Tam, J.S. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J. Infect. Dis. 2015, 211, 80–90. [Google Scholar] [CrossRef] [Green Version]
- FDA. Recommendations for Investigational COVID-19 Convalescent Plasma, Content Current as of: 04/13/2020; Food and Drug Administration: Silver Spring, MD, USA, 2020. [Google Scholar]
- Joyner, M.J.; Klassen, S.A.; Senefeld, J.; Johnson, P.W.; Carter, R.E.; Wiggins, C.C.; Shoham, S.; Grossman, B.J.; Henderson, J.P.; Musser, J.M. Evidence favouring the efficacy of convalescent plasma for COVID-19 therapy. medRxiv 2020. [Google Scholar] [CrossRef]
- Valk, S.J.; Piechotta, V.; Chai, K.L.; Doree, C.; Monsef, I.; Wood, E.M.; Lamikanra, A.; Kimber, C.; McQuilten, Z.; So-Osman, C. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A rapid review. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Hu, Y.; Tong, X.; Zheng, S.; Yang, J.; Kong, Y.; Ren, L.; Wei, Q.; Mei, H. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA 2020, 324, 460–470. [Google Scholar] [CrossRef]
- Dong, Y.; Mo, X.; Hu, Y.; Qi, X.; Jiang, F.; Jiang, Z.; Tong, S. Epidemiology of COVID-19 among children in China. Pediatrics 2020, 145, e20200702. [Google Scholar] [CrossRef] [Green Version]
- DeBiasi, R.L.; Song, X.; Delaney, M.; Bell, M.; Smith, K.; Pershad, J.; Ansusinha, E.; Hahn, A.; Hamdy, R.; Harik, N. Severe coronavirus disease-2019 in children and young adults in the Washington, DC, metropolitan region. J. Pediatr. 2020, 223, 199–203.e1. [Google Scholar] [CrossRef]
- Zimmermann, P.; Curtis, N. Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr. Infect. Dis. J. 2020, 39, 355. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef]
- Ye, Z.; Rochwerg, B.; Wang, Y.; Adhikari, N.K.; Murthy, S.; Lamontagne, F.; Fowler, R.A.; Qiu, H.; Wei, L.; Sang, L. Treatment of patients with nonsevere and severe coronavirus disease 2019: An evidence-based guideline. CMAJ 2020, 192, E536–E545. [Google Scholar] [CrossRef]
- Rodriguez, Z.; Shane, A.L.; Verkerke, H.; Lough, C.; Zimmerman, M.G.; Suthar, M.; Wrammert, J.; MacDonald, H.; Wolf, M.; Clarke, S. COVID-19 convalescent plasma clears SARS-CoV-2 refractory to remdesivir in an infant with congenital heart disease. Blood Adv. 2020, 4, 4278. [Google Scholar] [CrossRef]
- Shankar, R.; Radhakrishnan, N.; Dua, S.; Arora, S.; Rana, M.; Sahu, D.K.; Rai, S.; Gupta, D.K. Convalescent plasma to aid in recovery of COVID-19 pneumonia in a child with acute lymphoblastic leukemia. Transfus. Apher. Sci. 2021, 60, 102956. [Google Scholar] [CrossRef]
- Figlerowicz, M.; Mania, A.; Lubarski, K.; Lewandowska, Z.; Służewski, W.; Derwich, K.; Wachowiak, J.; Mazur-Melewska, K. First case of convalescent plasma transfusion in a child with COVID-19-associated severe aplastic anemia. Transfus. Apher. Sci. 2020, 59, 102866. [Google Scholar] [CrossRef]
- Małecki, P.; Faltin, K.; Mania, A.; Mazur-Melewska, K.; Cwalińska, A.; Zawadzka, A.; Bukowska, A.; Lisowska, K.; Graniczna, K.; Figlerowicz, M. Effects and Safety of Convalescent Plasma Administration in a Group of Polish Pediatric Patients with COVID-19: A Case Series. Life 2021, 11, 247. [Google Scholar] [CrossRef]
- Gempeler, A.; Rada, G.; Rojas, L. Convalescent Plasma for the Treatment of Patients with COVID-19: A Living Systematic Review. PROSPERO 2020 CRD42020180703. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020180703 (accessed on 6 May 2021).
