Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Viruses
2.2. Chimeric Plasmid Construction
2.3. Recovery of Chimeric Virus ChiVax-WN01
2.4. Plaque Assay
2.5. Growth Curves
2.6. Morphology
2.7. Genetic Stability Assay
2.8. Virulence in Mice
2.9. Assessment of Virus Distributions in Infected Mice
2.10. Microneutralization Assay
2.11. ELISpot IFN-γ, IL-2, and IL-4 Assay
2.12. Statistical Analysis
3. Results
3.1. Chimeric Plasmid Construction
3.2. Chimeric Virus Recovery, CPE, and Virus Stability
3.3. Plaque Morphology
3.4. Growth Curves
3.5. Virion Morphology
3.6. ChiVax-WN01 Virulence in Mice
3.7. Virus Distributions in Mice
3.8. Neutralizing Antibody Titers
3.9. Cytokine Secretion by Restimulated Splenocytes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gould, E.A.; Solomon, T. Pathogenic flaviviruses. Lancet 2008, 371, 500–509. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. Soc. Trop. Med. Hyg. 1940, 20, 471–472. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Roehrig, J.T.; Deubel, V.; Smith, J.; Parker, M.; Steele, K.; Crise, B.; Volpe, K.E.; Crabtree, M.B.; Scherret, J.H.; et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 1999, 286, 2333–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APHIS West Nile Virus (WNV). Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/equine/wnv/west-nile-virus (accessed on 29 December 2020).
- CDC West Nile Virus Disease Cases and Deaths Reported to CDC by Year and Clinical Presentation, 1999–2019. Available online: https://www.cdc.gov/westnile/statsmaps/cumMapsData.html#one (accessed on 18 June 2021).
- Knipe, D.M.; Howley, P.M. Fields Virology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; p. 1. [Google Scholar]
- Kaiser, J.A.; Barrett, A.D.T. Twenty Years of Progress Toward West Nile Virus Vaccine Development. Viruses 2019, 11, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monath, T.P.; Liu, J.; Kanesa-Thasan, N.; Myers, G.A.; Nichols, R.; Deary, A.; McCarthy, K.; Johnson, C.; Ermak, T.; Shin, S.; et al. A live, attenuated recombinant West Nile virus vaccine. Proc. Natl. Acad. Sci. USA 2006, 103, 6694–6699. [Google Scholar] [CrossRef] [Green Version]
- Biedenbender, R.; Bevilacqua, J.; Gregg, A.M.; Watson, M.; Dayan, G. Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. J. Infect. Dis. 2011, 203, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Dayan, G.H.; Bevilacqua, J.; Coleman, D.; Buldo, A.; Risi, G. Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults >/= 50 years of age. Vaccine 2012, 30, 6656–6664. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile virus live-attenuated vaccine: Preclinical evaluation of safety, immunogenicity, and efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef] [Green Version]
- Li, X.F.; Zhao, W.; Lin, F.; Ye, Q.; Wang, H.J.; Yang, D.; Li, S.H.; Zhao, H.; Xu, Y.P.; Ma, J.; et al. Development of chimaeric West Nile virus attenuated vaccine candidate based on the Japanese encephalitis vaccine strain SA14-14-2. J. Gen. Virol. 2013, 94 Pt 12, 2700–2709. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P.N.; Terpening, S.J.; Snow, D.; Cobb, R.R.; Kistner, O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev. Vaccines 2017, 16, 883–894. [Google Scholar] [CrossRef]
- Woods, C.W.; Sanchez, A.M.; Swamy, G.K.; McClain, M.T.; Harrington, L.; Freeman, D.; Poore, E.A.; Slifka, D.K.; Poer DeRaad, D.E.; Amanna, I.J.; et al. An observer blinded, randomized, placebo-controlled, phase I dose escalation trial to evaluate the safety and immunogenicity of an inactivated West Nile virus Vaccine, HydroVax-001, in healthy adults. Vaccine 2019, 37, 4222–4230. [Google Scholar] [CrossRef]
- Durbin, A.P.; Wright, P.F.; Cox, A.; Kagucia, W.; Elwood, D.; Henderson, S.; Wanionek, K.; Speicher, J.; Whitehead, S.S.; Pletnev, A.G. The live attenuated chimeric vaccine rWN/DEN4Delta30 is well-tolerated and immunogenic in healthy flavivirus-naive adult volunteers. Vaccine 2013, 31, 5772–5777. [Google Scholar] [CrossRef] [Green Version]
