Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek’s Disease Virus
Abstract
:1. Introduction
2. MDV UL Unique ORFs
2.1. MDV009/LORF1
2.2. MDV010/LORF2
2.3. MDV012/LORF3
2.4. LORF4
2.5. LORF5
2.6. LORF6
2.7. LORF7
2.8. LORF8
2.9. MDV069/LORF9
2.10. MDV071/LORF10
2.11. MDV072/LORF11
2.12. LORF12
3. MDV US Unique ORFs
3.1. SORF1
3.2. MDV087, MDV097/SORF2
3.3. MDV090/SORF3
3.4. MDV093/SORF4
4. Summary and Future Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cebrian, J.; Kaschka-Dierich, C.; Berthelot, N.; Sheldrick, P. Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proc. Natl. Acad. Sci. USA 1982, 79, 555–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuchi, K.; Sudo, M.; Lee, Y.S.; Tanaka, A.; Nonoyama, M. Structure of Marek’s disease virus DNA: Detailed restriction enzyme map. J. Virol. 1984, 51, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, L.F.; Wu, P.; Sui, D.; Ren, D.; Kamil, J.; Kung, H.J.; Witter, R.L. The complete unique long sequence and the overall genomic organization of the GA strain of Marek’s disease virus. Proc. Natl. Acad. Sci. USA 2000, 97, 6091–6096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Rock, D.L.; Kutish, G.F. The genome of a very virulent Marek’s disease virus. J. Virol. 2000, 74, 7980–7988. [Google Scholar] [CrossRef] [Green Version]
- Calnek, B.W. Pathogenesis of Marek’s disease virus infection. Curr. Top. Microbiol. Immunol. 2001, 255, 25–55. [Google Scholar]
- Churchill, A.E.; Payne, L.N.; Chubb, R.C. Immunization against Marek’s disease using a live attenuated virus. Nature 1969, 221, 744–747. [Google Scholar] [CrossRef]
- Bulow, V.V. Further characterisation of the CVI 988 strain of Marek’s disease virus. Avian Pathol. 1977, 6, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Rispens, B.H.; van Vloten, H.; Mastenbroek, N.; Maas, H.J.; Schat, K.A. Control of Marek’s disease in the Netherlands. I. Isolation of an avirulent Marek’s disease virus (strain CVI 988) and its use in laboratory vaccination trials. Avian Dis. 1972, 16, 108–125. [Google Scholar] [CrossRef]
- Rispens, B.H.; van Vloten, H.; Mastenbroek, N.; Maas, J.L.; Schat, K.A. Control of Marek’s disease in the Netherlands. II. Field trials on vaccination with an avirulent strain (CVI 988) of Marek’s disease virus. Avian Dis. 1972, 16, 126–138. [Google Scholar] [CrossRef]
- Okazaki, W.; Purchase, H.G.; Burmester, B.R. Protection against Marek’s disease by vaccination with a herpesvirus of turkeys. Avian Dis. 1970, 14, 413–429. [Google Scholar] [CrossRef]
- Witter, R.L. Protection by attenuated and polyvalent vaccines against highly virulent strains of Marek’s disease virus. Avian Pathol. 1982, 11, 49–62. [Google Scholar] [CrossRef]
- Witter, R.L.; Nazerian, K.; Purchase, H.G.; Burgoyne, G.H. Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus. Am. J. Vet. Res. 1970, 31, 525–538. [Google Scholar]
- Reddy, S.M.; Izumiya, Y.; Lupiani, B. Marek’s disease vaccines: Current status, and strategies for improvement and development of vector vaccines. Vet. Microbiol. 2017, 206, 113–120. [Google Scholar] [CrossRef]
- Lupiani, B.M.; Liao, Y.; Jin, D.; Izumiya, Y.; Reddy, S.M. Marek’s Disease Virus. In Avian Virology: Current Research and Future Trends; Samal, S.K., Ed.; Caister Academic Press: Norfolk, UK, 2019; pp. 345–364. [Google Scholar] [CrossRef] [Green Version]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s disease virus: From miasma to model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Kheimar, A.; Ali, F.A.Z.; Kaufer, B.B. Viral Factors Involved in Marek’s Disease Virus (MDV) Pathogenesis. Curr. Clin. Microbiol. Rep. 2018, 5, 238–244. [Google Scholar] [CrossRef]
