Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Primers and Probes
2.2. Cells and Viruses
2.3. Virus Titration
2.4. RNA Isolation
2.5. Preparation of In Vitro RNA Transcripts
2.6. Real-Time One-Step RT-PCR Analysis
3. Results
3.1. Synthetic RNA Transcript Standards for Real-Time One-Step RT-PCR Assays
3.2. Detection Limits of the Assays
3.3. Specificity of the Assays
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Baseler, L.; Chertow, D.S.; Johnson, K.M.; Feldmann, H.; Morens, D.M. The Pathogenesis of Ebola Virus Disease. Annu. Rev. Pathol. Mech. Dis. 2017, 12, 387–418. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, H.S.A.; Geisbert, T.W. Filoviridae: Marburg and Ebola viruses. In Fields Vi-Rology, 1, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2013; pp. 923–952. [Google Scholar]
- Languon, S.; Quaye, O. Filovirus Disease Outbreaks: A Chronological Overview. Virol. Res. Treat. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Gulland, A. Ebola outbreak in west Africa is officially over. BMJ 2016, 352, i243. [Google Scholar] [CrossRef]
- Van Kerkhove, M.D.; Bento, A.I.; Mills, H.L.; Ferguson, N.; Donnelly, C. A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. Sci. Data 2015, 2, 150019. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Ebola Virus Disease-Democratic Republic of the Congo; Dis Outbreak News. 2021. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2021-DON310 (accessed on 10 February 2021).
- Mbala-Kingebeni, P.; Pratt, C.; Wiley, M.; Diagne, M.M.; Makiala-Mandanda, S.; Aziza, A.; Di Paola, N.; Chitty, J.A.; Diop, M.; Ayouba, A.; et al. 2018 Ebola virus disease outbreak in Équateur Province, Democratic Republic of the Congo: A retrospective genomic characterisation. Lancet Infect. Dis. 2019, 19, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Kortepeter, M.G.; Bausch, D.G.; Bray, M. Basic Clinical and Laboratory Features of Filoviral Hemorrhagic Fever. J. Infect. Dis. 2011, 204, S810–S816. [Google Scholar] [CrossRef] [Green Version]
- WHO: WHO Prequalifies Ebola Vaccine, Paving the Way for Its Use in High-Risk Countries. 2019. Available online: https://www.who.int/news/item/12-11-2019-who-prequalifies-ebola-vaccine-paving-the-way-for-its-use-in-high-risk-countries (accessed on 12 November 2019).
- Butler, D. Ebola experts seek to expand testing. Nat. Cell Biol. 2014, 516, 154–155. [Google Scholar] [CrossRef] [Green Version]
- Nkoghe, D.; Leroy, E.; Toung-Mve, M.; Gonzalez, J.-P. Cutaneous manifestations of filovirus infections. Int. J. Dermatol. 2012, 51, 1037–1043. [Google Scholar] [CrossRef]
- Hidalgo, J.; Richards, G.A.; Jiménez, J.I.S.; Baker, T.; Amin, P. Viral hemorrhagic fever in the tropics: Report from the task force on tropical diseases by the World Federation of Societies of Intensive and Critical Care Medicine. J. Crit. Care 2017, 42, 366–372. [Google Scholar] [CrossRef] [PubMed]
