Animal Models for Influenza Research: Strengths and Weaknesses
Abstract
:1. Introduction
2. Mouse Model
3. Ferret Model
Research Area | Research Discovery | Year | Reference |
---|---|---|---|
Pathogenesis and transmission | The importance of pre-existing heterosubtypic immunity to airborne transmission of influenza viruses | 2021 | [73] |
Effect of posttranslational modifications such as SUMOylation on the adaptation, pathogenesis, and transmission of IAVs | 2021 | [74] | |
The wild birds-derived H9N2 virus exhibits efficient transmissibility in mammalian models via respiratory droplets | 2021 | [75] | |
The matrix gene of the pandemic H1N1 virus contributes to the pathogenesis and transmission of the swine influenza virus | 2021 | [76] | |
The role of HA pH of fusion on the transmissibility of a cell culture-adapted H3N2 virus | 2021 | [77] | |
H3N2 virus isolated from swine replicates in ferrets and transmits from swine to ferret | 2020 | [78] | |
Effects of influenza haemagglutinin stability on influenza virus transmission | 2020 | [67,68,79] | |
R195K mutation in the PA-X protein increases the virulence and transmission of IAVs | 2020 | [66] | |
Influenza A viruses are transmissible via the air from the nasal respiratory epithelium | 2020 | [80] | |
Vaccine and antiviral treatments | H2HA vaccine elicits cross-reactive antibodies in influenza virus preimmune ferret models | 2021 | [81] |
H7N9 inactivated split virion vaccines adjuvanted with AS03 induces cross-reactive antibody responses and provided protection against H7N9 virus | 2021 | [82] | |
Inactivated pandemic 2009 H1N1 IAV vaccine induces different protective efficacy following homologous challenge | 2021 | [83] | |
Chimeric HA–based live attenuated vaccine provides long-term immunity against IAV | 2021 | [84] | |
Low viral fitness leading to interstrain competition is the root cause of reduced H1N1 live-attenuated vaccine effectiveness | 2021 | [85] | |
H7N9 split influenza vaccine adjuvanted with SWE adjuvant enhances antibody response and protection against severe pneumonia | 2020 | [86] | |
MDCK-based H5 and H7 vaccines are comparable to the egg-based live attenuated vaccine in immunogenicity | 2020 | [87] | |
Vaccination of adeno-associated virus-vectored vaccine reduces influenza disease severity | 2020 | [88] | |
Seasonal H1N1 influenza vaccine induces systemic and respiratory T cell response conferring protection against H2N2 virus | 2020 | [89] | |
DNA vaccine protects against the homologous H1N1 virus challenge | 2020 | [90] | |
The combination of nanoemulsion and CpG enhances the effective immune response against IAV | 2020 | [91] | |
Treatment of Bolozavir reduces onward transmission of pandemic H1N1 virus-infected ferrets | 2020 | [92] | |
The risk of transmission of Baloxavir drug-resistance viruses from treated ferrets | 2020 | [93] | |
Influenza clinical drug candidate EIDD-2801 reduces viral shedding and increased humoral responses to IAVs | 2020 | [94] | |
The treatment of human plasma-derived IgG product (FLU-IGIV) reduces viral load in lungs of pandemic H1N1-infected ferrets | 2020 | [95] |
4. Guinea Pig Model
5. Hamster Model
6. Chicken Model
7. Swine Model
8. Feline and Canine Models
9. Non-Human Primate Model
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Margine, I.; Krammer, F. Animal models for influenza viruses: Implications for universal vaccine development. Pathogens 2014, 3, 845–874. [Google Scholar] [CrossRef] [Green Version]
- Asha, K.; Kumar, B. Emerging Influenza D Virus Threat: What We Know so Far! J. Clin. Med. 2019, 8, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glezen, W.P. Emerging infections: Pandemic influenza. Epidemiol. Rev. 1996, 18, 64–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawood, F.S.; Iuliano, A.D.; Reed, C.; Meltzer, M.I.; Shay, D.K.; Cheng, P.Y.; Bandaranayake, D.; Breiman, R.F.; Brooks, W.A.; Buchy, P.; et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study. Lancet. Infect. Dis. 2012, 12, 687–695. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Influenza (Seasonal). Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 20 February 2021).
- Yang, Y.T.; Evans, C.A. Hypothermia in mice due to influenza virus infection. Proc. Soc. Exp. Biol. Med. 1961, 108, 776–780. [Google Scholar] [CrossRef] [Green Version]
- Barnard, D.L. Animal models for the study of influenza pathogenesis and therapy. Antivir. Res. 2009, 82, A110–A122. [Google Scholar] [CrossRef]
- Srivastava, B.; Błażejewska, P.; Heßmann, M.; Bruder, D.; Geffers, R.; Mauel, S.; Gruber, A.D.; Schughart, K. Host genetic background strongly influences the response to influenza a virus infections. PLoS ONE 2009, 4, e4857. [Google Scholar] [CrossRef] [Green Version]
- Pica, N.; Iyer, A.; Ramos, I.; Bouvier, N.M.; Fernandez-Sesma, A.; García-Sastre, A.; Lowen, A.C.; Palese, P.; Steel, J. The DBA. 2 mouse is susceptible to disease following infection with a broad, but limited, range of influenza A and B viruses. J. Virol. 2011, 85, 12825–12829. [Google Scholar] [CrossRef] [Green Version]
- Lambertz, R.L.O.; Gerhauser, I.; Nehlmeier, I.; Gärtner, S.; Winkler, M.; Leist, S.R.; Kollmus, H.; Pöhlmann, S.; Schughart, K. H2 influenza A virus is not pathogenic in Tmprss2 knock-out mice. Virol. J. 2020, 17, 1–7. [Google Scholar] [CrossRef]
- Sakai, K.; Sekizuka, T.; Ami, Y.; Nakajima, N.; Kitazawa, M.; Sato, Y.; Nakajima, K.; Anraku, M.; Kubota, T.; Komase, K. A mutant H3N2 influenza virus uses an alternative activation mechanism in TMPRSS2 knockout mice by loss of an oligosaccharide in the hemagglutinin stalk region. J. Virol. 2015, 89, 5154–5158. [Google Scholar] [CrossRef] [Green Version]