- Vychodil, T.; Conradie, A.M.; Trimpert, J.; Aswad, A.; Bertzbach, L.D.; Kaufer, B.B. Marek’s Disease Virus Requires Both Copies of the Inverted Repeat Regions for Efficient In Vivo Replication and Pathogenesis. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Hunter, G. Marek’s Disease Virus Pathogenesis and Latency. Master’s Thesis, University of Edinburgh, Edinburgh, UK, 2012. [Google Scholar]
- Afonso, C.L.; Tulman, E.R.; Lu, Z.; Zsak, L.; Rock, D.L.; Kutish, G.F. The genome of turkey herpesvirus. J. Virol. 2001, 75, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, A. Lipase protein engineering. Biochim. Biophys. Acta 2001, 1543, 223–238. [Google Scholar] [CrossRef]
- Iyer, S.S.; Barton, J.A.; Bourgoin, S.; Kusner, D.J. Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis. J. Immunol. 2004, 173, 2615–2623. [Google Scholar] [CrossRef] [Green Version]
- Spiegel, S.; Foster, D.; Kolesnick, R. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 1996, 8, 159–167. [Google Scholar] [CrossRef]
- Baek, S.H.; Kwak, J.Y.; Lee, S.H.; Lee, T.; Ryu, S.H.; Uhlinger, D.J.; Lambeth, J.D. Lipase activities of p37, the major envelope protein of vaccinia virus. J. Biol. Chem. 1997, 272, 32042–32049. [Google Scholar] [CrossRef] [Green Version]
- Zadori, Z.; Szelei, J.; Lacoste, M.C.; Li, Y.; Gariepy, S.; Raymond, P.; Allaire, M.; Nabi, I.R.; Tijssen, P. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 2001, 1, 291–302. [Google Scholar] [CrossRef] [Green Version]
- Girod, A.; Wobus, C.E.; Zadori, Z.; Ried, M.; Leike, K.; Tijssen, P.; Kleinschmidt, J.A.; Hallek, M. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J. Gen. Virol. 2002, 83, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Kamil, J.P.; Tischer, B.K.; Trapp, S.; Nair, V.K.; Osterrieder, N.; Kung, H.J. vLIP, a viral lipase homologue, is a virulence factor of Marek’s disease virus. J. Virol. 2005, 79, 6984–6996. [Google Scholar] [CrossRef] [Green Version]
- Schrag, J.D.; Cygler, M. Lipases and alpha/beta hydrolase fold. Methods Enzymol. 1997, 284, 85–107. [Google Scholar]
- Isfort, R.; Jones, D.; Kost, R.; Witter, R.; Kung, H.J. Retrovirus insertion into herpesvirus in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1992, 89, 991–995. [Google Scholar] [CrossRef] [Green Version]
- Schippers, T.; Jarosinski, K.; Osterrieder, N. The ORF012 gene of Marek’s disease virus type 1 produces a spliced transcript and encodes a novel nuclear phosphoprotein essential for virus growth. J. Virol. 2015, 89, 1348–1363. [Google Scholar] [CrossRef] [Green Version]
- Hearn, C.; Preeyanon, L.; Hunt, H.D.; York, I.A. An MHC class I immune evasion gene of Mareks disease virus. Virology 2015, 475, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Niikura, M.; Liu, H.C.; Dodgson, J.B.; Cheng, H.H. A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek’s disease virus. Poult. Sci. 2004, 83, 1117–1123. [Google Scholar] [CrossRef]
- Kim, T.; Hunt, H.D.; Cheng, H.H. Marek’s disease viruses lacking either R-LORF10 or LORF4 have altered virulence in chickens. Virus Genes 2010, 40, 410–420. [Google Scholar] [CrossRef]