- Chai, K.L.; Valk, S.J.; Piechotta, V.; Kimber, C.; Monsef, I.; Doree, C.; Wood, E.M.; Lamikanra, A.A.; Roberts, D.J.; McQuilten, Z. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A living systematic review. Cochrane Database Syst. Rev. 2020. [Google Scholar] [CrossRef]
- Rajendran, K.; Krishnasamy, N.; Rangarajan, J.; Rathinam, J.; Natarajan, M.; Ramachandran, A. Convalescent plasma transfusion for the treatment of COVID-19: Systematic review. J. Med. Virol. 2020, 92, 1475–1483. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, P.; Dai, R.; Lv, X.; Yuan, S.; Zhang, Y.; Guo, Y.; Li, R.; Yu, Q.; Zhu, K. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int. Immunopharmacol. 2021, 91, 107262. [Google Scholar] [CrossRef]
- Devarasetti, P.K.; Rajasekhar, L.; Baisya, R.; Sreejitha, K.; Vardhan, Y.K. A review of COVID-19 convalescent plasma use in COVID-19 with focus on proof of efficacy. Immunol. Res. 2021, 69, 18–25. [Google Scholar] [CrossRef]
- Al-Riyami, A.Z.; Schäfer, R.; van den Berg, K.; Bloch, E.M.; Estcourt, L.J.; Goel, R.; Hindawi, S.; Josephson, C.D.; Land, K.; McQuilten, Z.K. Clinical use of convalescent plasma in the covid-19 pandemic: A transfusion-focussed gap analysis with recommendations for future research priorities. Vox Sang. 2021, 116, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Liu, B.; Li, C.; Zhang, H.; Yu, T.; Qu, J.; Zhou, M.; Chen, L.; Meng, S.; Hu, Y. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA 2020, 117, 9490–9496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, C.; Wang, Z.; Zhao, F.; Yang, Y.; Li, J.; Yuan, J.; Wang, F.; Li, D.; Yang, M.; Xing, L. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020, 323, 1582–1589. [Google Scholar] [CrossRef]
- MATLAB Version 9.8.0 (R2020a); The MathWorks Inc.: Natick, MA, USA, 2020.
- Martinez, W.L.; Martinez, A.R.; Solka, J. Exploratory Data Analysis with MATLAB; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Worsley, K.J.; Taylor, J.; Carbonell, F.; Chung, M.; Duerden, E.; Bernhardt, B.; Lyttelton, O.; Boucher, M.; Evans, A. A Matlab toolbox for the statistical analysis of univariate and multivariate surface and volumetric data using linear mixed effects models and random field theory. NeuroImage 2009, 47, S102. [Google Scholar] [CrossRef]
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biom. Bull. 1946, 2, 110–114. [Google Scholar] [CrossRef]
- Agarwal, A.; Mukherjee, A.; Kumar, G.; Chatterjee, P.; Bhatnagar, T.; Malhotra, P. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020, 371, m3939. [Google Scholar] [CrossRef]
- Avendano-Sola, C.; Ramos-Martinez, A.; Munez-Rubio, E.; Ruiz-Antoran, B.; de Molina, R.M.; Torres, F.; Fernandez-Cruz, A.; Callejas-Diaz, A.; Calderon, J.; Payares-Herrera, C. Convalescent Plasma for COVID-19: A multicenter, randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Rasheed, A.M.; Fatak, D.F.; Hashim, H.A.; Maulood, M.F.; Kabah, K.K.; Abdulamir, A.S. The therapeutic potential of convalescent plasma therapy on treating critically-ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. medRxiv 2020. [Google Scholar] [CrossRef]
