Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses
Abstract
:1. Introduction
1.1. Subunit/Peptide Vaccines
1.2. Vectored/DNA/RNA Vaccines
1.3. Live-Attenuated Vaccines
2. Rational Design of the VC-2 Vaccine
2.1. The Structure and Function of Glycoprotein K and the Membrane Protein UL20
2.2. Herpes Simplex Virus Mechanism of Entry—Rational Design of the VC2 Live-Attenuated Vaccine
3. Rational Design of the HSV-2 0∆NLS Vaccine
3.1. The HSV ICP0 Protein
3.2. The Role of ICP0 Protein in Immune Evasion
4. Clinical Trials of Herpes Simplex Vaccines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, C.; Harfouche, M.; Welton, N.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes simplex virus: Global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Looker, K.J.; Magaret, A.S.; May, M.T.; Turner, K.M.E.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS ONE 2015, 10, e0140765. [Google Scholar] [CrossRef] [Green Version]
- Looker, K.J.; Magaret, A.S.; Turner, K.M.; Vickerman, P.; Gottlieb, S.L.; Newman, L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS ONE 2015, 10, e114989. [Google Scholar] [CrossRef] [Green Version]
- Durukan, D.; Fairley, C.K.; Bradshaw, C.S.; Read, T.R.H.; Druce, J.; Catton, M.; Caly, L.; Chow, E.P.F. Increasing proportion of herpes simplex virus type 1 among women and men diagnosed with first-episode anogenital herpes: A retrospective observational study over 14 years in Melbourne, Australia. Sex. Transm. Infect. 2018, 95, 307–313. [Google Scholar] [CrossRef]
- Magdaleno-Tapial, J.; Hernández-Bel, P.; Valenzuela-Oñate, C.; Ortiz-Salvador, J.; García-Legaz-Martínez, M.; Martínez-Domenech, Á.; Pérez-Pastor, G.; Esteve-Martínez, A.; Zaragoza-Ninet, V.; Sánchez-Carazo, J.; et al. Genital Infection With Herpes Simplex Virus Type 1 and Type 2 in Valencia, Spain: A Retrospective Observational Study. Actas Dermosifiliogr. 2019, 111, 53–58. [Google Scholar] [CrossRef]
- Spicknall, I.H.; Flagg, E.W.; Torrone, E.A. Estimates of the Prevalence and Incidence of Genital Herpes, United States, 2018. Sex. Transm. Dis. 2021, 48, 260–265. [Google Scholar] [CrossRef]
- Stanfield, B.; Kousoulas, K.G. Herpes Simplex Vaccines: Prospects of Live-Attenuated HSV Vaccines to Combat Genital and Ocular Infections. Curr. Clin. Microbiol. Rep. 2015, 2, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, H.H.; Chemaitelly, H.; Abu-Raddad, L.J. Epidemiological Impact of Novel Preventive and Therapeutic HSV-2 Vaccination in the United States: Mathematical Modeling Analyses. Vaccines 2020, 8, 366. [Google Scholar] [CrossRef] [PubMed]
- Aschner, C.B.; Herold, B.C. Alphaherpesvirus Vaccines. Curr. Issues Mol. Biol. 2021, 41, 469–508. [Google Scholar] [CrossRef] [PubMed]
- Bagley, K.C.; Schwartz, J.A.; Andersen, H.; Eldridge, J.H.; Xu, R.; Ota-Setlik, A.; Geltz, J.J.; Halford, W.P.; Fouts, T.R. An Interleukin 12 Adjuvanted Herpes Simplex Virus 2 DNA Vaccine Is More Protective Than a Glycoprotein D Subunit Vaccine in a High-Dose Murine Challenge Model. Viral Immunol. 2017, 30, 178–195. [Google Scholar] [CrossRef]
- Awasthi, S.; Hook, L.M.; Pardi, N.; Wang, F.; Myles, A.; Cancro, M.P.; Cohen, G.H.; Weissman, D.; Friedman, H.M. Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes. Sci. Immunol. 2019, 4, eaaw7083. [Google Scholar] [CrossRef]
