Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection and Preparation
2.2. Viral RNA Extraction
2.3. Real-Time RT-PCR Targeted on 3D Sequence and Topotypes Specific Real-Time RT-PCRs Tailored for EA
2.4. Monoclonal Antibodies (MAbs)-Based ELISA for FMDV Antigen Detection and Serotyping (Ag-ELISA)
2.5. Virus Isolation on a Continuous Porcine Kidney Cell Line
2.6. VP1 Sequencing
3. Results
3.1. Pan FMDV Real-Time RT-PCR Targeted on 3D Gene
3.2. Ag-ELISA
3.3. VI Combined with Ag-ELISA on Culture Supernatants
3.4. Real-Time RT-PCRs Tailored to Topotypes Circulating in EA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachrach, H.L. Foot-and-Mouth Disease. Annu. Rev. Microbiol. 1968, 22, 201–244. [Google Scholar] [CrossRef]
- Knight-Jones, T.J.; Rushton, J. The Economic Impacts of Foot and Mouth Disease—What are they, how Big are they and Where do they Occur? Prev. Vet. Med. 2013, 112, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.G. Subtyping of Foot-and-Mouth Disease Virus. Dev. Biol. Stand. 1976, 35, 167–174. [Google Scholar] [PubMed]
- Grubman, M.J.; Baxt, B. Foot-and-Mouth Disease. Clin. Microbiol. Rev. 2004, 17, 465–493. [Google Scholar] [CrossRef]
- Jamal, S.M.; Belsham, G.J. Foot-and-Mouth Disease: Past, Present and Future. Vet. Res. 2013, 44, 116. [Google Scholar] [CrossRef]
- Domingo, E.; Menendez-Arias, L.; Holland, J.J. RNA Virus Fitness. Rev. Med. Virol. 1997, 7, 87–96. [Google Scholar] [CrossRef]
- Smith, M.T.; Bennett, A.M.; Grubman, M.J.; Bundy, B.C. Foot-and-Mouth Disease: Technical and Political Challenges to Eradication. Vaccine 2014, 32, 3902–3908. [Google Scholar] [CrossRef]
- FAO. Foot-and-mouth disease, January-March 2021, Quarterly report. In FAST reports: Foot-and-mouth and similar transboundary animal diseases.; FAO: Rome, Italy, 2021. [Google Scholar]
- Di Nardo, A.; Knowles, N.J.; Paton, D.J. Combining Livestock Trade Patterns with Phylogenetics to Help Understand the Spread of Foot and Mouth Disease in Sub-Saharan Africa, the Middle East and Southeast Asia. Rev. Sci. Tech. 2011, 30, 63–85. [Google Scholar] [CrossRef] [PubMed]
- Sumption, K.; Domenech, J.; Ferrari, G. Progressive Control of FMD on a Global Scale. Vet. Rec. 2012, 170, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Alexandersen, S.; Zhang, Z.; Donaldson, A.I.; Garland, A.J. The Pathogenesis and Diagnosis of Foot-and-Mouth Disease. J. Comp. Pathol. 2003, 129, 1–36. [Google Scholar] [CrossRef]
- Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 8th ed.; OIE: Paris, France, 2018; pp. 433–464.
- Grazioli, S.; Ferris, N.P.; Dho, G.; Pezzoni, G.; Morris, A.S.; Mioulet, V.; Brocchi, E. Development and Validation of a Simplified Serotyping ELISA Based on Monoclonal Antibodies for the Diagnosis of Foot-and-Mouth Disease Virus Serotypes O, A, C and Asia 1. Transbound. Emerg. Dis. 2020, 67, 3005–3015. [Google Scholar] [CrossRef]
- Callahan, J.D.; Brown, F.; Osorio, F.A.; Sur, J.H.; Kramer, E.; Long, G.W.; Lubroth, J.; Ellis, S.J.; Shoulars, K.S.; Gaffney, K.L.; et al. Use of a Portable Real-Time Reverse Transcriptase-Polymerase Chain Reaction Assay for Rapid Detection of Foot-and-Mouth Disease Virus. J. Am. Vet. Med. Assoc. 2002, 220, 1636–1642. [Google Scholar] [CrossRef]
- Moniwa, M.; Clavijo, A.; Li, M.; Collignon, B.; Kitching, P.R. Performance of a Foot-and-Mouth Disease Virus Reverse Transcription-Polymerase Chain Reaction with Amplification Controls between Three Real-Time Instruments. J. Vet. Diagn. Investig. 2007, 19, 9–20. [Google Scholar] [CrossRef]