- WHO Ebola Response Team. After Ebola in West Africa—Unpredictable Risks, Preventable Epidemics. N. Engl. J. Med. 2016, 375, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Drosten, C.; Kümmerer, B.M.; Schmitz, H.; Günther, S. Molecular diagnostics of viral hemorrhagic fevers. Antivir. Res. 2003, 57, 61–87. [Google Scholar] [CrossRef]
- Walker, N.; Brown, C.; Youkee, D.; Baker, P.A.; Williams, N.; Kalawa, A.; Russell, K.; Samba, A.F.; Bentley, N.; Koroma, F.; et al. Evaluation of a point-of-care blood test for identification of Ebola virus disease at Ebola holding units, Western Area, Sierra Leone, January to February 2015. Eurosurveillance 2015, 20, 21073. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, M.J.; Kelly, J.D.; Miller, A.; Semper, A.; Bailey, D.; Groppelli, E.; Simpson, A.; Brooks, T.; Hula, S.; Nyoni, W.; et al. ReEBOV Antigen Rapid Test kit for point-of-care and laboratory-based testing for Ebola virus disease: A field validation study. Lancet 2015, 386, 867–874. [Google Scholar] [CrossRef]
- Nouvellet, P.; Garske, T.; Mills, H.L.; Nedjati-Gilani, G.; Hinsley, W.; Blake, I.; Van Kerkhove, M.D.; Cori, A.; Dorigatti, I.; Jombart, T.; et al. The role of rapid diagnostics in managing Ebola epidemics. Nat. Cell Biol. 2015, 528, S109–S116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieters, M.; Daniels, J.; Rovira, A. Comparison of sample types and diagnostic methods for in vivo detectionof Mycoplasma hyopneumoniae during early stages of infection. Vet. Microbiol. 2017, 203, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Cherpillod, P.; Schibler, M.; Vieille, G.; Cordey, S.; Mamin, A.; Vetter, P.; Kaiser, L. Ebola virus disease diagnosis by real-time RT-PCR: A comparative study of 11 different procedures. J. Clin. Virol. 2016, 77, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Drosten, C.; Göttig, S.; Schilling, S.; Asper, M.; Panning, M.; Schmitz, H.; Günther, S. Rapid Detection and Quantification of RNA of Ebola and Marburg Viruses, Lassa Virus, Crimean-Congo Hemorrhagic Fever Virus, Rift Valley Fever Virus, Dengue Virus, and Yellow Fever Virus by Real-Time Reverse Transcription-PCR. J. Clin. Microbiol. 2002, 40, 2323–2330. [Google Scholar] [CrossRef] [Green Version]
- Gibb, T.R.; Norwood, D.A., Jr.; Woollen, N.; Henchal, E.A. Development and evaluation of a fluorogenic 5′ nuclease assay to detect and differentiate between Ebola virus subtypes Zaire and Sudan. J. Clin. Microbiol. 2001, 39, 4125–4130. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wei, H.; Wang, Y.; Shi, Z.; Raoul, H.; Yuan, Z. Rapid detection of filoviruses by real-time TaqMan polymerase chain reaction assays. Virol. Sin. 2012, 27, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Towner, J.S.; Sealy, T.K.; Ksiazek, T.G.; Nichol, S.T. High-Throughput Molecular Detection of Hemorrhagic Fever Virus Threats with Applications for Outbreak Settings. J. Infect. Dis. 2007, 196, S205–S212. [Google Scholar] [CrossRef] [PubMed]