- Schumacher, D.; Tischer, B.K.; Fuchs, W.; Osterrieder, N. Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J. Virol. 2000, 74, 11088–11098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tischer, B.K.; Schumacher, D.; Chabanne-Vautherot, D.; Zelnik, V.; Vautherot, J.F.; Osterrieder, N. High-level expression of Marek’s disease virus glycoprotein C is detrimental to virus growth in vitro. J. Virol. 2005, 79, 5889–5899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, A.; Luo, J.; Wan, B.; Du, Y.; Wang, X.; Weng, H.; Cao, X.; Zhang, T.; Chai, S.; Zhao, D.; et al. Lorf9 deletion significantly eliminated lymphoid organ atrophy induced by meq-deleted very virulent Marek’s disease virus. Vet. Microbiol. 2019, 235, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Sun, A.; Zhuang, G.; Lupiani, B.; Reddy, S.M. Deletion of LORF9 but not LORF10 attenuates Marek’s disease virus pathogenesis. Vet. Microbiol. 2020, 251, 108911. [Google Scholar] [CrossRef]
- Lupiani, B.; Lee, L.F.; Cui, X.; Gimeno, I.; Anderson, A.; Morgan, R.W.; Silva, R.F.; Witter, R.L.; Kung, H.J.; Reddy, S.M. Marek’s disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc. Natl. Acad. Sci. USA 2004, 101, 11815–11820. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.F.; Lupiani, B.; Silva, R.F.; Kung, H.J.; Reddy, S.M. Recombinant Marek’s disease virus (MDV) lacking the Meq oncogene confers protection against challenge with a very virulent plus strain of MDV. Vaccine 2008, 26, 1887–1892. [Google Scholar] [CrossRef]
- Lee, L.F.; Kreager, K.S.; Arango, J.; Paraguassu, A.; Beckman, B.; Zhang, H.; Fadly, A.; Lupiani, B.; Reddy, S.M. Comparative evaluation of vaccine efficacy of recombinant Marek’s disease virus vaccine lacking Meq oncogene in commercial chickens. Vaccine 2010, 28, 1294–1299. [Google Scholar] [CrossRef]
- Dunn, J.R.; Silva, R.F. Ability of MEQ-deleted MDV vaccine candidates to adversely affect lymphoid organs and chicken weight gain. Avian Dis. 2012, 56, 494–500. [Google Scholar] [CrossRef]
- Liao, Y.; Reddy, S.M.; Khan, O.A.; Sun, A.; Lupiani, B. A Novel Effective and Safe Vaccine for Prevention of Marek’s Disease Caused by Infection with a Very Virulent Plus (vv+) Marek’s Disease Virus. Vaccines 2021, 9, 159. [Google Scholar] [CrossRef]
- Sato, H.; Pesnicak, L.; Cohen, J.I. Varicella-zoster virus open reading frame 2 encodes a membrane phosphoprotein that is dispensable for viral replication and for establishment of latency. J. Virol. 2002, 76, 3575–3578. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.F.; Silva, R.F.; Cui, X.; Zhang, H.; Heidari, M.; Reddy, S.M. Characterization of LORF11, a unique gene common to the three Marek’s disease virus serotypes. Avian Dis. 2007, 51, 851–857. [Google Scholar] [CrossRef]
- Prigge, J.T.; Majerciak, V.; Hunt, H.D.; Dienglewicz, R.L.; Parcells, M.S. Construction and characterization of Marek’s disease viruses having green fluorescent protein expression tied directly or indirectly to phosphoprotein 38 expression. Avian Dis. 2004, 48, 471–487. [Google Scholar] [CrossRef]
- Reddy, S.M.; Lupiani, B.; Gimeno, I.M.; Silva, R.F.; Lee, L.F.; Witter, R.L. Rescue of a pathogenic Marek’s disease virus with overlapping cosmid DNAs: Use of a pp38 mutant to validate the technology for the study of gene function. Proc. Natl. Acad. Sci. USA 2002, 99, 7054–7059. [Google Scholar] [CrossRef] [Green Version]
- Brunovskis, P.; Velicer, L.F. The Marek’s disease virus (MDV) unique short region: Alphaherpesvirus-homologous, fowlpox virus-homologous, and MDV-specific genes. Virology 1995, 206, 324–338. [Google Scholar] [CrossRef] [Green Version]
