Mathematical Modelling of the Molecular Mechanisms of Interaction of Tenofovir with Emtricitabine against HIV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Mechanism of Action (MMOA) Model
2.2. Multiple Drugs
2.3. MMOA Modifications to Account for Direct Drug–Drug Interactions
2.3.1. dNTP Pool Alterations
2.3.2. Inhibition of the Excision Rate (DEC Formation)
2.3.3. Model Set-Up
2.4. Analysis of Interaction through Common Interactions Metrics
3. Results
3.1. Single Drug Dose Response Curve Is an EMAX Equation
3.2. Modelling Combination Effects Using the MMOA Model
3.2.1. Unmodified Model
3.2.2. DEC Formation
3.2.3. dNTP Pool Alterations
3.2.4. dNTP Pool Alterations and DEC Formation
3.3. Analysis Using the Combination Index
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: A key class of antiviral drugs. Nat. Rev. Drug Discov. 2005, 4, 928–940. [Google Scholar] [CrossRef]
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013, 12, 447–464. [Google Scholar] [CrossRef] [PubMed]
- Delang, L.; Abdelnabi, R.; Neyts, J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antivir. Res. 2018, 153, 85–94. [Google Scholar] [CrossRef]
- Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antivir. Res. 2014, 105, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 2020, 19, 149–150. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.A.; Pannek, S.; Fichtenbaum, C.J. Emerging reverse transcriptase inhibitors for HIV-1 infection. Expert Opin. Emerg. Drugs 2018, 23, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, M. HIV-1 pathogenesis. Nat. Med. 2003, 9, 853–860. [Google Scholar] [CrossRef]
- Painter, G.R.; Almond, M.R.; Mao, S.; Liotta, D.C. Biochemical and mechanistic basis for the activity of nucleoside analogue inhibitors of HIV reverse tran-scriptase. Curr. Top. Med. Chem. 2004, 4, 1035–1044. [Google Scholar] [CrossRef]
- Boyer, P.L.; Sarafianos, S.G.; Arnold, E.; Hughes, S.H. Selective Excision of AZTMP by Drug-Resistant Human Immunodeficiency Virus Reverse Transcriptase. J. Virol. 2001, 75, 4832–4842. [Google Scholar] [CrossRef] [Green Version]
- von Kleist, M.; Metzner, P.; Marquet, R.; Schütte, C. HIV-1 polymerase inhibition by nucleoside analogs: Cellular- and kinetic parameters of efficacy, suscep-tibility and resistance selection. PLoS Comput. Biol. 2012, 8, e1002359. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.; Lama, J.R.; Anderson, P.L.; Mcmahan, V.; Liu, A.Y.; Vargas, L.; Goicochea, P.; Casapía, M.; Guanira, J.; Ramirez-Cardich, M.E.; et al. Preexposure Chemoprophylaxis for HIV Prevention in Men Who Have Sex with Men. New Engl. J. Med. 2010, 363, 2587–2599. [Google Scholar] [CrossRef] [Green Version]
- Luz, P.M.; Osher, B.; Grinsztejn, B.; MacLean, R.L.; Losina, E.; E Stern, M.; Struchiner, C.J.; A Parker, R.; A Freedberg, K.; Mesquita, F.; et al. The cost-effectiveness of HIV pre-exposure prophylaxis in men who have sex with men and transgender women at high risk of HIV infection in Brazil. J. Int. AIDS Soc. 2018, 21, e25096. [Google Scholar] [CrossRef]
- Walensky, R.P.; Horn, T.; McCann, N.C.; Freedberg, K.A.; Paltiel, A.D. Comparative Pricing of Branded Tenofovir Alafenamide-Emtricitabine Relative to Generic Tenofovir Disoproxil Fumarate-Emtricitabine for HIV Preexposure Prophylaxis: A Cost-Effectiveness Analysis. Ann. Intern. Med. 2020, 172, 583–590. [Google Scholar] [CrossRef]