- Lambertz, R.L.; Gerhauser, I.; Nehlmeier, I.; Leist, S.R.; Kollmus, H.; Pöhlmann, S.; Schughart, K. Tmprss2 knock-out mice are resistant to H10 influenza A virus pathogenesis. J. Gen. Virol. 2019, 100, 1073–1078. [Google Scholar] [CrossRef]
- Hatesuer, B.; Bertram, S.; Mehnert, N.; Bahgat, M.M.; Nelson, P.S.; Pöhlman, S.; Schughart, K. Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice. PLoS Pathog. 2013, 9, e1003774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangavel, R.R.; Bouvier, N.M. Animal models for influenza virus pathogenesis, transmission, and immunology. J. Immunol. Methods 2014, 410, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; García-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 9988–9992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, J.L. Experimental transmission of influenza virus infection in mice. IV. Relationship of transmissibility of different strains of virus and recovery of airborne virus in the environment of infector mice. J. Exp. Med. 1967, 125, 479–488. [Google Scholar] [CrossRef]
- Schulman, J.L. Experimental transmission of influenza virus infection in mice. 3. Differing effects of immunity induced by infection and by inactivated influenza virus vaccine on transmission of infection. J. Exp. Med. 1967, 125, 467–478. [Google Scholar] [CrossRef]
- Schulman, J.L.; Kilbourne, E.D. Experimental Transmission of Influenza Virus Infection in Mice. II. Some Factors Affecting the Incidence of Transmitted Infection. J. Exp. Med. 1963, 118, 267–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, J.L.; Kilbourne, E.D. Experimental Transmission of Influenza Virus Infection in Mice. I. The Period of Transmissibility. J. Exp. Med. 1963, 118, 257–266. [Google Scholar] [CrossRef]
- Edenborough, K.M.; Gilbertson, B.P.; Brown, L.E. A mouse model for the study of contact-dependent transmission of influenza A virus and the factors that govern transmissibility. J. Virol. 2012, 86, 12544–12551. [Google Scholar] [CrossRef] [Green Version]
- Ortigoza, M.B.; Blaser, S.B.; Zafar, M.A.; Hammond, A.J.; Weiser, J.N. An infant mouse model of influenza virus transmission demonstrates the role of virus-specific shedding, humoral immunity, and sialidase expression by colonizing Streptococcus pneumoniae. MBio 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, M.; Gunasekera, D.; Pratt, K.P.; Qiu, Q.; Casares, S.; Brumeanu, T.-D. The humanized DRAGA mouse (HLA-A2. HLA-DR4. RAG1 KO. IL-2R gc KO. NOD) establishes inducible and transmissible models for influenza type A infections. Hum. Vaccines Immunother. 2020, 16, 2222–2237. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Shim, S.-M.; Nguyen, T.Q.; Kim, E.-H.; Kim, K.; Lim, Y.T.; Sung, M.-H.; Webby, R.; Poo, H. Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Sci. Rep. 2017, 7, 44839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, C.; Nguyen, Q.T.; Kim, J.; Kim, T.-H.; Poo, H. Influenza chimeric protein (3M2e-3HA2-NP) adjuvanted with PGA/alum conferred cross-protection against heterologous influenza A viruses. J. Microbiol. Biotechnol. 2021, 31, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Jayasekera, J.P.; Moseman, E.A.; Carroll, M.C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 2007, 81, 3487–3494. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Haist, V.; Baumgärtner, W.; Schughart, K. Sustained viral load and late death in Rag2-/-mice after influenza A virus infection. Virol. J. 2010, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Palladino, G.; Mozdzanowska, K.; Washko, G.; Gerhard, W. Virus-neutralizing antibodies of immunoglobulin G (IgG) but not of IgM or IgA isotypes can cure influenza virus pneumonia in SCID mice. J. Virol. 1995, 69, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.L.; Suzuki, Y.; Nakano, H.; Ramsburg, E.; Gunn, M.D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 2008, 180, 2562–2572. [Google Scholar] [CrossRef] [Green Version]
- Graham, M.B.; Braciale, T.J. Resistance to and recovery from lethal influenza virus infection in B lymphocyte–deficient mice. J. Exp. Med. 1997, 186, 2063–2068. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.H.; van Ginkel, F.W.; Vu, H.L.; McGhee, J.R.; Mestecky, J. Heterosubtypic immunity to influenza A virus infection requires B cells but not CD8+ cytotoxic T lymphocytes. J. Infect. Dis. 2001, 183, 368–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.O.; Rangel-Moreno, J.; Moyron-Quiroz, J.E.; Hartson, L.; Makris, M.; Sprague, F.; Lund, F.E.; Randall, T.D. CD4 T cell-independent antibody response promotes resolution of primary influenza infection and helps to prevent reinfection. J. Immunol. 2005, 175, 5827–5838. [Google Scholar] [CrossRef]
- Mozdzanowska, K.; Maiese, K.; Gerhard, W. Th cell-deficient mice control influenza virus infection more effectively than Th-and B cell-deficient mice: Evidence for a Th-independent contribution by B cells to virus clearance. J. Immunol. 2000, 164, 2635–2643. [Google Scholar] [CrossRef] [Green Version]
- Eichelberger, M.; Allan, W.; Zijlstra, M.; Jaenisch, R.; Doherty, P. Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J. Exp. Med. 1991, 174, 875–880. [Google Scholar] [CrossRef]
- Allan, W.; Tabi, Z.; Cleary, A.; Doherty, P.C. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J. Immunol. 1990, 144, 3980–3986. [Google Scholar]
- Arimori, Y.; Nakamura, R.; Yamada, H.; Shibata, K.; Maeda, N.; Kase, T.; Yoshikai, Y. Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antivir. Res. 2013, 99, 230–237. [Google Scholar] [CrossRef]