- Reid, S.M.; Ebert, K.; Bachanek-Bankowska, K.; Batten, C.; Sanders, A.; Wright, C.; Shaw, A.E.; Ryan, E.D.; Hutchings, G.H.; Ferris, N.P.; et al. Performance of Real-Time Reverse Transcription Polymerase Chain Reaction for the Detection of Foot-and-Mouth Disease Virus during Field Outbreaks in the United Kingdom in 2007. J. Vet. Diagn. Investig. 2009, 21, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Ferris, N.P.; Hutchings, G.H.; Zhang, Z.; Belsham, G.J.; Alexandersen, S. Detection of all Seven Serotypes of Foot-and-Mouth Disease Virus by Real-Time, Fluorogenic Reverse Transcription Polymerase Chain Reaction Assay. J. Virol. Methods 2002, 105, 67–80. [Google Scholar] [CrossRef]
- Alexandersen, S.; Forsyth, M.A.; Reid, S.M.; Belsham, G.J. Development of Reverse Transcription-PCR (Oligonucleotide Probing) Enzyme-Linked Immunosorbent Assays for Diagnosis and Preliminary Typing of Foot-and-Mouth Disease: A New System using Simple and Aqueous-Phase Hybridization. J. Clin. Microbiol. 2000, 38, 4604–4613. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Ferris, N.P.; Hutchings, G.H.; De Clercq, K.; Newman, B.J.; Knowle, N.J.; Samuel, A.R. Diagnosis of Foot-and-Mouth Disease by RT-PCR: Use of Phylogenetic Data to Evaluate Primers for the Typing of Viral RNA in Clinical Samples. Arch. Virol. 2001, 146, 2421–2434. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Mioulet, V.; Knowles, N.J.; Shirazi, N.; Belsham, G.J.; King, D.P. Development of Tailored Real-Time RT-PCR Assays for the Detection and Differentiation of Serotype O, A and Asia-1 Foot-and-Mouth Disease Virus Lineages Circulating in the Middle East. J. Virol. Methods 2014, 207, 146–153. [Google Scholar] [CrossRef]
- Jamal, S.M.; Belsham, G.J. Development and Characterization of Probe-Based Real Time Quantitative RT-PCR Assays for Detection and Serotyping of Foot-and-Mouth Disease Viruses Circulating in West Eurasia. PLoS ONE 2015, 10, e0135559. [Google Scholar] [CrossRef]
- Ahmed, H.A.; Salem, S.A.; Habashi, A.R.; Arafa, A.A.; Aggour, M.G.; Salem, G.H.; Gaber, A.S.; Selem, O.; Abdelkader, S.H.; Knowles, N.J.; et al. Emergence of Foot-and-Mouth Disease Virus SAT 2 in Egypt during 2012. Transbound. Emerg. Dis. 2012, 59, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Bachanek-Bankowska, K.; Mero, H.R.; Wadsworth, J.; Mioulet, V.; Sallu, R.; Belsham, G.J.; Kasanga, C.J.; Knowles, N.J.; King, D.P. Development and Evaluation of Tailored Specific Real-Time RT-PCR Assays for Detection of Foot-and-Mouth Disease Virus Serotypes Circulating in East Africa. J. Virol. Methods 2016, 237, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Saduakassova, M.A.; Sultanov, A.A.; Kutumbetov, L.B.; Wadsworth, J.; Wood, B.A.; Knowles, N.J.; King, D.P.; Bachanek-Bankowska, K. Development and Evaluation of a Novel Real-Time RT-PCR to Detect Foot-and-Mouth Disease Viruses from the Emerging A/ASIA/G-VII Lineage. J. Virol. Methods 2018, 252, 37–41. [Google Scholar] [CrossRef]
- Casey-Bryars, M.; Reeve, R.; Bastola, U.; Knowles, N.J.; Auty, H.; Bachanek-Bankowska, K.; Fowler, V.L.; Fyumagwa, R.; Kazwala, R.; Kibona, T.; et al. Waves of Endemic Foot-and-Mouth Disease in Eastern Africa Suggest Feasibility of Proactive Vaccination Approaches. Nat. Ecol. Evol. 2018, 2, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- LaRocco, M.; Krug, P.W.; Kramer, E.; Ahmed, Z.; Pacheco, J.M.; Duque, H.; Baxt, B.; Rodriguez, L.L. A Continuous Bovine Kidney Cell Line Constitutively Expressing Bovine αVβ6 Integrin has Increased Susceptibility to Foot-and-Mouth Disease Virus. J. Clin. Microbiol. 2013, 51, 1714–1720, correction in J. Clin. Microbiol. 2015, 53, 755. [Google Scholar] [CrossRef]