- Trombley, A.R.; Wachter, L.; Garrison, J.; Buckley-Beason, V.A.; Jahrling, J.; Hensley, L.; Schoepp, R.J.; Norwood, D.A.; Goba, A.; Fair, J.N.; et al. Comprehensive Panel of Real-Time TaqMan™ Polymerase Chain Reaction Assays for Detection and Absolute Quantification of Filoviruses, Arenaviruses, and New World Hantaviruses. Am. J. Trop. Med. Hyg. 2010, 82, 954–960. [Google Scholar] [CrossRef]
- World Health Organization. Laboratory Diagnosis of Ebola Virus Disease; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Towner, J.S.; Rollin, P.; Bausch, D.G.; Sanchez, A.; Crary, S.M.; Vincent, M.; Lee, W.F.; Spiropoulou, C.F.; Ksiazek, T.G.; Lukwiya, M.; et al. Rapid Diagnosis of Ebola Hemorrhagic Fever by Reverse Transcription-PCR in an Outbreak Setting and Assessment of Patient Viral Load as a Predictor of Outcome. J. Virol. 2004, 78, 4330–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhang, R.; Han, Y.; Chang, L.; Zhang, D.; Zhang, L.; Yang, X.; Liu, C.; Ding, J.; Zhang, K.; et al. The evaluation of 7 commercial real-time PCR kits for Zaire ebolavirus using virus-like particle–encapsulated EBOV RNA. Diagn. Microbiol. Infect. Dis. 2015, 83, 355–358. [Google Scholar] [CrossRef]
- Weidmann, M.; Mühlberger, E.; Hufert, F.T. Rapid detection protocol for filoviruses. J. Clin. Virol. 2004, 30, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Bai, L.; Hu, K.X.; Yang, Z.H.; Hu, J.P.; Wang, J. Multiplex real-time PCR method for rapid detection of M arburg virus and Ebola virus. Chin. J. Exp. Clin. Virol. 2012, 26, 313–315. [Google Scholar]
- Pang, Z.; Li, A.; Li, J.; Qu, J.; He, C.; Zhang, S.; Li, C.; Zhang, Q.; Liang, M.; Li, D. Comprehensive multiplex one-step re-al-time TaqMan qRT-PCR assays for detection and quantification of hemorrhagic fever viruses. PLoS ONE 2014, 9, e95635. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, Y.; Kargbo, B.; Zhang, C.; Feng, H.; Lu, H.; Liu, W.; Wang, C.; Hu, Y.; Deng, Y.; et al. Detection of Zaire Ebola virus by real-time reverse transcrip-tion-polymerase chain reaction, Sierra Leone, 2014. J. Virol. Methods 2015, 222, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Ro, Y.T.; Ticer, A.; Carrion, R., Jr.; Patterson, J.L. Rapid detection and quantification of Ebola Zaire virus by one-step re-al-time quantitative reverse transcription-polymerase chain reaction. Microbiol. Immunol. 2017, 61, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.S.; Wang, X.Y.; Hua, Y.; Wan, C.S. Establishment of real-time fluorescence-based quantitative PCR method for detect-ing Zaire ebolavirus. Mod. Prev. Med. 2018, 45, 324–329. [Google Scholar]