- Davidson, S.; Crotta, S.; McCabe, T.M.; Wack, A. Pathogenic potential of interferon αβ in acute influenza infection. Nat. Commun. 2014, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanlaere, I.; Vanderrijst, A.; Guénet, J.-L.; De Filette, M.; Libert, C. Mx1 causes resistance against influenza A viruses in the Mus spretus-derived inbred mouse strain SPRET/Ei. Cytokine 2008, 42, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-L.; Hatesuer, B.; Bergmann, S.; Nedelko, T.; Schughart, K. Protection from severe influenza virus infections in mice carrying the Mx1 influenza virus resistance gene strongly depends on genetic background. J. Virol. 2015, 89, 9998–10009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendoza, M.; Ballesteros, A.; Qiu, Q.; Pow Sang, L.; Shashikumar, S.; Casares, S.; Brumeanu, T.-D. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD). Hum. Vaccines Immunother. 2018, 14, 345–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.; Zheng, J.; Liu, Y.; Sia, S.F.; Liu, M.; Qin, G.; Ng, I.H.; Xiang, Z.; Lam, K.-T.; Peiris, J.M. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a γδ T cell population in humanized mice. J. Exp. Med. 2011, 208, 1511–1522. [Google Scholar] [CrossRef]
- Miles, J.J.; Tan, M.P.; Dolton, G.; Edwards, E.S.; Galloway, S.A.; Laugel, B.; Clement, M.; Makinde, J.; Ladell, K.; Matthews, K.K. Peptide mimic for influenza vaccination using nonnatural combinatorial chemistry. J. Clin. Investig. 2018, 128, 1569–1580. [Google Scholar] [CrossRef]
- Yu, C.I.; Gallegos, M.; Marches, F.; Zurawski, G.; Ramilo, O.; García-Sastre, A.; Banchereau, J.; Palucka, A.K. Broad influenza-specific CD8+ T-cell responses in humanized mice vaccinated with influenza virus vaccines. Blood J. Am. Soc. Hematol. 2008, 112, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Nithichanon, A.; Nobusawa, E.; Moise, L.; Martin, W.D.; Yamamoto, N.; Terahara, K.; Hagiwara, H.; Odagiri, T.; Tashiro, M. A humanized mouse model identifies key amino acids for low immunogenicity of H7N9 vaccines. Sci. Rep. 2017, 7, 1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, E.; Momose, H.; Hiradate, Y.; Furuhata, K.; Mizukami, T.; Hamaguchi, I. Development of a preclinical humanized mouse model to evaluate acute toxicity of an influenza vaccine. Oncotarget 2018, 9, 25751. [Google Scholar] [CrossRef] [PubMed]
- Kenney, A.D.; McMichael, T.M.; Imas, A.; Chesarino, N.M.; Zhang, L.; Dorn, L.E.; Wu, Q.; Alfaour, O.; Amari, F.; Chen, M. IFITM3 protects the heart during influenza virus infection. Proc. Natl. Acad. Sci. USA 2019, 116, 18607–18612. [Google Scholar] [CrossRef] [Green Version]
- Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef] [Green Version]
- Maines, T.R.; Jayaraman, A.; Belser, J.A.; Wadford, D.A.; Pappas, C.; Zeng, H.; Gustin, K.M.; Pearce, M.B.; Viswanathan, K.; Shriver, Z.H. Transmission and pathogenesis of swine-origin 2009 A (H1N1) influenza viruses in ferrets and mice. Science 2009, 325, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Tumpey, T.M.; Morken, T.; Zaki, S.R.; Cox, N.J.; Katz, J.M. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 1999, 73, 5903–5911. [Google Scholar] [CrossRef] [Green Version]
- Munster, V.J.; de Wit, E.; van Riel, D.; Beyer, W.E.; Rimmelzwaan, G.F.; Osterhaus, A.D.; Kuiken, T.; Fouchier, R.A. The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J. Infect. Dis. 2007, 196, 258–265. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Bao, L.; Deng, W.; Zhu, H.; Chen, T.; Lv, Q.; Li, F.; Yuan, J.; Xiang, Z.; Gao, K. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus. Virol. J. 2013, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, N.M.; Lowen, A.C. Animal models for influenza virus pathogenesis and transmission. Viruses 2010, 2, 1530–1563. [Google Scholar]
- Rodriguez, L.; Nogales, A.; Martínez-Sobrido, L. Influenza A virus studies in a mouse model of infection. J. Vis. Exp. 2017, 127, e55898. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P. A virus obtained from influenza patients. Lancet 1933, 222, 66–68. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Alföldi, J.; Gori, K.; Eisfeld, A.J.; Tyler, S.R.; Tisoncik-Go, J.; Brawand, D.; Law, G.L.; Skunca, N.; Hatta, M. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease. Nat. Biotechnol. 2014, 32, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Pulit-Penaloza, J.A.; Maines, T.R. Ferreting out influenza virus pathogenicity and transmissibility: Past and future risk assessments in the ferret model. Cold Spring Harb. Perspect. Med. 2020, 10, a038323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayaraman, A.; Chandrasekaran, A.; Viswanathan, K.; Raman, R.; Fox, J.G.; Sasisekharan, R. Decoding the distribution of glycan receptors for human-adapted influenza A viruses in ferret respiratory tract. PLoS ONE 2012, 7, e27517. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Eckert, A.M.; Tumpey, T.M.; Maines, T.R. Complexities in ferret influenza virus pathogenesis and transmission models. Microbiol. Mol. Biol. Rev. 2016, 80, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, J.A.; DeStefano, J. The ferret: An animal model to study influenza virus. Lab. Anim. 2004, 33, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Barclay, W.; Barr, I.; Fouchier, R.A.; Matsuyama, R.; Nishiura, H.; Peiris, M.; Russell, C.J.; Subbarao, K.; Zhu, H. Ferrets as models for influenza virus transmission studies and pandemic risk assessments. Emerg. Infect. Dis. 2018, 24, 965. [Google Scholar] [CrossRef] [Green Version]