- Atukorale, V.N.; Weir, J.P.; Meseda, C.A. Stability of the HSV-2 US-6 Gene in the del II, del III, CP77, and I8R-G1L Sites in Modified Vaccinia Virus Ankara After Serial Passage of Recombinant Vectors in Cells. Vaccines 2020, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.A.; Srivastava, R.; Vahed, H.; Roy, S.; Walia, S.S.; Kim, G.J.; Fouladi, M.A.; Yamada, T.; Ly, V.T.; Lam, C.; et al. Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107 + CD8 + T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge. J. Virol. 2018, 92, e00535-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.I.; Cardin, R.D.; Bravo, F.J.; Hamouda, T.; Pullum, D.A.; Cohen, G.; Bitko, V.; Fattom, A. Intranasal nanoemulsion-adjuvanted HSV-2 subunit vaccine is effective as a prophylactic and therapeutic vaccine using the guinea pig model of genital herpes. Vaccine 2019, 37, 6470–6477. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.; Taylor, S.A.; Mehrbach, J.; Awasthi, S.; Friedman, H.M.; Leib, D.A. Trivalent Glycoprotein Subunit Vaccine Prevents Neonatal Herpes Simplex Virus Mortality and Morbidity. J. Virol. 2020, 94, e02163-19. [Google Scholar] [CrossRef] [PubMed]
- Bloom, D.C.; Tran, R.K.; Feller, J.; Voellmy, R. Immunization by Replication-Competent Controlled Herpesvirus Vectors. J. Virol. 2018, 92, e00616-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, C.D.; Backes, I.M.; Taylor, S.A.; Jiang, Y.; Marchant, A.; Pesola, J.M.; Coen, D.M.; Knipe, D.M.; Ackerman, M.E.; Leib, D.A. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci. Transl. Med. 2019, 11, eaau6039. [Google Scholar] [CrossRef] [PubMed]
- Royer, D.J.; Hendrix, J.F.; Larabee, C.M.; Reagan, A.M.; Sjoelund, V.H.; Robertson, D.M.; Carr, D.J.J. Vaccine-induced antibodies target sequestered viral antigens to prevent ocular HSV-1 pathogenesis, preserve vision, and preempt productive neuronal infection. Mucosal Immunol. 2019, 12, 827–839. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Cardin, R.D.; Pullum, D.A.; Bravo, F.J.; Kousoulas, K.G.; Dixon, D.A. Duration of protection from live attenuated vs. sub unit HSV-2 vaccines in the guinea pig model of genital herpes: Reassessing efficacy using endpoints from clinical trials. PLoS ONE 2019, 14, e0213401. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, D.I.; Cardin, R.D.; Smith, G.A.; Pickard, G.E.; Sollars, P.J.; Dixon, D.A.; Pasula, R.; Bravo, F.J. The R2 non-neuroinvasive HSV-1 vaccine affords protection from genital HSV-2 infections in a guinea pig model. Npj Vaccines 2020, 5, 104. [Google Scholar] [CrossRef]
- Naidu, S.K.; Nabi, R.; Cheemarla, N.; Stanfield, B.; Rider, P.J.; Jambunathan, N.; Chouljenko, V.N.; Carter, R.; Del Piero, F.; Langohr, I.; et al. Intramuscular vaccination of mice with the human herpes simplex virus type-1(HSV-1) VC2 vaccine, but not its parental strain HSV-1(F) confers full protection against lethal ocular HSV-1 (McKrae) pathogenesis. PLoS ONE 2020, 15, e0228252. [Google Scholar] [CrossRef]
- Straus, S.E.; Wald, A.; Kost, R.G.; McKenzie, R.; Langenberg, A.G.M.; Hohman, P.; Lekstrom, J.; Cox, E.; Nakamura, M.; Sekulovich, R.; et al. Immunotherapy of Recurrent Genital Herpes with Recombinant Herpes Simplex Virus Type 2 Glycoproteins D and B: Results of a Placebo-Controlled Vaccine Trial. J. Infect. Dis. 1997, 176, 1129–1134. [Google Scholar] [CrossRef]
- Corey, L.; Langenberg, A.G.; Ashley, R.; Sekulovich, R.E.; Izu, A.E.; Douglas, J.M., Jr.; Handsfield, H.H.; Warren, T.; Marr, L.; Tyring, S.; et al. Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: Two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 1999, 282, 331–340. [Google Scholar] [CrossRef]