- Anderson, A.S.; Parcells, M.S.; Morgan, R.W. The glycoprotein D (US6) homolog is not essential for oncogenicity or horizontal transmission of Marek’s disease virus. J. Virol. 1998, 72, 2548–2553. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Lupiani, B.; Ai-Mahmood, M.; Reddy, S.M. Marek’s disease virus US3 protein kinase phosphorylates chicken HDAC 1 and 2 and regulates viral replication and pathogenesis. PLoS Pathog. 2021, 17, e1009307. [Google Scholar] [CrossRef]
- Liao, Y.; Lupiani, B.; Bajwa, K.; Khan, O.A.; Izumiya, Y.; Reddy, S.M. Role of Marek’s Disease Virus (MDV)-Encoded US3 Serine/Threonine Protein Kinase in Regulating MDV Meq and Cellular CREB Phosphorylation. J. Virol. 2020, 94. [Google Scholar] [CrossRef]
- Schumacher, D.; McKinney, C.; Kaufer, B.B.; Osterrieder, N. Enzymatically inactive U(S)3 protein kinase of Marek’s disease virus (MDV) is capable of depolymerizing F-actin but results in accumulation of virions in perinuclear invaginations and reduced virus growth. Virology 2008, 375, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, D.; Tischer, B.K.; Reddy, S.M.; Osterrieder, N. Glycoproteins E and I of Marek’s disease virus serotype 1 are essential for virus growth in cultured cells. J. Virol. 2001, 75, 11307–11318. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, D.; Tischer, B.K.; Trapp, S.; Osterrieder, N. The protein encoded by the US3 orthologue of Marek’s disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J. Virol. 2005, 79, 3987–3997. [Google Scholar] [CrossRef] [Green Version]
- Parcells, M.S.; Anderson, A.S.; Cantello, J.L.; Morgan, R.W. Characterization of Marek’s disease virus insertion and deletion mutants that lack US1 (ICP22 homolog), US10, and/or US2 and neighboring short-component open reading frames. J. Virol. 1994, 68, 8239–8253. [Google Scholar] [CrossRef] [Green Version]
- Parcells, M.S.; Anderson, A.S.; Morgan, T.W. Retention of oncogenicity by a Marek’s disease virus mutant lacking six unique short region genes. J. Virol. 1995, 69, 7888–7898. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.C.; Kung, H.J.; Fulton, J.E.; Morgan, R.W.; Cheng, H.H. Growth hormone interacts with the Marek’s disease virus SORF2 protein and is associated with disease resistance in chicken. Proc. Natl. Acad. Sci. USA 2001, 98, 9203–9208. [Google Scholar] [CrossRef] [Green Version]
- Jarosinski, K.W.; Osterrieder, N. Marek’s disease virus expresses multiple UL44 (gC) variants through mRNA splicing that are all required for efficient horizontal transmission. J. Virol. 2012, 86, 7896–7906. [Google Scholar] [CrossRef] [Green Version]
- Jarosinski, K.W.; Schat, K.A. Multiple alternative splicing to exons II and III of viral interleukin-8 (vIL-8) in the Marek’s disease virus genome: The importance of vIL-8 exon I. Virus Genes 2007, 34, 9–22. [Google Scholar] [CrossRef]
- Liao, Y.; Bajwa, K.; Al-Mahmood, M.; Gimeno, I.M.; Reddy, S.M.; Lupiani, B. The role of Meq-vIL8 in regulating Marek’s disease virus pathogenesis. J. Gen. Virol. 2021, 102, 001528. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Pfaff, F.; Pauker, V.I.; Kheimar, A.M.; Hoper, D.; Hartle, S.; Karger, A.; Kaufer, B.B. The Transcriptional Landscape of Marek’s Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes. Viruses 2019, 11, 264. [Google Scholar] [CrossRef] [Green Version]
Md5 (AF243438.1) | GA (AF147806.2) | RB-1B (EF523390.1) | 648a (JQ806361.1) | CVI988 (DQ530348.1) | |||||
---|---|---|---|---|---|---|---|---|---|
ORF | Start–end (aa) 1 | ORF | Start–end (aa) | ORF | Start–end (aa) | ORF | Start–end (aa) | ORF | Start–end (aa) |
MDV009 | 14,338–13,337 (333) | LORF1 | 12,894–11,893 (333) | MDV009 | 15,005–14,004 (333) | LORF1 | 13,757–12,756 (333) | MDV009 | 14,786–13,785 (333) |