- Enkirch, T.; Von Messling, V. Ferret models of viral pathogenesis. Virology 2015, 479, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Paules, C.I.; Marston, H.D.; Eisinger, R.W.; Baltimore, D.; Fauci, A.S. The pathway to a universal influenza vaccine. Immunity 2017, 47, 599–603. [Google Scholar] [CrossRef] [Green Version]
- Belser, J.A.; Katz, J.M.; Tumpey, T.M. The ferret as a model organism to study influenza A virus infection. Dis. Models Mech. 2011, 4, 575–579. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wei, J.; Choy, K.-T.; Sia, S.F.; Rowlands, D.K.; Yu, D.; Wu, C.-Y.; Lindsley, W.G.; Cowling, B.J.; McDevitt, J. Defining the sizes of airborne particles that mediate influenza transmission in ferrets. Proc. Natl. Acad. Sci. USA 2018, 115, E2386–E2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulit-Penaloza, J.A.; Brock, N.; Pappas, C.; Sun, X.; Belser, J.A.; Zeng, H.; Tumpey, T.M.; Maines, T.R. Characterization of highly pathogenic avian influenza H5Nx viruses in the ferret model. Sci. Rep. 2020, 10, 12700. [Google Scholar] [CrossRef] [PubMed]
- Herfst, S.; Mok, C.K.; van den Brand, J.M.; van der Vliet, S.; Rosu, M.E.; Spronken, M.I.; Yang, Z.; de Meulder, D.; Lexmond, P.; Bestebroer, T.M. Human clade 2.3. 4.4 A/H5N6 influenza virus lacks mammalian adaptation markers and does not transmit via the airborne route between ferrets. Msphere 2018, 6, 3. [Google Scholar]
- Sun, Y.; Hu, Z.; Zhang, X.; Chen, M.; Wang, Z.; Xu, G.; Bi, Y.; Tong, Q.; Wang, M.; Sun, H. An R195K mutation in the PA-X protein increases the virulence and transmission of influenza A virus in mammalian hosts. J. Virol. 2020, 94, 11. [Google Scholar] [CrossRef]
- Hu, M.; Yang, G.; DeBeauchamp, J.; Crumpton, J.C.; Kim, H.; Li, L.; Wan, X.-F.; Kercher, L.; Bowman, A.S.; Webster, R.G. HA stabilization promotes replication and transmission of swine H1N1 gamma influenza viruses in ferrets. Elife 2020, 9, e56236. [Google Scholar] [CrossRef]
- Herfst, S.; Zhang, J.; Richard, M.; McBride, R.; Lexmond, P.; Bestebroer, T.M.; Spronken, M.I.; de Meulder, D.; van den Brand, J.M.; Rosu, M.E. Hemagglutinin traits determine transmission of avian A/H10N7 influenza virus between mammals. Cell Host Microbe 2020, 28, 602–613.e607. [Google Scholar] [CrossRef]
- Lipsitch, M.; Inglesby, T.V. Moratorium on research intended to create novel potential pandemic pathogens. Am. Soc. Microbiol. 2014. [Google Scholar] [CrossRef] [Green Version]
- Fouchier, R.A. Studies on influenza virus transmission between ferrets: The public health risks revisited. MBio 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipsitch, M.; Inglesby, T.V. Reply to “studies on influenza virus transmission between ferrets: The public health risks revisited”. MBio 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Lipsitch, M. Why do exceptionally dangerous gain-of-function experiments in influenza? Influenza Virus 2018, 589–608. [Google Scholar] [CrossRef]
- Le Sage, V.; Jones, J.E.; Kormuth, K.A.; Fitzsimmons, W.J.; Nturibi, E.; Padovani, G.H.; Arevalo, C.P.; French, A.J.; Avery, A.J.; Manivanh, R. Pre-existing heterosubtypic immunity provides a barrier to airborne transmission of influenza viruses. PLoS Pathog. 2021, 17, e1009273. [Google Scholar] [CrossRef]
- Li, J.; Liang, L.; Jiang, L.; Wang, Q.; Wen, X.; Zhao, Y.; Cui, P.; Zhang, Y.; Wang, G.; Li, Q. Viral RNA-binding ability conferred by SUMOylation at PB1 K612 of influenza A virus is essential for viral pathogenesis and transmission. PLoS Pathog. 2021, 17, e1009336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Jin, S.; Wang, T.; Sun, W.; Zhang, Y.; Li, F.; Zhao, M.; Sun, L.; Hu, X. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound. Emerg. Dis. 2021, 13, 3. [Google Scholar]
- Zhu, J.; Jiang, Z.; Liu, J. The matrix gene of pdm/09 H1N1 contributes to the pathogenicity and transmissibility of SIV in mammals. Vet. Microbiol. 2021, 255, 109039. [Google Scholar] [CrossRef]
- Le Sage, V.; Kormuth, K.; Ntruibi, E.; Lee, J.; Frizzell, S.A.; Myerburg, M.; Bloom, J.D.; Lakdawala, S. Cell Culture Adaptation of H3N2 Influenza Virus Impacts Acid Stability and Reduces Ferret Airborne Transmission. Biochemistry 2021. [Google Scholar] [CrossRef]
- Kaplan, B.S.; Kimble, J.B.; Chang, J.; Anderson, T.K.; Gauger, P.C.; Janas-Martindale, A.; Killian, M.L.; Bowman, A.S.; Vincent, A.L. Aerosol transmission from infected swine to ferrets of an H3N2 virus collected from an agricultural fair and associated with human variant infections. J. Virol. 2020, 94, 16. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Zhou, J.; Elderfield, R.A.; Frise, R.; Ashcroft, J.; Galiano, M.; Miah, S.; Nicolaou, L.; Barclay, W.S. Characterising viable virus from air exhaled by H1N1 influenza-infected ferrets reveals the importance of haemagglutinin stability for airborne infectivity. PLoS Pathog. 2020, 16, e1008362. [Google Scholar] [CrossRef]
- Richard, M.; van den Brand, J.M.; Bestebroer, T.M.; Lexmond, P.; de Meulder, D.; Fouchier, R.A.; Lowen, A.C.; Herfst, S. Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nat. Commun. 2020, 11, 766. [Google Scholar] [CrossRef]
- Reneer, Z.B.; Skarlupka, A.L.; Jamieson, P.J.; Ross, T.M. Broadly Reactive H2 Hemagglutinin Vaccines Elicit Cross-Reactive Antibodies in Ferrets Preimmune to Seasonal Influenza A Viruses. Msphere 2021, 6, e00052-21. [Google Scholar] [CrossRef]