- Knowles, N.J.; Wadsworth, J.; Bachanek-Bankowska, K.; King, D.P. VP1 Sequencing Protocol for Foot and Mouth Disease Virus Molecular Epidemiology. Rev. Sci. Tech. 2016, 35, 741–755. [Google Scholar] [CrossRef]
- Namatovu, A.; Tjornehoj, K.; Belsham, G.J.; Dhikusooka, M.T.; Wekesa, S.N.; Muwanika, V.B.; Siegismund, H.R.; Ayebazibwe, C. Characterization of Foot-and-Mouth Disease Viruses (FMDVs) from Ugandan Cattle Outbreaks during 2012–2013: Evidence for Circulation of Multiple Serotypes. PLoS ONE 2015, 10, e0114811. [Google Scholar] [CrossRef]
- Ullah, A.; Jamal, S.M.; Romey, A.; Gorna, K.; Kakar, M.A.; Abbas, F.; Ahmad, J.; Zientara, S.; Bakkali Kassimi, L. Genetic Characterization of Serotypes A and Asia-1 Foot-and-mouth Disease Viruses in Balochistan, Pakistan, in 2011. Transbound. Emerg. Dis. 2017, 64, 1569–1578. [Google Scholar] [CrossRef]
- Al-Hosary, A.A.; Kandeil, A.; El-Taweel, A.N.; Nordengrahn, A.; Merza, M.; Badra, R.; Kayali, G.; Ali, M.A. Co-Infection with Different Serotypes of FMDV in Vaccinated Cattle in Southern Egypt. Virus Genes 2019, 55, 304–313. [Google Scholar] [CrossRef] [PubMed]
Typing Assays | ||||||
---|---|---|---|---|---|---|
Real-Time RT-PCR 3D | Ag-ELISA | VI (+Ag-ELISA) | Real-Time RT-PCR VP1 | Samples Number | Percentage | |
Type O | POS | POS | POS | POS | 17 | 61% |
POS | NEG | POS | POS | 5 | 18% | |
POS | NEG | NEG | POS | 5 | 18% | |
NEG | NEG | NEG | POS | 1 | 3% | |
Tot Pos | 27 | 17 | 22 | 28 | 28 | |
Type A | POS | POS | POS | POS | 23 + 1 * | 59% |
POS | NEG | POS | POS | 8 | 20% | |
POS | NEG | NEG | POS | 5 | 12% | |
POS | POS | NEG | POS | 3 | 7% | |
NEG | NEG | POS | POS | 1 | 2% | |
Tot Pos | 40 | 27 | 33 | 41 | 41 | |
Type SAT1 | POS | POS | POS | POS | 19 + 1 * | 63% |
POS | NEG | POS | POS | 2 | 6% | |
POS | NEG | NEG | POS | 2 | 6% | |
POS | POS | NEG | POS | 2 | 6% | |
POS | POS | POS | NEG | 6 | 19% | |
Tot Pos | 32 | 28 | 28 | 26 | 32 | |
Type SAT2 | POS | POS | POS | POS | 11 + 1 * | 67% |
POS | NEG | POS | POS | 1 + 2 * | 17% | |
POS | NEG | NEG | POS | 2 | 11% | |
POS | POS | NEG | NEG | 1 | 5% | |
Tot Pos | 18 | 13 | 15 | 17 | 18 | |
Serotyped Samples | 119 | 94% | ||||
Unserotyped Samples (real-time RT-PCR 3D POS) | 2 | 1% | ||||
Negative Samples | 6 | 5% | ||||
Total Samples Tested | 127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foglia, E.A.; Lembo, T.; Kazwala, R.; Ekwem, D.; Shirima, G.; Grazioli, S.; Brocchi, E.; Pezzoni, G. Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa. Viruses 2021, 13, 1583. https://doi.org/10.3390/v13081583
Foglia EA, Lembo T, Kazwala R, Ekwem D, Shirima G, Grazioli S, Brocchi E, Pezzoni G. Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa. Viruses. 2021; 13(8):1583. https://doi.org/10.3390/v13081583
Chicago/Turabian StyleFoglia, Efrem Alessandro, Tiziana Lembo, Rudovick Kazwala, Divine Ekwem, Gabriel Shirima, Santina Grazioli, Emiliana Brocchi, and Giulia Pezzoni. 2021. "Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa" Viruses 13, no. 8: 1583. https://doi.org/10.3390/v13081583
APA StyleFoglia, E. A., Lembo, T., Kazwala, R., Ekwem, D., Shirima, G., Grazioli, S., Brocchi, E., & Pezzoni, G. (2021). Combining Multiple Assays Improves Detection and Serotyping of Foot-and-Mouth Disease Virus. A Practical Example with Field Samples from East Africa. Viruses, 13(8), 1583. https://doi.org/10.3390/v13081583