- Gharbharan, A.; Jordans, C.C.; GeurtsvanKessel, C.; den Hollander, J.G.; Karim, F.; Mollema, F.P.; Stalenhoef, J.E.; Dofferhoff, A.; Ludwig, I.; Koster, A. Convalescent Plasma for COVID-19. A randomized clinical trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Perotti, C.; Baldanti, F.; Bruno, R.; Del Fante, C.; Seminari, E.; Casari, S.; Percivalle, E.; Glingani, C.; Musella, V.; Belliato, M. Mortality reduction in 46 patients with severe COVID-19 treated with hyperimmune plasma. A proof-of-concept, single-arm, multicenter trial. Haematologica 2020, 105, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Omrani, A.S.; Zaqout, A.; Baiou, A.; Daghfal, J.; Elkum, N.; Alattar, R.A.; Bakdach, D.; Abusriwil, H.; Mostafa, A.M.; Alhariri, B. Convalescent plasma for the treatment of patients with severe coronavirus disease 2019: A preliminary report. J. Med. Virol. 2021, 93, 1678–1686. [Google Scholar] [CrossRef]
- Hegerova, L.; Gooley, T.A.; Sweerus, K.A.; Maree, C.; Bailey, N.; Bailey, M.; Dunleavy, V.; Patel, K.; Alcorn, K.; Haley, R. Use of convalescent plasma in hospitalized patients with COVID-19: Case series. Blood J. Am. Soc. Hematol. 2020, 136, 759–762. [Google Scholar] [CrossRef]
- Zeng, Q.-L.; Yu, Z.-J.; Gou, J.-J.; Li, G.-M.; Ma, S.-H.; Zhang, G.-F.; Xu, J.-H.; Lin, W.-B.; Cui, G.-L.; Zhang, M.-M. Effect of convalescent plasma therapy on viral shedding and survival in patients with coronavirus disease 2019. J. Infect. Dis. 2020, 222, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Donato, M.; Park, S.; Baker, M.; Korngold, R.; Morawski, A.; Geng, X.; Tan, M.T.; Rowley, S.; Chow, K.; Brown, E. Clinical and laboratory evaluation of patients with SARS-CoV-2 pneumonia treated with high-titer convalescent plasma: A prospective study. medRxiv 2020. [Google Scholar] [CrossRef]
- Salazar, M.R.; Gonzalez, S.E.; Regairaz, L.; Ferrando, N.S.; Gonzalez, V.; Carrera, P.M.; Muñoz, L.; Pesci, S.A.; Vidal, J.M.; Kreplak, N. Effect of convalescent plasma on mortality in patients with COVID-19 pneumonia. medRxiv 2020. [Google Scholar] [CrossRef]
- Salazar, E.; Christensen, P.A.; Graviss, E.A.; Ngyuen, D.T.; Castillo, B.; Chen, J.; Lopez, B.V.; Eager, T.; Yi, X.; Zhao, P. Early transfusion of a large cohort of COVID-19 patients with high titer anti-SARS-CoV-2 spike protein IgG convalescent plasma confirms a signal of significantly decreased mortality. medRxiv 2020. [Google Scholar] [CrossRef]
- Liu, S.T.; Lin, H.-M.; Baine, I.; Wajnberg, A.; Gumprecht, J.P.; Rahman, F.; Rodriguez, D.; Tandon, P.; Bassily-Marcus, A.; Bander, J. Convalescent plasma treatment of severe COVID-19: A propensity score–matched control study. Nat. Med. 2020, 26, 1708–1713. [Google Scholar] [CrossRef]
- Xia, X.; Li, K.; Wu, L.; Wang, Z.; Zhu, M.; Huang, B.; Li, J.; Wang, Z.; Wu, W.; Wu, M. Improved clinical symptoms and mortality on severe/critical COVID-19 patients utilizing convalescent plasma transfusion. Blood 2020, 136, 755–759. [Google Scholar] [CrossRef]