- Towner, J.S.; Sealy, T.K.; Khristova, M.L.; Albariño, C.G.; Conlan, S.; Reeder, S.A.; Quan, P.-L.; Lipkin, W.I.; Downing, R.; Tappero, J.W.; et al. Newly Discovered Ebola Virus Associated with Hemorrhagic Fever Outbreak in Uganda. PLoS Pathog. 2008, 4, e1000212. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.Q.; Zheng, K.; Su, J.K.; Fang, S.F.; Li, X.B.; Shi, Y.X.; Huang, J.C. Development of a duplex fluorescence RT-PCR assay for detecting four pathogenic subtypes of Ebola virus. South China J. Pr. Med. 2014, 40, 416–420. [Google Scholar]
- Dedkov, V.G.; Magassouba, N.; Safonova, M.V.; Bodnev, S.A.; Pyankov, O.V.; Camara, J.; Sylla, B.; Agafonov, A.P.; Maleev, V.V.; Shipulin, G.A. Sensitive Multiplex Real-time RT-qPCR Assay for the Detection of Filoviruses. Health Secur. 2018, 16, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, J.C.; Xia, H.; Shi, Y.X.; Ma, H.X.; Yuan, Z.M. Networking for training Level 3/4 biosafety laboratory staff. J. Biosaf. Biosecur. 2019, 1, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Racsa, L.D.; Kraft, C.S.; Olinger, G.; Hensley, L. Viral Hemorrhagic Fever Diagnostics. Clin. Infect. Dis. 2015, 62, 214–219. [Google Scholar] [CrossRef]
- Best, K.; Guedj, J.; Madelain, V.; de Lamballerie, X.; Lim, S.-Y.; Osuna, C.; Whitney, J.B.; Perelson, A.S. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies. Proc. Natl. Acad. Sci. USA 2017, 114, 8847–8852. [Google Scholar] [CrossRef] [Green Version]
- Martyushev, A.; Nakaoka, S.; Sato, K.; Noda, T.; Iwami, S. Modelling Ebola virus dynamics: Implications for therapy. Antivir. Res. 2016, 135, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Sissoko, D.; Duraffour, S.; Kerber, R.; Kolie, J.S.; Beavogui, A.H.; Camara, A.M.; Colin, G.; Rieger, T.; Oestereich, L.; Pályi, B.; et al. Persistence and clearance of Ebola vi-rus RNA from seminal fluid of Ebola virus disease survivors: A longitudinal analysis and modelling study. Lancet Glob. Health 2017, 5, e80–e88. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, G.; Vogt, F.; Moi Gbabai, O.B.; Decroo, T.; Keane, M.; de Clerck, H.; Grolla, A.; Brechard, R.; Stinson, K.; van Herp, M. The contribution of Ebola viral load at admission and other patient charac-teristics to mortality in a Médecins Sans Frontières ebola case management centre, Kailahun, Sierra Leone, June–October 2014. J. Infect. Dis. 2015, 212, 1752–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schieffelin, J.S.; Shaffer, J.G.; Goba, A.; Gbakie, M.; Gire, S.K.; Colubri, A.; Sealfon, R.S.; Kanneh, L.; Moigboi, A.; Momoh, M.; et al. Clinical illness and outcomes in patients with Ebola in Sierra Leone. N. Engl. J. Med. 2014, 371, 2092–2100. [Google Scholar] [CrossRef]
- Lanini, S.; Portella, G.; Vairo, F.; Kobinger, G.P.; Pesenti, A.; Langer, M.; Kabia, S.; Brogiato, G.; Amone, J.; Castilletti, C.; et al. Blood kinetics of Ebola virus in survivors and nonsurvivors. J. Clin. Investig. 2015, 125, 4692–4698. [Google Scholar] [CrossRef] [Green Version]
- de La Vega, M.-A.; Caleo, G.; Audet, J.; Qiu, X.; Kozak, R.A.; Brooks, J.I.; Kern, S.; Wolz, A.; Sprecher, A.; Greig, J.; et al. Ebola viral load at diagnosis associates with patient outcome and outbreak evolution. J. Clin. Investig. 2015, 125, 4421–4428. [Google Scholar] [CrossRef] [Green Version]