- Stadlbauer, D.; de Waal, L.; Beaulieu, E.; Strohmeier, S.; Kroeze, E.J.V.; Boutet, P.; Osterhaus, A.D.; Krammer, F.; Innis, B.L.; Nachbagauer, R. AS03-adjuvanted H7N9 inactivated split virion vaccines induce cross-reactive and protective responses in ferrets. NPJ Vaccines 2021, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Vidaña, B.; Brookes, S.M.; Everett, H.E.; Garcon, F.; Nuñez, A.; Engelhardt, O.; Major, D.; Hoschler, K.; Brown, I.H.; Zambon, M. Inactivated pandemic 2009 H1N1 influenza A virus human vaccines have different efficacy after homologous challenge in the ferret model. Influenza Other Respir. Viruses 2021, 15, 142–153. [Google Scholar] [CrossRef]
- Liu, W.-C.; Nachbagauer, R.; Stadlbauer, D.; Strohmeier, S.; Solórzano, A.; Berlanda-Scorza, F.; Innis, B.L.; García-Sastre, A.; Palese, P.; Krammer, F. Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines 2021, 9, 40. [Google Scholar] [CrossRef]
- Dibben, O.; Crowe, J.; Cooper, S.; Hill, L.; Schewe, K.E.; Bright, H. Defining the root cause of reduced H1N1 live attenuated influenza vaccine effectiveness: Low viral fitness leads to inter-strain competition. NPJ Vaccines 2021, 6, 35. [Google Scholar] [CrossRef]
- De Jonge, J.; van Dijken, H.; de Heij, F.; Spijkers, S.; Mouthaan, J.; de Jong, R.; Roholl, P.; Adami, E.A.; Akamatsu, M.A.; Ho, P.L. H7N9 influenza split vaccine with SWE oil-in-water adjuvant greatly enhances cross-reactive humoral immunity and protection against severe pneumonia in ferrets. NPJ Vaccines 2020, 5, 38. [Google Scholar] [CrossRef]
- Yeolekar, L.R.; Guilfoyle, K.; Ganguly, M.; Tyagi, P.; Stittelaar, K.J.; van Amerongen, G.; Dhere, R.M.; BerlandaScorza, F.; Mahmood, K. Immunogenicity and efficacy comparison of MDCK cell-based and egg-based live attenuated influenza vaccines of H5 and H7 subtypes in ferrets. Vaccine 2020, 38, 6280–6290. [Google Scholar] [CrossRef]
- Demminger, D.E.; Walz, L.; Dietert, K.; Hoffmann, H.; Planz, O.; Gruber, A.D.; von Messling, V.; Wolff, T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol. Med. 2020, 12, e10938. [Google Scholar] [CrossRef] [PubMed]
- Van de Ven, K.; de Heij, F.; van Dijken, H.; Ferreira, J.A.; de Jonge, J. Systemic and respiratory T-cells induced by seasonal H1N1 influenza protect against pandemic H2N2 in ferrets. Commun. Biol. 2020, 3, 564. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, K.; Major, D.; Skeldon, S.; James, H.; Tingstedt, J.L.; Polacek, C.; Lassauniére, R.; Engelhardt, O.G.; Fomsgaard, A. Protective efficacy of a polyvalent influenza A DNA vaccine against both homologous (H1N1pdm09) and heterologous (H5N1) challenge in the ferret model. Vaccine 2020. [Google Scholar] [CrossRef]
- Wang, S.H.; Chen, J.; Smith, D.; Cao, Z.; Acosta, H.; Fan, Y.; Ciotti, S.; Fattom, A.; Baker Jr, J. A novel combination of intramuscular vaccine adjuvants, nanoemulsion and CpG produces an effective immune response against influenza A virus. Vaccine 2020, 38, 3537–3544. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.Y.; Zhou, J.; Frise, R.; Goldhill, D.H.; Koszalka, P.; Mifsud, E.J.; Baba, K.; Noda, T.; Ando, Y.; Sato, K. Baloxavir treatment of ferrets infected with influenza A (H1N1) pdm09 virus reduces onward transmission. PLoS Pathog. 2020, 16, e1008395. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.C.; Pascua, P.N.Q.; Fabrizio, T.P.; Marathe, B.M.; Seiler, P.; Barman, S.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. Influenza A and B viruses with reduced baloxavir susceptibility display attenuated in vitro fitness but retain ferret transmissibility. Proc. Natl. Acad. Sci. USA 2020, 117, 8593–8601. [Google Scholar] [CrossRef]
- Toots, M.; Yoon, J.-J.; Hart, M.; Natchus, M.G.; Painter, G.R.; Plemper, R.K. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl. Res. 2020, 218, 16–28. [Google Scholar] [CrossRef]
- Qiu, H.; Andersen, H.; Tarbet, E.B.; Muhammad, F.S.; Carnelley, T.; Pronyk, R.; Barker, D.; Kodihalli, S. Efficacy of anti-influenza immunoglobulin (FLU-IGIV) in ferrets and mice infected with 2009 pandemic influenza virus. Antivir. Res. 2020, 180, 104753. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, C.; Schiff, G.; Phair, J. Influenza in ferrets and guinea pigs: Effect on cell-mediated immunity. Infect. Immun. 1978, 19, 547–552. [Google Scholar] [CrossRef] [Green Version]
- McLAREN, C.; Butchko, G.M. Regional T-and B-cell responses in influenza-infected ferrets. Infect. Immun. 1978, 22, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatta, Y.; Boltz, D.; Sarawar, S.; Kawaoka, Y.; Neumann, G.; Bilsel, P. Novel influenza vaccine M2SR protects against drifted H1N1 and H3N2 influenza virus challenge in ferrets with pre-existing immunity. Vaccine 2018, 36, 5097–5103. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Christensen, J.P.; Korsholm, K.S.; Isling, L.K.; Erneholm, K.; Thomsen, A.R.; Andersen, P. Seasonal influenza split vaccines confer partial cross-protection against heterologous influenza virus in ferrets when combined with the CAF01 adjuvant. Front. Immunol. 2018, 8, 1928. [Google Scholar] [CrossRef] [Green Version]
- Govorkova, E.A.; Webby, R.J.; Humberd, J.; Seiler, J.P.; Webster, R.G. Immunization with reverse-genetics–produced H5N1 influenza vaccine protects ferrets against homologous and heterologous challenge. J. Infect. Dis. 2006, 194, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Holzer, B.; Morgan, S.B.; Matsuoka, Y.; Edmans, M.; Salguero, F.J.; Everett, H.; Brookes, S.M.; Porter, E.; MacLoughlin, R.; Charleston, B. Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J. Immunol. 2018, 200, 4068–4077. [Google Scholar] [CrossRef] [Green Version]
- Baras, B.; Stittelaar, K.J.; Simon, J.H.; Thoolen, R.J.; Mossman, S.P.; Pistoor, F.H.; Van Amerongen, G.; Wettendorff, M.A.; Hanon, E.; Osterhaus, A.D. Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS ONE 2008, 3, e1401. [Google Scholar] [CrossRef] [Green Version]