- Anderson, P.L.; Kiser, J.J.; Gardner, E.M.; Rower, J.E.; Meditz, A.; Grant, R. Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J. Antimicrob. Chemother. 2010, 66, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Borroto-Esoda, K.; E Vela, J.; Myrick, F.; Ray, A.S.; Miller, M.D. In vitro evaluation of the anti-HIV activity and metabolic interactions of tenofovir and emtricitabine. Antivir. Ther. 2006, 11, 377–384. [Google Scholar]
- Feng, J.Y.; Ly, J.K.; Myrick, F.; Goodman, D.; White, K.L.; Svarovskaia, E.S.; Borroto-Esoda, K.; Miller, M.D. The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: A mechanism of action study. Retrovirology 2009, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, R.; Feng, J.Y.; Miller, M.D.; White, K.L. Dead-end complexes contribute to the synergistic inhibition of HIV-1 RT by the combination of rilpivirine, emtricitabine, and tenofovir. Antivir. Res. 2014, 101, 131–135. [Google Scholar] [CrossRef]
- Chou, T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug com-bination studies. Pharmacol. Rev. 2006, 58, 621–681. [Google Scholar] [CrossRef]
- Chou, T.-C. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method. Cancer Res. 2010, 70, 440–446. [Google Scholar] [CrossRef] [Green Version]
- Ianevski, A.; Giri, A.K.; Gautam, P.; Kononov, A.; Potdar, S.; Saarela, J.; Wennerberg, K.; Aittokallio, T. Prediction of drug combination effects with a minimal set of experiments. Nat. Mach. Intell. 2019, 1, 568–577. [Google Scholar] [CrossRef]
- Tendler, A.; Zimmer, A.; Mayo, A.; Alon, U. Noise-precision tradeoff in predicting combinations of mutations and drugs. PLoS Comput. Biol. 2019, 15, e1006956. [Google Scholar] [CrossRef]
- Geva-Zatorsky, N.; Dekel, E.; Cohen, A.A.; Danon, T.; Cohen, L.; Alon, U. Protein Dynamics in Drug Combinations: A Linear Superposition of Individual-Drug Responses. Cell 2010, 140, 643–651. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Zhu, F.; Ma, X.; Cao, Z.W.; Li, Y.X.; Chen, Y.Z. Mechanisms of drug combinations: Interaction and network perspectives. Nat. Rev. Drug Discov. 2009, 8, 111–128. [Google Scholar] [CrossRef]
- Jonker, D.M.; Visser, S.A.; van der Graaf, P.H.; Voskuyl, R.A.; Danhof, M. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol. Ther. 2005, 106, 1–18. [Google Scholar] [CrossRef]
- Koch, G.; Schropp, J.; Jusko, W.J. Assessment of non-linear combination effect terms for drug-drug interactions. J. Pharmacokinet. Pharmacodyn. 2016, 43, 461–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlot, A.; Aniceto, N.; Menden, M.P.; Ulrich-Merzenich, G.; Bender, A. Applying synergy metrics to combination screening data: Agreements, disagreements and pitfalls. Drug Discov. Today 2019, 24, 2286–2298. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Castillo-Mancilla, J.; Seifert, S.M.; McAllister, K.B.; Zheng, J.-H.; Bushman, L.R.; MaWhinney, S.; Anderson, P.L. Analysis of the Endogenous Deoxynucleoside Triphosphate Pool in HIV-Positive and -Negative Individuals Receiving Tenofovir-Emtricitabine. Antimicrob. Agents Chemother. 2016, 60, 5387–5392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruijssers, A.J.; Denison, M. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol. 2019, 35, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Duwal, S.; von Kleist, M. Top-down and bottom-up modeling in system pharmacology to understand clinical efficacy: An example with NRTIs of HIV-1. Eur. J. Pharm. Sci. 2016, 94, 72–83. [Google Scholar] [CrossRef]