- Park, D.J.; Dudas, G.; Wohl, S.; Goba, A.; Whitmer, S.L.; Andersen, K.G.; Sealfon, R.S.; Ladner, J.T.; Kugelman, J.R.; Matranga, C.; et al. Ebola Virus Epidemiology, Transmission, and Evolution during Seven Months in Sierra Leone. Cell 2015, 161, 1516–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bah, E.I.; Lamah, M.-C.; Fletcher, T.; Jacob, S.; Brett-Major, D.M.; Sall, A.A.; Shindo, N.; Fischer, W.A.; Lamontagne, F.; Saliou, S.M.; et al. Clinical Presentation of Patients with Ebola Virus Disease in Conakry, Guinea. N. Engl. J. Med. 2015, 372, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Mate, S.E.; Kugelman, J.R.; Nyenswah, T.G.; Ladner, J.T.; Wiley, M.; Cordier-Lassalle, T.; Christie, A.; Schroth, G.P.; Gross, S.; Davies-Wayne, G.J.; et al. Molecular Evidence of Sexual Transmission of Ebola Virus. N. Engl. J. Med. 2015, 373, 2448–2454. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.D.; Richardson, E.T.; Barry, M.; Yeh, S.; Varkey, J.B.; Crozier, I.; Epstein, C.L.; Christopher, G.W. Persistent Ebola Virus in the Eye. N. Engl. J. Med. 2015, 373, 1981–1983. [Google Scholar] [CrossRef]
- Murphy, H. British nurse makes “full recovery” from reactivated Ebola virus. BMJ 2015, 351, h6133. [Google Scholar] [CrossRef] [PubMed]
- Moreau, M.; Spencer, C.; Gozalbes, J.G.; Colebunders, R.; Lefevre, A.; Gryseels, S.; Borremans, B.; Günther, S.; Becker, D.; Bore, J.A.; et al. Lactating mothers infected with Ebola virus: EBOV RT-PCR of blood only may be insufficient. Eurosurveillance 2015, 20, 21017. [Google Scholar] [CrossRef] [Green Version]
- Akerlund, E.; Prescott, J.; Tampellini, L. Shedding of Ebola Virus in an Asymptomatic Pregnant Woman. N. Engl. J. Med. 2015, 372, 2467–2469. [Google Scholar] [CrossRef] [Green Version]
- Kreuels, B.; Wichmann, D.; Emmerich, P.; Schmidt-Chanasit, J.; de Heer, G.; Kluge, S.; Sow, A.; Renné, T.; Günther, S.; Lohse, A.W.; et al. A case of severe Ebola virus infection complicated by Gram-negative septicemia. N. Engl. J. Med. 2014, 371, 2394–2401. [Google Scholar] [CrossRef]
- Bausch, D.G.; Towner, J.S.; Dowell, S.F.; Kaducu, F.; Lukwiya, M.; Sanchez, A.; Nichol, S.T.; Ksiazek, T.G.; Rollin, P. Assessment of the Risk of Ebola Virus Transmission from Bodily Fluids and Fomites. J. Infect. Dis. 2007, 196, S142–S147. [Google Scholar] [CrossRef] [Green Version]
- WHO. Ebola Maps: 2015. 2015. Available online: http://www.who.int/csr/disease/ebola/maps-2015/en/ (accessed on 11 December 2015).
- Schibler, M.; Vetter, P.; Cherpillod, P.; Petty, T.J.; Cordey, S.; Vieille, G.; Yerly, S.; Siegrist, C.-A.; Samii, K.; Dayer, J.-A.; et al. Clinical features and viral kinetics in a rapidly cured patient with Ebola virus disease: A case report. Lancet Infect. Dis. 2015, 15, 1034–1040. [Google Scholar] [CrossRef] [Green Version]