- Polcicova, K.; Goldsmith, K.; Rainish, B.L.; Wisner, T.W.; Johnson, D.C. The Extracellular Domain of Herpes Simplex Virus gE Is Indispensable for Efficient Cell-to-Cell Spread: Evidence for gE/gI Receptors. J. Virol. 2005, 79, 11990–12001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awasthi, S.; Huang, J.; Shaw, C.; Friedman, H.M. Blocking Herpes Simplex Virus 2 Glycoprotein E Immune Evasion as an Approach To Enhance Efficacy of a Trivalent Subunit Antigen Vaccine for Genital Herpes. J. Virol. 2014, 88, 8421–8432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.I.; Cardin, R.D.; Bravo, F.J.; Awasthi, S.; Lu, P.; Pullum, D.A.; Dixon, D.A.; Iwasaki, A.; Friedman, H.M. Successful application of prime and pull strategy for a therapeutic HSV vaccine. Npj Vaccines 2019, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whisnant, A.W.; Jürges, C.S.; Hennig, T.; Wyler, E.; Prusty, B.; Rutkowski, A.J.; L’Hernault, A.; Djakovic, L.; Göbel, M.; Döring, K.; et al. Integrative functional genomics decodes herpes simplex virus 1. Nat. Commun. 2020, 11, 2038. [Google Scholar] [CrossRef] [PubMed]
- Vitiello, A.; Ferrara, F. Brief review of the mRNA vaccines COVID-19. Inflammopharmacology 2021, 29, 645–649. [Google Scholar] [CrossRef]
- Welsh, J. Coronavirus Variants-Will New mRNA Vaccines Meet the Challenge? Engineering (Beijing) 2021, 7, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Sutter, G.; Staib, C. Vaccinia vectors as candidate vaccines: The development of modified vaccinia virus Ankara for antigen delivery. Curr. Drug Targets Infect Disord. 2003, 3, 263–271. [Google Scholar] [CrossRef]
- Minor, P.D. Live attenuated vaccines: Historical successes and current challenges. Virology 2015, 479–480, 379–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabutti, G.; Bolognesi, N.; Sandri, F.; Florescu, C.; Stefanati, A. Varicella zoster virus vaccines: An update. ImmunoTargets Ther. 2019, 8, 15–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glorioso, J.C.; Cohen, J.B.; Goins, W.F.; Hall, B.; Jackson, J.W.; Kohanbash, G.; Amankulor, N.; Kaur, B.; Caligiuri, M.A.; Chiocca, E.A.; et al. Oncolytic HSV Vectors and Anti-Tumor Immunity; Caister Academic Press: Poole, UK, 2020. [Google Scholar] [CrossRef]
- Dolan, A.; Jamieson, F.E.; Cunningham, C.; Barnett, B.C.; McGeoch, D.J. The genome sequence of herpes simplex virus type 2. J. Virol. 1998, 72, 2010–2021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, D.J.J.; Berube, A.N.; Filiberti, A.; Gmyrek, G.B. Lack of neonatal Fc receptor does not diminish the efficacy of the HSV-1 0DeltaNLS vaccine against ocular HSV-1 challenge. Vaccine 2021, 39, 2526–2536. [Google Scholar] [CrossRef]
- Carr, D.J.J.; Gmyrek, G.B.; Filiberti, A.; Berube, A.N.; Browne, W.P.; Gudgel, B.M.; Sjoelund, V.H. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1–Encoded Proteins. ImmunoHorizons 2020, 4, 608–626. [Google Scholar] [CrossRef]
- Richards, A.L.; Sollars, P.J.; Pitts, J.D.; Stults, A.M.; Heldwein, E.E.; Pickard, G.E.; Smith, G.A. The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion. PLOS Pathog. 2017, 13, e1006741. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Pullum, D.A.; Cardin, R.D.; Bravo, F.J.; Dixon, D.A.; Kousoulas, K.G. The HSV-1 live attenuated VC2 vaccine provides protection against HSV-2 genital infection in the guinea pig model of genital herpes. Vaccine 2018, 37, 61–68. [Google Scholar] [CrossRef]