- Abolghasemi, H.; Eshghi, P.; Cheraghali, A.M.; Fooladi, A.A.I.; Moghaddam, F.B.; Imanizadeh, S.; Maleki, M.M.; Ranjkesh, M.; Rezapour, M.; Bahramifar, A. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus. Apher. Sci. 2020, 59, 102875. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.; Shehadeh, F.; Mylona, E.; Rich, J.; Neill, M.; Touzard-Romo, F.; Geffert, S.; Larkin, J.; Bailey, J.A.; Lu, S. Convalescent plasma for patients with severe COVID-19: A matched cohort study. medRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Altuntas, F.; Ata, N.; Yigenoglu, T.N.; Bascı, S.; Dal, M.S.; Korkmaz, S.; Namdaroglu, S.; Basturk, A.; Hacıbekiroglu, T.; Dogu, M.H. Convalescent plasma therapy in patients with COVID-19. Transfus. Apher. Sci. 2020, 60, 102955. [Google Scholar] [CrossRef]
- Joyner, M.J.; Senefeld, J.W.; Klassen, S.A.; Mills, J.R.; Johnson, P.W.; Theel, E.S.; Wiggins, C.C.; Bruno, K.A.; Klompas, A.M.; Lesser, E.R. Effect of convalescent plasma on mortality among hospitalized patients with COVID-19: Initial three-month experience. medRxiv 2020. [Google Scholar] [CrossRef]
- Chen, S.; Lu, C.; Li, P.; Wang, L.; Wang, H.; Yang, Q.; Chen, L.; Li, J.; Ma, H.; Sang, Q. Effectiveness of Convalescent Plasma for Treatment of COVID-19 Patients. medRxiv 2020. [Google Scholar] [CrossRef]
- Martinez-Resendez, M.F.; Castilleja-Leal, F.; Torres-Quintanilla, A.; Rojas-Martinez, A.; Garcia-Rivas, G.; Ortiz-Lopez, R.; Trevino, V.; Lara-Medrano, R.; Villanueva-Lozano, H.; Ramirez-Elizondo, T. Initial experience in Mexico with convalescent plasma in COVID-19 patients with severe respiratory failure, a retrospective case series. medRxiv 2020. [Google Scholar] [CrossRef]
- Jin, C.; Gu, J.; Yuan, Y.; Long, Q.; Zhang, Q.; Zhou, H.; Wu, W.; Zhang, W. Treatment of 6 COVID-19 patients with convalescent plasma. medRxiv 2020. [Google Scholar] [CrossRef]
- Jin, H.; Reed, J.C.; Liu, S.T.; Ho, H.-E.; Lopes, J.P.; Ramsey, N.B.; Waqar, O.; Rahman, F.; Aberg, J.A.; Bouvier, N.M. Three patients with X-linked agammaglobulinemia hospitalized for COVID-19 improved with convalescent plasma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3594–3596.e3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, S.; Tan, T.; Huang, W.; Dong, Y.; Chen, L.; Chen, Q.; Zhang, L.; Zhong, Q.; Zhang, X. Treatment with convalescent plasma for critically ill patients with severe acute respiratory syndrome coronavirus 2 infection. Chest 2020, 158, e9–e13. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Sohn, Y.; Lee, S.H.; Cho, Y.; Hyun, J.H.; Baek, Y.J.; Jeong, S.J.; Kim, J.H.; Ku, N.S.; Yeom, J.-S. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J. Korean Med. Sci. 2020, 35, e149. [Google Scholar] [CrossRef] [Green Version]
- Bobek, I.; Gopcsa, L.; Réti, M.; Bekő, G.; Hancz, L.; Lakatos, B.; Molnár, E.; Nagy, S.; Reményi, P.; Sebestyén, G. Successful administration of convalescent plasma in critically ill COVID-19 patients in Hungary: The first two cases. Orv. Hetil. 2020, 161, 1111–1121. [Google Scholar] [CrossRef]