- Duwal, S.; Sunkara, V.; Von Kleist, M. Multiscale Systems-Pharmacology Pipeline to Assess the Prophylactic Efficacy of NRTIs Against HIV-1. CPT Pharmacomet. Syst. Pharmacol. 2016, 5, 377–387. [Google Scholar] [CrossRef]
- Thomas, D.C.; Voronin, Y.A.; Nikolenko, G.N.; Chen, J.; Hu, W.-S.; Pathak, V.K. Determination of the Ex Vivo Rates of Human Immunodeficiency Virus Type 1 Reverse Transcription by Using Novel Strand-Specific Amplification Analysis. J. Virol. 2007, 81, 4798–4807. [Google Scholar] [CrossRef] [Green Version]
- Briggs, J.; Simon, M.N.; Gross, I.; Kräusslich, H.-G.; Fuller, S.D.; Vogt, V.M.; Johnson, M.C. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 2004, 11, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, H.; Siliciano, J.D.; Siliciano, R.F. Kinetics of Human Immunodeficiency Virus Type 1 Decay following Entry into Resting CD4 + T Cells. J. Virol. 2005, 79, 2199–2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Peterson, S.; Sedaghat, A.R.; McMahon, M.A.; Callender, M.; Zhang, H.; Zhou, Y.; Pitt, E.; Anderson, K.S.; Acosta, E.P.; et al. Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat. Med. 2008, 14, 762–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, R.; Hluhanich, R.; McColl, D.M.; Miller, M.D.; White, K.L. The Combined Anti-HIV-1 Activities of Emtricitabine and Tenofovir plus the Integrase Inhibitor Elvitegravir or Raltegravir Show High Levels of SynergyIn Vitro. Antimicrob. Agents Chemother. 2014, 58, 6145–6150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uglietti, A.; Zanaboni, D.; Gnarini, M.; Maserati, R. Emtricitabine/tenofovir in the treatment of HIV infection: Current PK/PD evaluation. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1305–1314. [Google Scholar] [CrossRef]
- Garrett, K.L.; Chen, J.; Maas, B.M.; Cottrell, M.L.; Prince, H.A.; Sykes, C.; Schauer, A.P.; White, N.; Dumond, J.B. A Pharmacokinetic/Pharmacodynamic Model to Predict Effective HIV Prophylaxis Dosing Strategies for People Who Inject Drugs. J. Pharmacol. Exp. Ther. 2018, 367, 245–251. [Google Scholar] [CrossRef]
- Gao, H.-Q.; Boyer, P.L.; Sarafianos, S.G.; Arnold, E.; Hughes, S.H. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J. Mol. Biol. 2000, 300, 403–418. [Google Scholar] [CrossRef] [Green Version]
- Isel, C.; Ehresmann, C.; Walter, P.; Ehresmann, B.; Marquet, R. The Emergence of Different Resistance Mechanisms toward Nucleoside Inhibitors Is Explained by the Properties of the Wild Type HIV-1 Reverse Transcriptase. J. Biol. Chem. 2001, 276, 48725–48732. [Google Scholar] [CrossRef] [Green Version]
- Meyer, P.R.; Matsuura, S.E.; Mian, A.M.; So, A.G.; Scott, W.A. A mechanism of AZT resistance: An increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol. Cell. 1999, 4, 35–43. [Google Scholar] [CrossRef]
- Tong, W.; Lu, C.-D.; Sharma, S.K.; Matsuura, S.; So, A.G.; Scott, W.A. Nucleotide-Induced Stable Complex Formation by HIV-1 Reverse Transcriptase†. Biochemistry 1997, 36, 5749–5757. [Google Scholar] [CrossRef] [PubMed]
- Wooten, D.J.; Albert, R. synergy: A Python library for calculating, analyzing and visualizing drug combination synergy. Bioinformatics 2021, 37, 1473–1474. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.R.; Chittick, G.E.; Begley, J.A.; Zong, J. Steady-State Pharmacokinetics of Emtricitabine and Tenofovir Disoproxil Fumarate Administered Alone and in Combination in Healthy Volunteers. J. Clin. Pharmacol. 2007, 47, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.; Veikley, W.; Durand-Gasselin, L.; Babusis, D.; Reddy, Y.S.; Flaherty, J.F.; Ray, A.S. Intracellular Nucleotide Levels during Coadministration of Tenofovir Disoproxil Fumarate and Didanosine in HIV-1-Infected Patients. Antimicrob. Agents Chemother. 2011, 55, 1549–1555. [Google Scholar] [CrossRef] [Green Version]