MDV010 | 14,535–14,630 14,701–16,875 (756) | LORF2 | 13,091–13,186 13,257–15,431 (756) | MDV010 | 15,202–15,297 15,368–17,542 (756) | LORF2 | 13,954–14,049 14,120–16,294 (756) | MDV010 | 14,983–15,078 15,149–17,323 (765) |
MDV011* 2 | 17,431–17,688 (85) | MDV011* | 15,987–16,245 (85) | MDV011* | 18,098–18,355 (85) | MDV011* | 16,850–17,107 (85) | MDV011* | 18,136–17,879 (85) |
MDV012* | 17,828–18,982 (384) | LORF3 | 16,351–17,547 (398) | MDV012* | 18,495–19,649 (384) | LORF3 | 17,247–18,401 (384) | MDV012* | 18,276–19,430 (384) |
LORF43 | 19,608–19,180 (142) | LORF4 | 18,173–17,745 (142) | MDV013.5 | 20,275–19,847 (142) | LORF4 | 19,027–18,599 (142) | MDV013.5 | 20,056–19,628 (142) |
LORF5 | 60,996–61,355 (119) | LORF5 | 59,557–59,916 (119) | MDV039.5 | 61,664–62,023 (119) | LORF5 | 60,415–60,774 (119) | MDV039.5 | 61,444–61,803 (119) |
LORF6 | 88,119–88,586 (155) | LORF6 | 86,615–87,082 (155) | MDV049.5 | 88,832–89,299 (155) | LORF6 | 87,493–87,960 (155) | MDV049.5 | 88,510–88,977 (155) |
LORF7 | 91,537–91,899 (120) | LORF7 | 90,033–90,395 (120) | MDV050.5 | 92,250–92,612 (120) | LORF7 | 90,911–91,273 (120) | MDV050.5 | 91,928–92,290 (120) |
LORF8 | 104,992–104,366 (208) | LORF8 | 103,493–102,867 (208) | MDV057.8 | 105,706–105,080 (208) | LORF8 | 104,366–103,740 (208) | MDV057.8 | 105,386–104,760 (208) |
MDV069 | 121,289–120,480 (269) | LORF9 | 119,794–118,985 (269) | MDV069 | 122,003–121,194 (269) | LORF9 | 120,665–119,856 (269) | MDV069 | 121,664–120,855 (269) |
MDV071 | 122,897–122,313 (194) | LORF10 | 121,399–120,818 (193) | MDV071 | 123,611–123,027 (194) | LORF10 | 122,273–121,689 (194) | MDV071 | 123,272–122,688 (194) |
MDV072 | 126,241–123,530 (903) | LORF11 | 124,742–122,031 (903) | MDV072 | 126,955–124,244 (903) | LORF11 | 125,617–122,906 (903) | MDV072 | 126,616–123,905 (903) |
LORF12 | 126,823–126,443 (126) | LORF12 | 125,390–124,944 (148) | MDV072.8 | 127,537–127,157 (126) | LORF12 | 126,199–125,819 (126) | MDV072.8 | 127,198–126,818 (126) |
SORF1 | 153,253–152,981 or 165,191–165,463 (90) | SORF1 | 151,064–150,795 (89) | MDV086.6 | 154,585–154,241 (114) | SORF1 | 152,303–152,037 (88) | MDV086.6 | 154,835–154,605 (76) |
MDV087 | 153,443–153,982 (179) | SORF2 | 151,254–151,793 (179) | MDV087 | 154,775–155,314 (179) | SORF2 | 152,493–153,032 (179) | MDV087 | 155,025–155,564 (179) |
MDV090 | 156,785–155,730 (351) | SORF3 | 154,596–153,541 (351) | MDV090 | 158,117–157,062 (351) | SORF3 | 155,836–154,781 (351) | MDV090 | 158,366–157,311 (351) |
MDV093 | 159,254–159,697 (147) | SORF4 | 157,065–157,508 (147) | MDV093 | 160,586–161,029 (147) | SORF4 | 158,305–158,748 (147) | MDV093 | 160,835–161,278 (147) |
MDV097 | 165,001–164,552 (149) | – 4 | – | – | – | – | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Lupiani, B.; Reddy, S.M. Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek’s Disease Virus. Viruses 2021, 13, 974. https://doi.org/10.3390/v13060974
Liao Y, Lupiani B, Reddy SM. Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek’s Disease Virus. Viruses. 2021; 13(6):974. https://doi.org/10.3390/v13060974
Chicago/Turabian StyleLiao, Yifei, Blanca Lupiani, and Sanjay M. Reddy. 2021. "Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek’s Disease Virus" Viruses 13, no. 6: 974. https://doi.org/10.3390/v13060974
APA StyleLiao, Y., Lupiani, B., & Reddy, S. M. (2021). Latest Insights into Unique Open Reading Frames Encoded by Unique Long (UL) and Short (US) Regions of Marek’s Disease Virus. Viruses, 13(6), 974. https://doi.org/10.3390/v13060974