- Foster, T.P.; Chouljenko, V.N.; Kousoulas, K.G. Functional and Physical Interactions of the Herpes Simplex Virus Type 1 UL20 Membrane Protein with Glycoprotein K. J. Virol. 2008, 82, 6310–6323. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.P.; Melancon, J.M.; Baines, J.D.; Kousoulas, K.G. The Herpes Simplex Virus Type 1 UL20 Protein Modulates Membrane Fusion Events during Cytoplasmic Virion Morphogenesis and Virus-Induced Cell Fusion. J. Virol. 2004, 78, 5347–5357. [Google Scholar] [CrossRef] [Green Version]
- Chouljenko, V.N.; Iyer, A.V.; Chowdhury, S.; Chouljenko, D.V.; Kousoulas, K.G. The amino terminus of herpes simplex virus type 1 glycoprotein K (gK) modulates gB-mediated virus-induced cell fusion and virion egress. J. Virol. 2009, 83, 12301–12313. [Google Scholar] [CrossRef] [Green Version]
- Chouljenko, V.N.; Iyer, A.V.; Chowdhury, S.; Kim, J.; Kousoulas, K.G. The Herpes Simplex Virus Type 1 UL20 Protein and the Amino Terminus of Glycoprotein K (gK) Physically Interact with gB. J. Virol. 2010, 84, 8596–8606. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, L.; Goldsmith, K.; Snoddy, D.; Ghosh, H.; Graham, F.L.; Johnson, D.C. Identification and characterization of a novel herpes simplex virus glycoprotein, gK, involved in cell fusion. J. Virol. 1992, 66, 5603–5609. [Google Scholar] [CrossRef] [Green Version]
- Melancon, J.M.; Luna, R.E.; Foster, T.P.; Kousoulas, K.G. Herpes Simplex Virus Type 1 gK Is Required for gB-Mediated Virus-Induced Cell Fusion, While neither gB and gK nor gB and UL20p Function Redundantly in Virion De-Envelopment. J. Virol. 2005, 79, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Jambunathan, N.; Charles, A.S.; Subramanian, R.; Saied, A.A.; Naderi, M.; Rider, P.; Brylinski, M.; Chouljenko, V.N.; Kousoulas, K.G. Deletion of a Predicted beta-Sheet Domain within the Amino Terminus of Herpes Simplex Virus Glycoprotein K Conserved among Alphaherpesviruses Prevents Virus Entry into Neuronal Axons. J. Virol. 2015, 90, 2230–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rider, P.J.F.; Coghill, L.M.; Naderi, M.; Brown, J.M.; Brylinski, M.; Kousoulas, K.G. Identification and Visualization of Functionally Important Domains and Residues in Herpes Simplex Virus Glycoprotein K(gK) Using a Combination of Phylogenetics and Protein Modeling. Sci. Rep. 2019, 9, 14625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rider, P.J.F.; Naderi, M.; Bergeron, S.; Chouljenko, V.N.; Brylinski, M.; Kousoulas, K.G. Cysteines and N-Glycosylation Sites Conserved among All Alphaherpesviruses Regulate Membrane Fusion in Herpes Simplex Virus 1 Infection. J. Virol. 2017, 91, e00873-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musarrat, F.; Jambunathan, N.; Rider, P.J.F.; Chouljenko, V.N.; Kousoulas, K.G. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes. J. Virol. 2018, 92, e01842-17. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, R.J.; Atanasiu, D.; Cairns, T.M.; Gallagher, J.R.; Krummenacher, C.; Cohen, G.H. Herpes Virus Fusion and Entry: A Story with Many Characters. Viruses 2012, 4, 800–832. [Google Scholar] [CrossRef] [PubMed]
- Fontana, J.; Atanasiu, D.; Saw, W.T.; Gallagher, J.R.; Cox, R.G.; Whitbeck, J.C.; Brown, L.M.; Eisenberg, R.J.; Cohen, G.H. The Fusion Loops of the Initial Prefusion Conformation of Herpes Simplex Virus 1 Fusion Protein Point Toward the Membrane. mBio 2017, 8, e01268-17. [Google Scholar] [CrossRef] [Green Version]
- Sathiyamoorthy, K.; Chen, J.; Longnecker, R.; Jardetzky, T.S. The COMPLEXity in herpesvirus entry. Curr. Opin. Virol. 2017, 24, 97–104. [Google Scholar] [CrossRef]
- Weed, D.; Nicola, A.V. Herpes simplex virus Membrane Fusion. Adv. Anat. Embryol. Cell Biol. 2017, 223, 29–47. [Google Scholar] [CrossRef] [Green Version]