- Beale, D.J.; Oh, D.Y.; Karpe, A.V.; Tai, C.; Dunn, M.S.; Tilmanis, D.; Palombo, E.A.; Hurt, A.C. Untargeted metabolomics analysis of the upper respiratory tract of ferrets following influenza A virus infection and oseltamivir treatment. Metabolomics 2019, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.J.; Chappell, W.A.; Gerone, P.J. Synergistic Activity between PR8 Influenza Virus and Staphylococcus Aureus in the Guinea Pig; Army Biological Labs Frederick Md: Fort Detrick, MD, USA, 1963. [Google Scholar]
- Fehlmann, H.; Gasser, M.; Jegge, S. Comparison of cellular and humoral immunity to influenza virus in the guinea pig. Pathol. Et Microbiol. 1974, 40, 231–233. [Google Scholar]
- Phair, J.P.; Kauffman, C.A.; Jennings, R.; Potter, C.W. Influenza virus infection of the guinea pig: Immune response and resistance. Med. Microbiol. Immunol. 1979, 165, 241–254. [Google Scholar] [CrossRef]
- Canning, B.J.; Chou, Y. Using guinea pigs in studies relevant to asthma and COPD. Pulm. Pharmacol. Ther. 2008, 21, 702–720. [Google Scholar] [CrossRef] [Green Version]
- D’Alessio, F.; Koopman, G.; Houard, S.; Remarque, E.J.; Stockhofe, N.; Engelhardt, O.G. Workshop report: Experimental animal models for universal influenza vaccines. Vaccine 2018, 36, 6895–6901. [Google Scholar] [CrossRef] [PubMed]
- Lina, L.; Saijuan, C.; Chengyu, W.; Yuefeng, L.; Shishan, D.; Ligong, C.; Kangkang, G.; Zhendong, G.; Jiakai, L.; Jianhui, Z. Adaptive amino acid substitutions enable transmission of an H9N2 avian influenza virus in guinea pigs. Sci. Rep. 2019, 9, 19734. [Google Scholar] [CrossRef] [PubMed]
- Dreier, C.; Resa-Infante, P.; Thiele, S.; Stanelle-Bertram, S.; Walendy-Gnirß, K.; Speiseder, T.; Preuss, A.; Müller, Z.; Klenk, H.-D.; Stech, J. Mutations in the H7 HA and PB1 genes of avian influenza a viruses increase viral pathogenicity and contact transmission in guinea pigs. Emerg. Microbes Infect. 2019, 8, 1324–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Yang, H.; Chen, Y.; Tao, S.; Liu, L.; Kong, H.; Ma, S.; Meng, F.; Suzuki, Y.; Qiao, C. A single-amino-acid substitution at position 225 in hemagglutinin alters the transmissibility of Eurasian avian-like H1N1 swine influenza virus in guinea pigs. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi, S.; ben Hnia, N.G.; Barre, R.S.; Wexler, A.S.; Ristenpart, W.D.; Bouvier, N.M. Influenza A virus is transmissible via aerosolized fomites. Nat. Commun. 2020, 11, 4062. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, L.; Guo, Z.; Zhang, C.; Wang, Z.; Wen, G.; Zhang, W.; Shang, Y.; Zhang, T.; Jiao, Z. A Novel Reassortant Avian H7N6 Influenza Virus Is Transmissible in Guinea Pigs via Respiratory Droplets. Front. Microbiol. 2019, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Tupas, M.J.; Barre, R.S.; Wexler, A.S.; Bouvier, N.M.; Ristenpart, W.D. Non-respiratory Particles Emitted by Guinea Pigs in Airborne Disease Transmission Experiments. Sci. Rep. 2021. under review. [Google Scholar]
- Xiang, B.; Chen, L.; Xie, P.; Lin, Q.; Liao, M.; Ren, T. Wild bird-origin H5N6 avian influenza virus is transmissible in guinea pigs. J. Infect. 2020, 80, e20–e22. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.; Kirkpatrick, E.; Stadlbauer, D.; Strohmeier, S.; Bouvier, N.M.; Krammer, F. Mucosal immunity against neuraminidase prevents influenza B virus transmission in Guinea Pigs. MBio 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Yin, X.; Guan, L.; Li, M.; Ma, S.; Shi, J.; Deng, G.; Suzuki, Y.; Chen, H. A live attenuated vaccine prevents replication and transmission of H7N9 highly pathogenic influenza viruses in mammals. Emerg. Microbes Infect. 2018, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Kang, G.; Sreenivasan, C.; Daharsh, L.; Zhang, J.; Fan, W.; Wang, D.; Moriyama, H.; Li, F.; Li, Q. A DNA vaccine expressing consensus hemagglutinin-esterase fusion protein protected guinea pigs from infection by two lineages of influenza D virus. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-G.; Ye, C.; Piepenbrink, M.S.; Nogales, A.; Wang, H.; Shuen, M.; Meyers, A.J.; Martinez-Sobrido, L.; Kobie, J.J. A Broad and potent H1-specific human monoclonal antibody produced in plants prevents Influenza virus infection and transmission in Guinea Pigs. Viruses 2020, 12, 167. [Google Scholar] [CrossRef] [Green Version]
- Saito, T.; Lim, W.; Suzuki, T.; Suzuki, Y.; Kida, H.; Nishimura, S.-I.; Tashiro, M. Characterization of a human H9N2 influenza virus isolated in Hong Kong. Vaccine 2001, 20, 125–133. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Nakajima, N.; Ichiko, Y.; Sakai-Tagawa, Y.; Noda, T.; Hasegawa, H.; Kawaoka, Y. Syrian hamster as an animal model for the study of human influenza virus infection. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.; Addison, C.; Ali, M.; Teale, D.; Potter, C.J. In vivo and in vitro hamster models in the assessment of virulence of recombinant influenza viruses. Antivir. Res. 1983, 3, 241–252. [Google Scholar] [CrossRef]
- Shinya, K.; Makino, A.; Tanaka, H.; Hatta, M.; Watanabe, T.; Le, M.Q.; Imai, H.; Kawaoka, Y.J. Systemic dissemination of H5N1 influenza A viruses in ferrets and hamsters after direct intragastric inoculation. J. Virol. 2011, 85, 4673–4678. [Google Scholar] [CrossRef] [Green Version]
- Potter, C.; Jennings, R.J. The hamster as a model system for the study of influenza vaccines. Postgrad. Med. 1976, 52, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Jennings, R.; Potter, C.W.; McLaren, C. Effect of preinfection and preimmunization on the serum antibody response to subsequent immunization with heterotypic influenza vaccines. J. Immunol. 1974, 113, 1834–1843. [Google Scholar]