- Im, J.H.; Nahm, C.H.; Baek, J.H.; Kwon, H.Y.; Lee, J.-S. Convalescent plasma therapy in coronavirus disease 2019: A case report and suggestions to overcome obstacles. J. Korean Med. Sci. 2020, 35, e239. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Gong, T.; Huang, X.; Sun, X.; Luo, H.; Wang, W.; Luo, J.; Luo, B.; Chen, Y.; Wang, X. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely ill COVID-19 patients: A clinical case report. Stem Cell Res. Ther. 2020, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.-M.; Lin, B.; Chen, C.; Liu, L.-G.; Xue, Y. Non-optimal effectiveness of convalescent plasma transfusion and hydroxychloroquine in treating COVID-19: A case report. Virol. J. 2020, 17, 80. [Google Scholar] [CrossRef]
- Anderson, J.; Schauer, J.; Bryant, S.; Graves, C.R. The use of convalescent plasma therapy and remdesivir in the successful management of a critically ill obstetric patient with novel coronavirus 2019 infection: A case report. Case Rep. Women’s Health 2020, 27, e00221. [Google Scholar] [CrossRef]
- Bao, Y.; Lin, S.Y.; Cheng, Z.H.; Xia, J.; Sun, Y.P.; Zhao, Q.; Liu, G.J. Clinical features of COVID-19 in a young man with massive cerebral hemorrhage—Case report. SN Compr. Clin. Med. 2020, 2, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Çınar, O.E.; Sayınalp, B.; Karakulak, E.A.; Karataş, A.A.; Velet, M.; İnkaya, A.Ç.; Ortaç, N.E.E.; Öcal, S.; Aksu, S.; Haznedaroğlu, İ.C. Convalescent (immune) plasma treatment in a myelodysplastic COVID-19 patient with disseminated tuberculosis. Transfus. Apher. Sci. 2020, 59, 102821. [Google Scholar] [CrossRef]
- Kong, Y.; Cai, C.; Ling, L.; Zeng, L.; Wu, M.; Wu, Y.; Zhang, W.; Liu, Z. Successful treatment of a centenarian with coronavirus disease 2019 (COVID-19) using convalescent plasma. Transfus. Apher. Sci. 2020, 59, 102820. [Google Scholar] [CrossRef] [PubMed]
- Hueso, T.; Pouderoux, C.; Péré, H.; Beaumont, A.-L.; Raillon, L.-A.; Ader, F.; Chatenoud, L.; Eshagh, D.; Szwebel, T.-A.; Martinot, M. Convalescent plasma therapy for B-cell–depleted patients with protracted COVID-19. Blood J. Am. Soc. Hematol. 2020, 136, 2290–2295. [Google Scholar]
- Hartman, W.R.; Hess, A.S.; Connor, J.P. Hospitalized COVID-19 patients treated with Convalescent Plasma in a mid-size city in the midwest. Transl. Med. Commun. 2020, 5, 17. [Google Scholar] [CrossRef]
- Jamous, F.; Meyer, N.; Buus, D.; Ateeli, H.; Taggart, K.; Devasahayam, J.; Hanson, T.; Alzoubaidi, M.; Nazir, J. Critical Illness Due to Covid-19: A Description of the Surge in a Single Center in Sioux Falls. South Dak. Med. 2020, 73, 312–317. [Google Scholar]
- Olivares-Gazca, J.C.; Priesca-Marín, J.M.; Ojeda-Laguna, M.; Garces-Eisele, J.; Soto-Olvera, S.; Palacios-Alonso, A.; Izquierdo-Vega, J.; Chacon-Cano, R.; Arizpe-Bravo, D.; López-Trujillo, M.A. Infusion of convalescent plasma is associated with clinical improvement in critically ill patients with COVID-19: A pilot study. Rev. Investig. Clin. 2020, 72, 159–164. [Google Scholar] [CrossRef]