- Gianni, T.; Salvioli, S.; Chesnokova, L.S.; Hutt-Fletcher, L.M.; Campadelli-Fiume, G. alphavbeta6- and alphavbeta8-integrins serve as interchangeable receptors for HSV gH/gL to promote endocytosis and activation of membrane fusion. PLoS Pathog. 2013, 9, e1003806. [Google Scholar] [CrossRef] [Green Version]
- Nicola, A.V. Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH. Traffic 2016, 17, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Arii, J.; Kawaguchi, Y. The Role of HSV Glycoproteins in Mediating Cell Entry. Adv. Exp. Med. Biol. 2018, 1045, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Chouljenko, V.N.; Naderi, M.; Kousoulas, K.G. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K Is Required for Virion Entry via the Paired Immunoglobulin-Like Type-2 Receptor Alpha. J. Virol. 2013, 87, 3305–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madavaraju, K.; Koganti, R.; Volety, I.; Yadavalli, T.; Shukla, D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front. Cell. Infect. Microbiol. 2021, 10, 852. [Google Scholar] [CrossRef]
- Smith, M.; Boutell, C.; Davido, D.J. HSV-1 ICP0: Paving the way for viral replication. Future Virol. 2011, 6, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Schaffer, P.A. Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J. Virol. 1992, 66, 2904–2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.Z.; Schaffer, P.A. Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J. Virol. 1989, 63, 4579–4589. [Google Scholar] [CrossRef] [Green Version]
- Everett, R.D.; Rizzo, W.B.; Schulman, J.D.; Mukherjee, A.B. Construction and Characterization of Herpes Simplex Virus Type 1 Mutants with Defined Lesions in Immediate Early Gene 1. J. Gen. Virol. 1989, 70, 1185–1202. [Google Scholar] [CrossRef]
- Sacks, W.R.; Schaffer, P.A. Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate-early protein ICP0 exhibit impaired growth in cell culture. J. Virol. 1987, 61, 829–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stow, N.D.; Stow, E.C. Isolation and Characterization of a Herpes Simplex Virus Type 1 Mutant Containing a Deletion within the Gene Encoding the Immediate Early Polypeptide Vmw110. J. Gen. Virol. 1986, 67, 2571–2585. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Astor, T.L.; Liptak, L.M.; Cho, C.; Coen, D.M.; Schaffer, P.A. The herpes simplex virus type 1 regulatory protein ICP0 enhances virus replication during acute infection and reactivation from latency. J Virol. 1993, 67, 7501–7512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halford, W.P.; Schaffer, P.A. Optimized Viral Dose and Transient Immunosuppression Enable Herpes Simplex Virus ICP0-Null Mutants To Establish Wild-Type Levels of Latency In Vivo. J. Virol. 2000, 74, 5957–5967. [Google Scholar] [CrossRef] [Green Version]
- Halford, W.P.; Schaffer, P.A. ICP0 Is Required for Efficient Reactivation of Herpes Simplex Virus Type 1 from Neuronal Latency. J. Virol. 2001, 75, 3240–3249. [Google Scholar] [CrossRef] [Green Version]
- Leib, D.A.; Coen, D.M.; Bogard, C.L.; Hicks, K.A.; Yager, D.R.; Knipe, D.M.; Tyler, K.L.; Schaffer, P.A. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J. Virol. 1989, 63, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Everett, R.D. Trans activation of transcription by herpes virus products: Requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J. 1984, 3, 3135–3141. [Google Scholar] [CrossRef] [PubMed]