- Pierce, K.K.; Whitehead, S.S.; Kirkpatrick, B.D.; Grier, P.L.; Jarvis, A.; Kenney, H.; Carmolli, M.P.; Reynolds, C.; Tibery, C.M.; Lovchik, J.; et al. A Live Attenuated Chimeric West Nile Virus Vaccine, rWN/DEN4Delta30, Is Well Tolerated and Immunogenic in Flavivirus-Naive Older Adult Volunteers. J. Infect. Dis. 2017, 215, 52–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, T.J.; Nickells, M. Neuroadapted yellow fever virus 17D: Genetic and biological characterization of a highly mouse-neurovirulent virus and its infectious molecular clone. J. Virol. 2001, 75, 10912–10922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y. Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. Vaccine 2010, 28, 3635–3641. [Google Scholar] [CrossRef]
- Yongxin, Y. Development of Japanese Encephalitis Attenuated Live Vaccine Virus SA14-14-2 and its Charcteristics. In Encephalitis; Tkachev, S., Ed.; InTech: London, UK, 2013; p. 181. [Google Scholar]
- Li, G.; Jin, H.; Nie, X.; Zhao, Y.; Feng, N.; Cao, Z.; Tan, S.; Zhang, B.; Gai, W.; Yan, F.; et al. Development of a reverse genetics system for Japanese encephalitis virus strain SA14-14-2. Virus Genes 2019, 55, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Deng, Y.Q.; Yang, H.Q.; Zhao, H.; Jiang, T.; Yu, X.D.; Li, S.H.; Ye, Q.; Zhu, S.Y.; Wang, H.J.; et al. A chimeric dengue virus vaccine using Japanese encephalitis virus vaccine strain SA14-14-2 as backbone is immunogenic and protective against either parental virus in mice and nonhuman primates. J. Virol. 2013, 87, 13694–13705. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, C.S.; Miller, S.E. Modern uses of electron microscopy for detection of viruses. Clin. Microbiol. Rev. 2009, 22, 552–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuley, A.J.; Torres, M.; Plante, J.A.; Huang, C.Y.; Bente, D.A.; Beasley, D.W.C. Recovery of West Nile Virus Envelope Protein Domain III Chimeras with Altered Antigenicity and Mouse Virulence. J. Virol. 2016, 90, 4757–4770. [Google Scholar] [CrossRef] [Green Version]
- Chi, H.; Zheng, X.; Wang, X.; Wang, C.; Wang, H.; Gai, W.; Perlman, S.; Yang, S.; Zhao, J.; Xia, X. DNA vaccine encoding Middle East respiratory syndrome coronavirus S1 protein induces protective immune responses in mice. Vaccine 2017, 35, 2069–2075. [Google Scholar] [CrossRef]
- Li, E.; Chi, H.; Huang, P.; Yan, F.; Zhang, Y.; Liu, C.; Wang, Z.; Li, G.; Zhang, S.; Mo, R.; et al. A Novel Bacterium-Like Particle Vaccine Displaying the MERS-CoV Receptor-Binding Domain Induces Specific Mucosal and Systemic Immune Responses in Mice. Viruses 2019, 11, 799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gennaro, A.; Lorusso, A.; Casaccia, C.; Conte, A.; Monaco, F.; Savini, G. Serum neutralization assay can efficiently replace plaque reduction neutralization test for detection and quantitation of West Nile virus antibodies in human and animal serum samples. Clin. Vaccine Immunol. 2014, 21, 1460–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, H.; Lili, J.; Zhiwei, S.; Zhiwei, W.; Weiyuan, Y.; Yongxin, Y. Construction of Infectious Japanese Encephalitis Virus cDNA Clones and Acquirement of Recovered Virus. Chin. J. Virol. 2003, 19, 314. [Google Scholar]
Primer Names | Primer Sequences 5′→3′ | bp |
---|---|---|
K-F | TCTGCGGCCGCTAATACGAC | 505 |
K-R | GGCTCCTGCACAAGCTATGACA | |
L-F | TGTCATAGCTTGTGCAGGAGCCGTTACCCTCTCTAACTTCCAAGGG | 2017 |
L-R | GTTCACGGAGAGGAAGAGCAGA | |
M-F | TTCTGCTCTTCCTCTCCGTGAACGTGCATGCTGACACTGGATGTG | 1008 |
M-R | CTGTCCGGAATCGTAGGGGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Meng, X.; Ren, Z.; Li, E.; Yan, F.; Liu, J.; Zhang, Y.; Cui, Z.; Li, Y.; Jin, H.; et al. Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone. Viruses 2021, 13, 1262. https://doi.org/10.3390/v13071262
Li G, Meng X, Ren Z, Li E, Yan F, Liu J, Zhang Y, Cui Z, Li Y, Jin H, et al. Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone. Viruses. 2021; 13(7):1262. https://doi.org/10.3390/v13071262
Chicago/Turabian StyleLi, Guohua, Xianyong Meng, Zhiguang Ren, Entao Li, Feihu Yan, Jing Liu, Ying Zhang, Zhanding Cui, Yuetao Li, Hongli Jin, and et al. 2021. "Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone" Viruses 13, no. 7: 1262. https://doi.org/10.3390/v13071262
APA StyleLi, G., Meng, X., Ren, Z., Li, E., Yan, F., Liu, J., Zhang, Y., Cui, Z., Li, Y., Jin, H., Cao, Z., Yi, L., Huang, P., Chi, H., Wang, H., Sun, W., Wang, T., Gao, Y., Zhao, Y., ... Xia, X. (2021). Characteristics of Chimeric West Nile Virus Based on the Japanese Encephalitis Virus SA14-14-2 Backbone. Viruses, 13(7), 1262. https://doi.org/10.3390/v13071262