- Hemmink, J.D.; Whittaker, C.J.; Shelton, H.A. Animal models in influenza research. In Influenza Virus; Springer: Berlin/Heidelberg, Germany, 2018; pp. 401–430. [Google Scholar]
- Ranaware, P.B.; Mishra, A.; Vijayakumar, P.; Gandhale, P.N.; Kumar, H.; Kulkarni, D.D.; Raut, A. Genome wide host gene expression analysis in chicken lungs infected with avian influenza viruses. PLoS ONE 2016, 11, e0153671. [Google Scholar] [CrossRef] [PubMed]
- Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solórzano, A.; Albrecht, R.; Perez, D.R.; García-Sastre, A.; Palese, P. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol. 2009, 83, 1742–1753. [Google Scholar] [CrossRef] [Green Version]
- Van der Goot, J.; Koch, G.d.; De Jong, M.; Van Boven, M.J. Quantification of the effect of vaccination on transmission of avian influenza (H7N7) in chickens. Proc. Natl. Acad. Sci. USA 2005, 102, 18141–18146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, J.-S.; Lee, H.-J.; Lee, D.-H.; Lee, Y.-J.; Mo, I.-P.; Nahm, S.-S.; Kim, M.-J.; Lee, J.-B.; Park, S.-Y.; Choi, I.-S. Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res. 2008, 133, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Rajao, D.S.; Vincent, A.L. Swine as a model for influenza A virus infection and immunity. Ilar J. 2015, 56, 44–52. [Google Scholar] [CrossRef]
- Meseko, C.; Globig, A.; Ijomanta, J.; Joannis, T.; Nwosuh, C.; Shamaki, D.; Harder, T.; Hoffman, D.; Pohlmann, A.; Beer, M. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci. Rep. 2018, 8, 5900. [Google Scholar] [CrossRef]
- Ran, Z.; Shen, H.; Lang, Y.; Kolb, E.A.; Turan, N.; Zhu, L.; Ma, J.; Bawa, B.; Liu, Q.; Liu, H. Domestic pigs are susceptible to infection with influenza B viruses. J. Virol. 2015, 89, 4818–4826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Huang, C.; Shi, J.; Wang, R.; Sun, X.; Liu, X.; Zhao, L.; Jin, M. Investigation of pathogenesis of H1N1 influenza virus and swine Streptococcus suis serotype 2 co-infection in pigs by microarray analysis. PLoS ONE 2015, 10, e0124086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourret, V. Avian influenza viruses in pigs: An overview. Vet. J. 2018, 239, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Rajão, D.S.; Gauger, P.C.; Anderson, T.K.; Lewis, N.S.; Abente, E.J.; Killian, M.L.; Perez, D.R.; Sutton, T.C.; Zhang, J.; Vincent, A.L. Novel reassortant human-like H3N2 and H3N1 influenza A viruses detected in pigs are virulent and antigenically distinct from swine viruses endemic to the United States. J. Virol. 2015, 89, 11213–11222. [Google Scholar] [CrossRef] [Green Version]
- McNee, A.; Smith, T.R.; Holzer, B.; Clark, B.; Bessell, E.; Guibinga, G.; Brown, H.; Schultheis, K.; Fisher, P.; Ramos, S. Establishment of a pig influenza challenge model for evaluation of monoclonal antibody delivery platforms. J. Immunol. 2020, 205, 648–660. [Google Scholar] [CrossRef]
- Iwatsuki-Horimoto, K.; Nakajima, N.; Shibata, M.; Takahashi, K.; Sato, Y.; Kiso, M.; Yamayoshi, S.; Ito, M.; Enya, S.; Otake, M. The microminipig as an animal model for influenza a virus infection. J. Virol. 2017, 91, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasik, B.R.; Voorhees, I.E.; Parrish, C.R. Canine and feline influenza. Cold Spring Harb. Perspect. Med. 2021, 11, a038562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, D.; Kang, B.; Lee, C.; Jung, K.; Ha, G.; Kang, D.; Park, S.; Park, B.; Oh, J. Transmission of avian influenza virus (H3N2) to dogs. Emerg. Infect. Dis. 2008, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Giese, M.; Harder, T.C.; Teifke, J.P.; Klopfleisch, R.; Breithaupt, A.; Mettenleiter, T.C.; Vahlenkamp, T.W. Experimental infection and natural contact exposure of dogs with avian influenza virus (H5N1). Emerg. Infect. Dis. 2008, 14, 308. [Google Scholar] [CrossRef]
- Halliday, J.E.; Meredith, A.L.; Knobel, D.L.; Shaw, D.J.; Bronsvoort, B.M.d.C.; Cleaveland, S. A framework for evaluating animals as sentinels for infectious disease surveillance. J. R. Soc. Interface 2007, 4, 973–984. [Google Scholar] [CrossRef]
- Kuiken, T.; Rimmelzwaan, G.; van Riel, D.; van Amerongen, G.; Baars, M.; Fouchier, R.; Osterhaus, A. Avian H5N1 influenza in cats. Science 2004, 306, 241. [Google Scholar] [CrossRef]
- Fouchier, R.A.; Schneeberger, P.M.; Rozendaal, F.W.; Broekman, J.M.; Kemink, S.A.; Munster, V.; Kuiken, T.; Rimmelzwaan, G.F.; Schutten, M.; Van Doornum, G.J. Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc. Natl. Acad. Sci. USA 2004, 101, 1356–1361. [Google Scholar] [CrossRef] [Green Version]
- Baskin, C. The role and contributions of systems biology to the non-human primate model of influenza pathogenesis and vaccinology. Syst. Biol. 2012, 363, 69–85. [Google Scholar]
- Bodewes, R.; Morick, D.; de Mutsert, G.; Osinga, N.; Bestebroer, T.; van der Vliet, S.; Smits, S.L.; Kuiken, T.; Rimmelzwaan, G.F.; Fouchier, R.A. Recurring influenza B virus infections in seals. Emerg. Infect. Dis. 2013, 19, 511. [Google Scholar] [CrossRef] [PubMed]
- Baas, T.; Baskin, C.; Diamond, D.L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T.; Thomas, M.; Carter, V.; Teal, T.; Van Hoeven, N. Integrated molecular signature of disease: Analysis of influenza virus-infected macaques through functional genomics and proteomics. J. Virol. 2006, 80, 10813–10828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskin, C.R.; García-Sastre, A.; Tumpey, T.M.; Bielefeldt-Ohmann, H.; Carter, V.S.; Nistal-Villán, E.; Katze, M.G. Integration of clinical data, pathology, and cDNA microarrays in influenza virus-infected pigtailed macaques (Macaca nemestrina). J. Virol. 2004, 78, 10420–10432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, S.; Nguyen, C.T.; Ogata-Nakahara, A.; Shibata, A.; Osaka, H.; Ishigaki, H.; Okamatsu, M.; Sakoda, Y.; Kida, H.; Ogasawara, K. Efficacy of a cap-dependent endonuclease inhibitor and neuraminidase inhibitors against H7N9 highly pathogenic avian influenza virus causing severe viral pneumonia in cynomolgus macaques. Antimicrob. Agents Chemother. 2021, 65, 65. [Google Scholar]