- Tremblay, D.; Seah, C.; Schneider, T.; Bhalla, S.; Feld, J.; Naymagon, L.; Wang, B.; Patel, V.; Jun, T.; Jandl, T. Convalescent Plasma for the Treatment of Severe COVID-19 Infection in Cancer Patients. Cancer Med. 2020, 9, 8571–8578. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Fu, D.; Ren, Y.; Wang, F.; Wang, D.; Zhang, F.; Xia, X.; Lv, T. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J. Med. Virol. 2020, 92, 1890–1901. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.P.; Staley, E.M.; Raju, D.; Marin, M.J.; Kim, C.H. Laboratory Assay Evaluation Demystified: A Review of Key Factors Influencing Interpretation of Test Results Using Different Assays for SARS-CoV-2 Infection Diagnosis. Lab. Med. 2020, 51, e66–e70. [Google Scholar] [CrossRef]
- Føns, S.; Krogfelt, K.A. How can we interpret SARS-CoV-2 antibody test results? Pathog. Dis. 2021, 79, ftaa069. [Google Scholar] [CrossRef]
- Brochot, E.; Demey, B.; Handala, L.; François, C.; Duverlie, G.; Castelain, S. Comparison of different serological assays for SARS-CoV-2 in real life. J. Clin. Virol. 2020, 130, 104569. [Google Scholar] [CrossRef]
- Menis, M.; Sridhar, G.; Selvam, N.; Ovanesov, M.V.; Divan, H.A.; Liang, Y.; Scott, D.; Golding, B.; Forshee, R.; Ball, R. Hyperimmune globulins and same-day thrombotic adverse events as recorded in a large healthcare database during 2008–2011. Am. J. Hematol. 2013, 88, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Dzik, S. COVID-19 convalescent plasma: Now is the time for better science. Transfus. Med. Rev. 2020, 34, 141–144. [Google Scholar] [CrossRef]
- Takada, A.; Feldmann, H.; Ksiazek, T.G.; Kawaoka, Y. Antibody-dependent enhancement of Ebola virus infection. J. Virol. 2003, 77, 7539–7544. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K. Donor complications and donor care. ISBT Sci. Ser. 2009, 4, 411–417. [Google Scholar] [CrossRef]
- Davey, R.T., Jr.; Fernández-Cruz, E.; Markowitz, N.; Pett, S.; Babiker, A.G.; Wentworth, D.; Khurana, S.; Engen, N.; Gordin, F.; Jain, M.K. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): A double-blind, randomised, placebo-controlled trial. Lancet Respir. Med. 2019, 7, 951–963. [Google Scholar] [CrossRef] [Green Version]
- Hung, I.F.; To, K.K.; Lee, C.-K.; Lee, K.-L.; Yan, W.-W.; Chan, K.; Chan, W.-M.; Ngai, C.-W.; Law, K.-I.; Chow, F.-L. Hyperimmune IV immunoglobulin treatment: A multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A (H1N1) infection. Chest 2013, 144, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, W.J.; Gruber, W.C.; Groothuis, J.R.; Simoes, E.A.; Rosas, A.J.; Lepow, M.; Hemming, V.; Group, R.-I.S. Respiratory syncytial virus immune globulin treatment of RSV lower respiratory tract infection in previously healthy children. Pediatrics 1997, 100, 937–942. [Google Scholar] [CrossRef] [PubMed]
Study, Country | CPT (and Control) Patient Count | CPT and (Control) Mortality (%) | CPT and (Control) Cohort Age Group | Antibody Threshold a | Plasma Volume (mL) | Follow-Up Days |
---|---|---|---|---|---|---|
Randomized Clinical Trials (RCTs) | ||||||