- Sissoko, D.; Laouenan, C.; Folkesson, E.; M’Lebing, A.-B.; Beavogui, A.-H.; Baize, S.; Camara, A.-M.; Maes, P.; Shepherd, S.; Danel, C.; et al. Experimental treatment with favipiravir for Ebola virus disease (the JIKI Tri-al): A historically controlled, single-arm proof-of-concept trial in Guinea. PLoS Med. 2016, 13, e1001967. [Google Scholar]
Virus Species | Target | Assay | Amplicon Size (bp) | Reference |
---|---|---|---|---|
EBOV | NP | ZENP-H | 80 | [22] |
ZENP-W | 70 | [28] | ||
ZENP-Y | 161 | [29] | ||
ZENP-P | 133 | [30] | ||
ZENP-L | 161 | [31] | ||
GP | ZEGP-T | 80 | [24] | |
ZEGP-R | 141 | [32] | ||
ZEGP-G | 112 | [21] | ||
ZEGP-L | 145 | [33] | ||
VP40 | ZEVP40-R | 161 | [32] | |
SUDV | NP | SENP-T04 | 69 | [26] |
SENP-T08 | 74 | [34] | ||
SENP-P | 103 | [30] | ||
SENP-W | 70 | [28] | ||
GP | SEGP-T | 77 | [24] | |
SEGP-G | 111 | [21] | ||
EBOV and SUDV | NP | ZSENP-Z | 123 | [35] |
TAFV | NP | TENP-P | 88 | [30] |
GP | TEGP-T | 79 | [24] | |
VP40 | TEVP40-D | 97 | [36] | |
BDBV | NP | BENP-T | 75 | [34] |
TAFV and BDBV | NP | TBENP-Z | 77 | [35] |
RESTV | VP40 | REVP40-T | 80 | [24] |
Assay | Standard Curve | Limits of Detection |
---|---|---|
ZENP-H | y = −3.3488x + 40.203 R2 = 1 | 101 RNA copies/μL |
ZENP-W | y = −3.1843x + 38.867 R2 = 1 | 100 RNA copies/μL |
ZENP-Y | y = −3.4368x + 41.094 R2 = 1 | 101 RNA copies/μL |
ZENP-P | y = −3.6168x + 42.187 R2 = 1 | 101 RNA copies/μL |
ZENP-L | Y = −3.4958x + 41.038 R2 = 1 | 101 RNA copies/μL |
ZSENP-Z | y = −3.2535x + 40.697 R2 = 1 | 101 RNA copies/μL (EBOV) |
ZEGP-T | y = −3.6921x + 46.095 R2 = 1 | 102 RNA copies/μL |
ZEGP-R | y = −3.3082x + 47.782 R2 = 1 | 103 RNA copies/μL |
ZEGP-G | y = −3.2236x + 45.698 R2 = 1 | 102 RNA copies/μL |
ZEGP-L | y = −3.3500x + 46.64 R2 = 1 | 102 RNA copies/μL |
ZEVP40-R | y = −3.7963x + 52.524 R2 = 1 | 104 RNA copies/μL |
SENP-T04 | y = −3.5607x + 55.573 R2 = 1 | 105 RNA copies/μL |
SENP-T08 | y = −3.4582x + 54.547 R2 = 1 | 105 RNA copies/μL |
SENP-P | y = −3.4264x + 54.151 R2 = 1 | 105 RNA copies/μL |
SENP-W | y = −3.4850x + 54.82 R2 = 1 | 105 RNA copies/μL |
ZSENP-Z | y = −3.4364x + 55.501 R2 = 1 | 105 RNA copies/μL (SUDV) |
SEGP-T | y = −3.1054x + 52.319 R2 = 1 | 104 RNA copies/μL |
SEGP-G | y = −3.1118x + 52.05 R2 = 1 | 104 RNA copies/μL |
TENP-P | y = −3.1736x + 53.329 R2 = 1 | 105 RNA copies/μL |
TBENP-Z | y = −3.3521x + 56.003 R2 = 1 | 105 RNA copies/μL (TAFV) |
TEGP-T | y = −3.1179x + 56.335 R2 = 1 | 106 RNA copies/μL |
TEVP40-D | y = −3.3279x + 47.471 R2 = 1 | 103 RNA copies/μL |
BENP-T | y = −3.5357x + 55.8 R2 = 1 | 105 RNA copies/μL |
TBENP-Z | y = −3.6682x + 57.733 R2 = 1 | 105 RNA copies/μL (BDBV) |
REVP40-T | y = −3.0955x + 52.095 R2 = 1 | 104 RNA copies/μL |
Assay | Standard Curve | Limits of Detection |
---|---|---|
ZENP-H | y = −3136x + 40.161 R2 = 1 | 10 TCID50/mL |
ZENP-W | y = −3.21x + 38.61 R2 = 1 | 1 TCID50/mL |
ZENP-Y | y = −3.4654x + 41.854 R2 = 1 | 10 TCID50/mL |