- Goicoechea, M.; Jain, S.; Bi, L.; Kemper, C.; Daar, E.S.; Diamond, C.; Ha, B.; Flaherty, J.; Sun, S.; Richman, D.; et al. Abacavir and tenofovir disoproxil fumarate co-administration results in a nonadditive antiviral effect in HIV-1-infected patients. AIDS 2010, 24, 707–716. [Google Scholar] [CrossRef]
- Yoshida, Y.; Honma, M.; Kimura, Y.; Abe, H. Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIV-1 Reverse Transcriptase Inhibitors (NRTIs). ChemMedChem 2021, 16, 743–766. [Google Scholar] [CrossRef]
- Bousquet, L.; Pruvost, A.; Guyot, A.-C.; Farinotti, R.; Mabondzo, A. Combination of Tenofovir and Emtricitabine plus Efavirenz: In Vitro Modulation of ABC Transporter and Intracellular Drug Accumulation. Antimicrob. Agents Chemother. 2009, 53, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.; Izumidani, T.; Seo, Y.; Ishibashi, A. [Distal aneurysm of posterior inferior cerebellar artery: Report of two cases--pitfall in diagnosis]. No Shinkei Geka 1990, 18, 1121–1127. [Google Scholar]
- Das, K.; E Martinez, S.; Bauman, J.D.; Arnold, E. HIV-1 reverse transcriptase complex with DNA and nevirapine reveals non-nucleoside inhibition mechanism. Nat. Struct. Mol. Biol. 2012, 19, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Esnouf, R.; Ren, J.; Ross, C.; Jones, Y.; Stammers, D.; Stuart, D. Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat. Struct. Mol. Biol. 1995, 2, 303–308. [Google Scholar] [CrossRef]
- Temiz, N.A.; Bahar, I. Inhibitor binding alters the directions of domain motions in HIV-1 reverse transcriptase. Proteins Struct. Funct. Bioinform. 2002, 49, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Lehár, J.; Stockwell, B.R.; Giaever, G.; Nislow, C. Combination chemical genetics. Nat. Chem. Biol. 2008, 4, 674–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehár, J.; Zimmermann, G.R.; Krueger, A.S.; Molnar, R.A.; Ledell, J.T.; Heilbut, A.M.; Short, G.F.; Giusti, L.C.; Nolan, G.P.; Magid, O.A.; et al. Chemical combination effects predict connectivity in biological systems. Mol. Syst. Biol. 2007, 3, 80. [Google Scholar] [CrossRef] [PubMed]
KD [M] | kpol [s−1] | Intracellular Concentration [M] | |
---|---|---|---|
dATP | 7.8 | 44.8 | 1.7 |
dTTP | 15.3 | 15.6 | 1.5 |
dCTP | 18.25 | 10.2 | 1.9 |
dGTP | 10.5 | 20 | 1.7 |
KD,dNTP [M] | kpol,dNTP[s−1] | ||
TFV-DP | 40.5 | 28 | - |
FTC-TP | 19 | 0.0563 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannuzzi, S.; von Kleist, M. Mathematical Modelling of the Molecular Mechanisms of Interaction of Tenofovir with Emtricitabine against HIV. Viruses 2021, 13, 1354. https://doi.org/10.3390/v13071354
Iannuzzi S, von Kleist M. Mathematical Modelling of the Molecular Mechanisms of Interaction of Tenofovir with Emtricitabine against HIV. Viruses. 2021; 13(7):1354. https://doi.org/10.3390/v13071354
Chicago/Turabian StyleIannuzzi, Sara, and Max von Kleist. 2021. "Mathematical Modelling of the Molecular Mechanisms of Interaction of Tenofovir with Emtricitabine against HIV" Viruses 13, no. 7: 1354. https://doi.org/10.3390/v13071354
APA StyleIannuzzi, S., & von Kleist, M. (2021). Mathematical Modelling of the Molecular Mechanisms of Interaction of Tenofovir with Emtricitabine against HIV. Viruses, 13(7), 1354. https://doi.org/10.3390/v13071354