- Gelman, I.H.; Silverstein, S. Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 1985, 82, 5265–5269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, P.; Hayward, G.S. Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. J. Virol. 1985, 56, 723–733. [Google Scholar] [CrossRef] [Green Version]
- Perry, L.J.; Rixon, F.J.; Everett, R.D.; Frame, M.C.; McGeoch, D.J. Characterization of the IE110 Gene of Herpes Simplex Virus Type 1. J. Gen. Virol. 1986, 67, 2365–2380. [Google Scholar] [CrossRef]
- Kim, E.T.; Dybas, J.M.; Kulej, K.; Reyes, E.D.; Price, A.M.; Akhtar, L.N.; Orr, A.; Garcia, B.A.; Boutell, C.; Weitzman, M.D. Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nat. Microbiol. 2021, 6, 234–245. [Google Scholar] [CrossRef]
- Reddi, T.S.; Merkl, P.E.; Lim, S.-Y.; Letvin, N.L.; Knipe, D.M. Tripartite Motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes. PLoS Pathog. 2021, 17, e1009281. [Google Scholar] [CrossRef]
- Cuchet-Lourenço, D.; Vanni, E.; Glass, M.; Orr, A.; Everett, R.D. Herpes Simplex Virus 1 Ubiquitin Ligase ICP0 Interacts with PML Isoform I and Induces Its SUMO-Independent Degradation. J. Virol. 2012, 86, 11209–11222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, M.A.; Dutta, S.; Veettil, M.V.; Dutta, D.; Iqbal, J.; Kumar, B.; Roy, A.; Chikoti, L.; Singh, V.V.; Chandran, B. Herpesvirus Genome Recognition Induced Acetylation of Nuclear IFI16 Is Essential for Its Cytoplasmic Translocation, Inflammasome and IFN-beta Responses. PLoS Pathog. 2015, 11, e1005019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Diner, B.A.; Chen, J.; Cristea, I.M. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc. Natl. Acad. Sci. USA 2012, 109, 10558–10563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuchet-Lourenco, D.; Anderson, G.; Sloan, E.; Orr, A.; Everett, R.D. The viral ubiquitin ligase ICP0 is neither sufficient nor necessary for degradation of the cellular DNA sensor IFI16 during herpes simplex virus 1 infection. J. Virol. 2013, 87, 13422–13432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.E.; Chikoti, L.; Chandran, B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 2013, 87, 5005–5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orzalli, M.H.; DeLuca, N.A.; Knipe, D.M. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 2012, 109, E3008–E3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahnazaryan, D.; Khalil, R.; Wynne, C.; Jefferies, C.A.; Gabhann-Dromgoole, J.N.; Murphy, C.C. Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction. Sci. Rep. 2020, 10, 22216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, K.; Wang, S.; Zheng, C. Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis factor alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1. J. Virol. 2013, 87, 12935–12948. [Google Scholar] [CrossRef] [Green Version]
- Kummer, M.; Turza, N.M.; Muhl-Zurbes, P.; Lechmann, M.; Boutell, C.; Coffin, R.S.; Everett, R.D.; Steinkasserer, A.; Prechtel, A.T. Herpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasome. J. Virol. 2007, 81, 6326–6338. [Google Scholar] [CrossRef] [Green Version]
- Halford, W.P.; Puschel, R.; Gershburg, E.; Wilber, A.; Gershburg, S.; Rakowski, B. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS ONE 2011, 6, e17748. [Google Scholar] [CrossRef] [Green Version]