ZENP-P | y = −3.24x + 40.57 R2 = 1 | 10 TCID50/mL |
ZENP-L | y = −3.3863x + 40.029 R2 = 1 | 10 TCID50/mL |
ZSENP-Z | y = −3.49x + 41.96 R2 = 1 | 10 TCID50/mL |
ZEGP-T | y = −3.4126x + 40.644 R2 = 1 | 10 TCID50/mL |
ZEGP-R | y = −3.375x + 44.938 R2 = 1 | 100 TCID50/mL |
ZEGP-G | y = −3.4177x + 40.559 R2 = 1 | 10 TCID50/mL |
ZEGP-L | y = −3.3537x + 41.115 R2 = 1 | 10 TCID50/mL |
ZEVP40-R | y = −3.4574x + 41.346 R2 = 1 | 10 TCID50/mL |
Assay | In Vitro RNA Transcripts | Viral RNA |
---|---|---|
ZENP-H | 10 RNA copies/μL | 10 TCID50/mL |
ZENP-W | 1 RNA copies/μL | 1 TCID50/mL |
ZENP-Y | 10 RNA copies/μL | 10 TCID50/mL |
ZENP-P | 10 RNA copies/μL | 10 TCID50/mL |
ZENP-L | 10 RNA copies/μL | 10 TCID50/mL |
ZSENP-Z | 10 RNA copies/μL | 10 TCID50/mL |
ZEGP-T | 102 RNA copies/μL | 10 TCID50/mL |
ZEGP-R | 103 RNA copies/μL | 100 TCID50/mL |
ZEGP-G | 102 RNA copies/μL | 10 TCID50/mL |
ZEGP-L | 102 RNA copies/μL | 10 TCID50/mL |
ZEVP40-R | 104 RNA copies/μL | 10 TCID50/mL |
Assay | Virus | |||||
---|---|---|---|---|---|---|
EBOV | SUDV | TAFV | BDBV | RESTV | MARV | |
ZENP-H | + | − | − | − | − | − |
ZENP-W | + | − | − | − | − | − |
ZENP-Y | + | − | − | − | − | − |
ZENP-P | + | − | − | − | − | − |
ZENP-L | + | − | − | − | − | − |
ZEGP-T | + | − | − | − | − | − |
ZEGP-R | + | − | − | − | − | − |
ZEGP-G | + | − | − | − | − | − |
ZEGP-L | + | − | − | − | − | − |
ZEVP40−R | + | − | − | − | − | − |
ZSENP-Z | + | + | − | − | − | − |
SENP-T04 | − | + | − | − | − | − |
SENP-T08 | − | + | − | − | − | − |
SENP-P | − | + | − | − | − | − |
SENP-W | − | + | − | − | − | − |
SEGP-T | − | + | − | − | − | − |
SEGP-G | − | + | − | − | − | − |
TENP-P | − | − | + | − | − | − |
TBENP-Z | − | − | + | + | − | − |
TEGP-T | − | − | + | − | − | − |
TEVP40-D | − | − | + | − | − | − |
BENP-T | − | − | − | + | − | − |
REVP40-T | − | − | − | − | + | − |
Assay | Mean Ct Value | |
---|---|---|
Mayinga | Makona | |
ZENP-H * | 26.98 | 24.43 |
ZENP-W | 23.36 | 23.25 |
ZENP-Y * | 25.18 | 23.15 |
ZENP-P * | 25.96 | 24.44 |
ZENP-L | 24.62 | 23.45 |
ZEGP-T | 21.22 | 21.45 |
ZEGP-R | 23.02 | 23.01 |
ZEGP-G ** | 23.41 | 22.05 |
ZEGP-L | 24.02 | 24.41 |
ZEVP40-R ** | 27.36 | 33.26 |
ZSENP-Z * | 27.93 | 25.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Xiao, S.; Yuan, Z. Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus. Viruses 2021, 13, 1575. https://doi.org/10.3390/v13081575
Huang Y, Xiao S, Yuan Z. Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus. Viruses. 2021; 13(8):1575. https://doi.org/10.3390/v13081575
Chicago/Turabian StyleHuang, Yi, Shuqi Xiao, and Zhiming Yuan. 2021. "Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus" Viruses 13, no. 8: 1575. https://doi.org/10.3390/v13081575
APA StyleHuang, Y., Xiao, S., & Yuan, Z. (2021). Comparison and Evaluation of Real-Time Taqman PCR for Detection and Quantification of Ebolavirus. Viruses, 13(8), 1575. https://doi.org/10.3390/v13081575