- Mooij, P.; Stammes, M.A.; Mortier, D.; Fagrouch, Z.; van Driel, N.; Verschoor, E.J.; Kondova, I.; Bogers, W.M.; Koopman, G. Aerosolized Exposure to H5N1 Influenza Virus Causes Less Severe Disease Than Infection via Combined Intrabronchial, Oral, and Nasal Inoculation in Cynomolgus Macaques. Viruses 2021, 13, 345. [Google Scholar] [CrossRef] [PubMed]
- Koutsakos, M.; Sekiya, T.; Chua, B.Y.; Nguyen, T.H.O.; Wheatley, A.K.; Juno, J.A.; Ohno, M.; Nomura, N.; Ohara, Y.; Nishimura, T. Immune profiling of influenza-specific B-and T-cell responses in macaques using flow cytometry-based assays. Immunol. Cell Biol. 2021, 99, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki-Horimoto, K.; Nakajima, N.; Kiso, M.; Takahashi, K.; Ito, M.; Inoue, T.; Horiuchi, M.; Okahara, N.; Sasaki, E.; Hasegawa, H. The marmoset as an animal model of influenza: Infection with A (H1N1) pdm09 and highly pathogenic A (H5N1) viruses via the conventional or tracheal spray route. Front. Microbiol. 2018, 9, 844. [Google Scholar] [CrossRef]
- Rimmelzwaan, G.; Kuiken, T.; Van Amerongen, G.; Bestebroer, T.; Fouchier, R.A.M.; Osterhaus, A.D.M. A primate model to study the pathogenesis of influenza A (H5N1) virus infection. Avian Dis. 2003, 47, 931–933. [Google Scholar] [CrossRef]
- Fukuyama, S.; Iwatsuki-Horimoto, K.; Kiso, M.; Nakajima, N.; Gregg, R.W.; Katsura, H.; Tomita, Y.; Maemura, T.; da Silva Lopes, T.J.; Watanabe, T. Pathogenesis of Influenza A (H7N9) Virus in Aged Nonhuman Primates. J. Infect. Dis. 2020, 222, 1155–1164. [Google Scholar] [CrossRef]
- Moncla, L.H.; Ross, T.M.; Dinis, J.M.; Weinfurter, J.T.; Mortimer, T.D.; Schultz-Darken, N.; Brunner, K.; Capuano III, S.V.; Boettcher, C.; Post, J. A novel nonhuman primate model for influenza transmission. PLoS ONE 2013, 8, e78750. [Google Scholar] [CrossRef] [Green Version]
- Weinfurter, J.T.; Brunner, K.; Capuano III, S.V.; Li, C.; Broman, K.W.; Kawaoka, Y.; Friedrich, T.C. Cross-reactive T cells are involved in rapid clearance of 2009 pandemic H1N1 influenza virus in nonhuman primates. PLoS Pathog. 2011, 7, e1002381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koday, M.T.; Leonard, J.A.; Munson, P.; Forero, A.; Koday, M.; Bratt, D.L.; Fuller, J.T.; Murnane, R.; Qin, S.; Reinhart, T.A. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates. PLoS ONE 2017, 12, e0189780. [Google Scholar] [CrossRef] [PubMed]
- Darricarrère, N.; Qiu, Y.; Kanekiyo, M.; Creanga, A.; Gillespie, R.A.; Moin, S.M.; Saleh, J.; Sancho, J.; Chou, T.-H.; Zhou, Y. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci. Transl. Med. 2021, 13, eabe5449. [Google Scholar] [CrossRef] [PubMed]
- Boyoglu-Barnum, S.; Ellis, D.; Gillespie, R.A.; Hutchinson, G.B.; Park, Y.-J.; Moin, S.M.; Acton, O.J.; Ravichandran, R.; Murphy, M.; Pettie, D. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021, 592, 623–628. [Google Scholar] [CrossRef]
Mouse Strain | Research Application | Reference | |
---|---|---|---|
Wild-type mice | C57BL/6 | Pathogenesis, vaccine efficacy, and antiviral drugs | |
BALB/c | Pathogenesis, vaccine efficacy, and antiviral drugs | ||
Infant C57BL/6 | Transmission | [21] | |
Knockout/ deficient/ transgenic mice | DBA/2J | Pathogenesis and vaccine efficacy | [8,9] |
RAG1−/− | Role of B and T cells | [25] | |
RAG2−/− | Role of B and T cells | [26] | |
SCID | Role of B, T, and natural killer cells | [27] | |
CCR2−/− | Role of monocytes | [28] | |
B cell−/− | Role of B cell | [29,30,31,32] | |
CD8−/− | Role of CD8 T cell | [30,33] | |
CD4−/− | Role of CD4 T cell | [30,31,32,34] | |
IFNR−/− | IFN signaling pathway | [35,36] | |
B6-Mx1−/− B6-Mx1r/r SPRET/Ei | Role of Mx1 gene in virus resistance | [37,38] | |
Tmprss2−/− | Pathogenesis | [10,11,12,13] | |
IFITM3−/− | Influenza-induced cardiac pathogenesis | [45] | |
Humanized mice | DRAG | Generation of cross-reactive, human anti-influenza monoclonal antibodies and study of viral transmission | [22,39] |
DRAGA | |||
Rag2−/−γc−/− | Pathogenesis and antiviral drug | [40] | |
HLA-A2 | Vaccine efficacy | [41] | |
NOD/SCID β2m−/− | Vaccine efficacy | [42] | |
NOD/SCID/Jak3−/− (NOJ) | Vaccine efficacy | [43] | |
NOD/Shi-scid IL2rγnull | Acute toxicity of an influenza vaccine | [44] |
Animal Model | Advantages | Disadvantages |
---|---|---|
Mice |
|
|
Ferret |
|
|
Guinea pig |
|
|
Hamster |
|
|
Chicken |
|
|
Swine |
|
|
Feline and Canine |
|
|
Non-human primates |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-Q.; Rollon, R.; Choi, Y.-K. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses 2021, 13, 1011. https://doi.org/10.3390/v13061011
Nguyen T-Q, Rollon R, Choi Y-K. Animal Models for Influenza Research: Strengths and Weaknesses. Viruses. 2021; 13(6):1011. https://doi.org/10.3390/v13061011
Chicago/Turabian StyleNguyen, Thi-Quyen, Rare Rollon, and Young-Ki Choi. 2021. "Animal Models for Influenza Research: Strengths and Weaknesses" Viruses 13, no. 6: 1011. https://doi.org/10.3390/v13061011
APA StyleNguyen, T. -Q., Rollon, R., & Choi, Y. -K. (2021). Animal Models for Influenza Research: Strengths and Weaknesses. Viruses, 13(6), 1011. https://doi.org/10.3390/v13061011