[49], Spain | 38; (43) | 0; (9) | 61; (60) | - | 250–300 | 29 |
[51], Netherlands | 43; (43) | 14; (26) | 63; (61) | NA(t) ≥ 1:80 | ≥300 | 30 |
[26], China | 52; (51) | 16; (24) | 70; (69) | NA(t) ≥ 1:640 | 200 | 28 |
[50], Iraq | 21; (28) | 5; (29) | 56; (48) | EIgG(i) > 1.25 | ≥200 | 30 |
Matched-Control Studies (MCSs) | ||||||
[61], Iran | 115; (74) | 15; (24) | 54; (57) | EIgG(i) > 1.1 | ≥500 | 30 |
[63], Turkey | 888; (888) | 25; (28) | 60; (61) | - | 200–600 | 17 |
[56], USA | 47; (1340) | 23; (42) | 59; (-) | NA(t) ≥ 1:500 | ≥200 | 30 |
[42], China | 10; (10) | 0; (30) | 53; (53) | NA(t) ≥ 1:640 | 200 | - |
[54], USA | 20; (20) | 10; (30) | 60; (-) | - | ≥200 | 14 |
[64], USA | 35,322; (-) b | [8.3–26.7] c; (-) | 60; (-) | S/Co [4.62–18.45] | 200 | 7 |
[59], USA | 39; (156) | 13; (24) | 55; (54) | EIgG(t) ≥ 1:320 | 500 | 14 |
[53], Qatar | 40; (40) | 3; (13) | 48; (56) | - | 400 | 28 |
[52], Italy | 46; (23) | 7; (30) | 63; (-) | NA(t) ≥ 1:80 | ≥250 | 7 |
[62], USA | 64; (177) | 13; (16) | 61; (61) | - | ≥200 | 28 |
[57], Argentina | 868; (2298) | 25; (44) | 56; (64) | EIgG(i) > 1350 | 200–250 | 28 |
[58], USA | 321; (582) | 6; (12) | 53; (60) | EIgG(i) ≥ 1350 | ≥200 | 60 |
[60], China | 138; (1430) | 2; (4) | 65; (63) | - | ≥200 | 14 |
[55], China | 6; (15) | 83; (93) d | 62; (73) | - | ≥200 | - |
Case Reports (CRs) | ||||||
[70], South Korea | 2 | 0 | 69 | - | 250 | 15 |
[75], USA | 1 | 0 | 35 | - | 400 | 10 |
[76], China | 1 | 0 | 38 | - | 300 | 31 |
[71], Hungary | 2 | 0 | - | - | 600 | 14 |
[65], China | 16 | 0 | 65 | TA [10.9–115 AU/mL] | 200–1200 | 8 |
[77], Turkey | 1 | 0 | 55 | EIgG(i) > 1.1 | 350 | 11 |
[80], USA | 31 | 13 | - | - | ≥200 | 7 |
[79], France | 17 | 6 | 58 | NA(t) ≥ 1:40 | 800 | 7 |
[72], South Korea | 1 | 0 | 68 | - | 500 | 23 |
[81], USA | 29 | 17 | 58 | - | 200 | 28 |
[67], China | 6 | 0 | 61 | NA(t) ≥ 1:40 | 200 | 60 |
[68], USA | 3 | 0 | 24 | - | 400 | 31 |
[78], China | 1 | 0 | 100 | NA(t) ≥ 1:640 | 300 | 13 |
[66], Mexico | 8 | 0 | 57 | EIgG(t) > 1:100 | 500 | 23 |
[82], Mexico | 10 | 20 | 52 | - | ≥200 | 8 |
[73], China | 1 | 0 | 66 | EIgG(t) > 1:160 | 400 | 26 |
[43], China | 5 | 0 | 65 | NA(t) ≥ 1:40 | 400 | 47 |
[83], USA | 24 | 42 | 69 | EIgG(t) ≥ 1:320 | 500 | 9 |
[74], China | 1 | 0 | 65 | - | 800 | 11 |
[84], China | 6 | 0 | 58 | - | ≥200 | 25 |
[69], China | 4 | 0 | 57 | - | ≥200 | 38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanj, S.; Al-Omari, B. Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses 2021, 13, 849. https://doi.org/10.3390/v13050849
Kanj S, Al-Omari B. Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses. 2021; 13(5):849. https://doi.org/10.3390/v13050849
Chicago/Turabian StyleKanj, Saly, and Basem Al-Omari. 2021. "Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective" Viruses 13, no. 5: 849. https://doi.org/10.3390/v13050849
APA StyleKanj, S., & Al-Omari, B. (2021). Convalescent Plasma Transfusion for the Treatment of COVID-19 in Adults: A Global Perspective. Viruses, 13(5), 849. https://doi.org/10.3390/v13050849