- Halford, W.P.; Geltz, J.; Gershburg, E. Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS ONE 2013, 8, e65523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geltz, J.J.; Gershburg, E.; Halford, W.P. Herpes simplex virus 2 (HSV-2) infected cell proteins are among the most dominant antigens of a live-attenuated HSV-2 vaccine. PLoS ONE 2015, 10, e0116091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, M.E.; Knipe, D.M. Herpes Simplex Virus 1 Manipulates Host Cell Antiviral and Proviral DNA Damage Responses. mBio 2021, 12, e03552-20. [Google Scholar] [CrossRef] [PubMed]
- Holub, M.; Stranikova, A.; Chalupa, P.; Arientova, S.; Roubalova, K.; Beran, O. Frequent Recurrences of Genital Herpes Are Associated with Enhanced Systemic HSV-Specific T Cell Response. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 5640960. [Google Scholar] [CrossRef] [Green Version]
Type of Vaccine | Description | Adjuvant | Type of Study | Animal Model | Route of Challenge | Results | Year | Refs. |
---|---|---|---|---|---|---|---|---|
Vectored/DNA/RNA | Polyvalent HSV-2 glycoprotein DNA vaccine (gB2, gC2, gD2, gE2, gH2, gL2, and gI2) | DNA encoding IL-12 | P | Mouse (Balb/c) | Genital HSV-2 | DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and similar survival benefits and disease symptom reductions compared with a potent live-attenuated HSV-2 0ΔNLS vaccine. However, mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. | 2017 | [10] |
Vectored/DNA/RNA | Nucleoside-modified mRNA encoding HSV-2 gC2, gD2, and gE2 | Lipid nanoparticle (LNP) | P | Mouse (Balb/c) and guinea pig (Hartley) | Genital HSV-2 | The trivalent mRNA vaccine outperformed trivalent subunit-based vaccines, reducing latent viral load, shedding infectious virus, and PCR positive vaginal swabs. | 2019 | [11] |
Vectored/DNA/RNA | Modified vaccinia virus Ankara (MVA) expressing HSV-2 gD2 | NA | Vector Stability | NA | NA | Serial passage of recombinant vaccinia vectors led to the loss of transgene expression | 2020 | [12] |
Subunit | Asymptomatic CD8+ T cell peptide epitopes (UL44 aa400–408, UL9 aa196–204, and UL25 aa572–580) | CpG (Prime) followed by AAV8 vectored CXCL10 (Pull) | P | HLA transgenic rabbits | Ocular HSV-1 | Prime/pull was effective at drawing HSV-1-specific CD8+ T cells to the cornea and trigeminal ganglia, reducing disease. | 2018 | [13] |
Subunit | Bivalent HSV-2 Subunit (gD2 and gB2) | Nanoemulsion adjuvant NE01 | P/T | Guinea pig (Hartley) | Genital HSV-2 | Intranasal (IN) vaccination significantly reduced acute and recurrent disease scores and latent viral load compared to a placebo. Therapeutically, IN vaccination reduced recurrent lesion sores, days with the disease, animals shedding virus, and virus-positive vaginal swabs. | 2019 | [14] |
Subunit | Trivalent HSV-2 subunit vaccine (gC2, gD2, and gE2) | CpG (5′-TCCATGACGTTCCTGACGTT-3’)/Alum | P | Neonatal Mouse (C57BL/6) | Intranasal (HSV-1/HSV-2) | Maternal vaccination protected offspring against neonatal disseminated disease and mortality from HSV-1 and HSV-2. | 2020 | [15] |
Live-Attenuated | Replication-Competent Controlled HSV-1 Vectors (HSV-GS3 and HSV-GS7) | NA | P | Mouse (Swiss Webster) | Rear Footpad HSV-1 | Inactivated HSV-1 vectors offered equivalent protection to inactivated vaccines. Activation of these controlled vaccines increased vaccine efficacy over inactivated vaccines. | 2018 | [16] |
Live-Attenuated | Replication-defective HSV-2 dl5-29 (Lacking UL5 and UL29) | NA | P | Mouse (C57BL/6) and Neonatal Mouse (C57BL/6) | Adult Ocular (Corneal HSV-1 infection), Neonatal Mouse (Intranasal HSV-1 Infection) | Maternal vaccination led to the transfer of HSV-specific antibodies into neonatal circulation that protected against neonatal neurological disease and death. | 2019 | [17] |
Live-Attenuated | HSV-1 0ΔNLS | NA | P | Mouse (C57BL/6) | Ocular HSV-1 | Sterile immunity to ocular HSV-1 challenge with reduced infection of the nervous system. Vaccination preserved cornea free of pathology and complete preservation of visual acuity. | 2019 | [18] |
Live-Attenuated | The non-neuroinvasive VC2 HSV-1 vaccine (Deletion of gK aa31-68 and UL20 aa4-22) | NA | P | Guinea pig (Hartley) | Genital HSV-2 | The live-attenuated VC2 vaccine outperformed the gD2 subunit vaccine in the durability of vaccine-induced protection 6 months post-vaccination. | 2019 | [19] |
Live-Attenuated | R2 non-neuroinvasive HSV-1 vaccine (HSV1-GS6264, 5 missense mutations in UL37) | NA | P | Guinea pig (Hartley) | Genital HSV-2 | The live-attenuated prophylactic HSV vaccine, R2, was effective in the guinea pig model of genital HSV-2, especially when administered by the ID route. | 2020 | [20] |
Live-Attenuated | NA | P | Mouse (Balb/c) | Ocular HSV-1 | VC2 vaccination in mice produced superior protection and morbidity control compared to its parental strain HSV-1 (F). | 2020 | [21] |
Sponsor | Intervention | Summary | Status | ClinicalTrials.gov Identifier |
---|---|---|---|---|
Sanofi Pasteur | SP0148 (also known as ACAM 529 or HSV 529), a defective replication HSV-2 with deletions in UL5 and UL29 | Estimated enrollment of 381 HSV-2 seropositive patients | Active, not recruiting; Phase 1/2 | NCT04222985 |
Genocea Biosciences | GEN-003 is a subunit vaccine comprising HSV-2 glycoprotein D2 (gD2ΔTMR340–363) and infected cell polypeptide 4 (ICP4383–766) adjuvanted with proprietary Matrix-M2 | Genocea Biosciences, Inc. announced that they entered into a material transfer agreement and exclusive license option with Shionogi & Co., Ltd. | Terminated; Phase 2 | NCT03146403 |
Vical | VCL-HB01 Plasmid-based vaccine encoding two HSV-2 proteins and VCL-HM01 Plasmid-based vaccine encoding one HSV-2 protein, both adjuvanted with Vaxfectin | VCL-HB01 was ineffective in reducing outbreaks in people who were infected with HSV-2 | Completed; Phase 2 | NCT02837575 |
Agenus | HerpV polyvalent peptide complex adjuvanted with QS-21 | Stopped after Phase 2 | Completed; Phase 2 | NCT01687595 |
X-Vax Technology | HSV-2 ΔgD-2 | Preparing for a Phase 1 clinical study | Preclinical | NA |
UPenn in collaboration with BioNTech | HSV-2 mRNA vaccine coding gC2, gD2, and gE2 | Preparing for a Phase 1 clinical study | Preclinical | NA |
Rational Vaccines | RVx201 (derivative of HSV-2 0∆NLS) | Preparing for a Phase 1 clinical study | Preclinical | NA |
Rational Vaccines | RVx1001 (HSV-1 VC2) | Preparing for a Phase 1 clinical study | Preclinical | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanfield, B.A.; Kousoulas, K.G.; Fernandez, A.; Gershburg, E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses 2021, 13, 1637. https://doi.org/10.3390/v13081637
Stanfield BA, Kousoulas KG, Fernandez A, Gershburg E. Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses. 2021; 13(8):1637. https://doi.org/10.3390/v13081637
Chicago/Turabian StyleStanfield, Brent A., Konstantin G. Kousoulas, Agustin Fernandez, and Edward Gershburg. 2021. "Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses" Viruses 13, no. 8: 1637. https://doi.org/10.3390/v13081637
APA StyleStanfield, B. A., Kousoulas, K. G., Fernandez, A., & Gershburg, E. (2021). Rational Design of Live-Attenuated Vaccines against Herpes Simplex Viruses. Viruses, 13(8), 1637. https://doi.org/10.3390/v13081637