Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2
Abstract
:1. Introduction
2. Methods
2.1. Patients and Samples
2.2. SARS-CoV-2 RT-PCR Detection
2.3. Viral Whole-Genome Sequencing
2.4. Viral Genome Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics
References
- An EUA for bamlanivimab—A monoclonal antibody for COVID-19. Med. Lett. Drugs Ther. 2020, 62, 185–186.
- Chen, P.; Nirula, A.; Heller, B.; Gottlieb, R.L.; Boscia, J.; Morris, J.; Huhn, G.; Cardona, J.; Mocherla, B.; Stosor, V.; et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N. Engl. J. Med. 2021, 384, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Group A-3/TICO L-CS. A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration (FDA). Fact Sheet for Health Care Providers Emergency Use Authorization (EUA) of Bamlanivimab; U.S. Food and Drug Administration (FDA): Silver Spring, MD, USA, 2021.
- European Medicines Agency. EMA Issues Advice on Use of Antibody Combination (Bamlanivimab/Etesevimab). Available online: https://www.ema.europa.eu/en/news/ema-issues-advice-use-antibody-combination-bamlanivimab-etesevimab (accessed on 10 May 2021).
- ANSM. Protocole D’utilisation Thérapeutique et de Recueil D’informations—Bamlanivimab. Available online: https://ansm.sante.fr/uploads/2021/03/09/e839c21610d4ae3f6286a37a0a816493.pdf (accessed on 10 May 2021).
- Lohr, B.; Niemann, D.; Verheyen, J. Bamlanivimab treatment leads to rapid selection of immune escape variant carrying E484K mutation in a B.1.1.7 infected and immunosuppressed patient. Clin. Infect. Dis. 2021, ciab392. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Choudhary, M.C.; Regan, J.; Sparks, J.A.; Padera, R.F.; Qiu, X.; Solomon, I.H.; Kuo, H.-H.; Boucau, J.; Bowman, K.; et al. Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J. Med. 2020, 383, 2291–2293. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wei, P.; Zhang, Q.; Chen, Z.; Aviszus, K.; Downing, W.; Peterson, S.; Reynoso, L.; Downey, G.P.; Frankel, S.K.; et al. 501Y.V2 and 501Y.V3 variants of SARS-CoV-2 lose binding to Bamlanivimab in vitro. In Mabs; Taylor & Francis: Abingdon-on-Thames, UK, 2021. [Google Scholar]
- Hoffmann, M.; Arora, P.; Groß, R.; Seidel, A.; Hörnich, B.F.; Hahn, A.S.; Krüger, N.; Graichen, L.; Hofmann-Winkler, H.; Kempf, A.; et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021, 184, 2384–2393. [Google Scholar] [CrossRef] [PubMed]
- Wirden, M.; Feghoul, L.; Bertine, M.; Nere, M.-L.; Le Hingrat, Q.; Abdi, B.; Boutolleau, D.; Marie Ferre, V.; Jary, A.; Delaugerre, C.; et al. Multicenter comparison of the Cobas 6800 system with the RealStar RT-PCR kit for the detection of SARS-CoV-2. J. Clin. Virol. 2020, 130, 104573. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H.H.; Lamson, D.M.; Uhteg, K.; Geahr, M.; Gluck, L.; de Cárdenas, J.N.B.; Morehead, E.; Forman, M.; Carrol, K.C.; Hayden, R.T.; et al. Multicenter evaluation of the NeuMoDxTM SARS-CoV-2 Test. J. Clin. Virol. 2020, 130, 104583. [Google Scholar] [CrossRef] [PubMed]
- Quick, J. nCoV-2019 Sequencing Protocol v1 (Protocols.io.bbmuik6w). Available online: https://www.protocols.io/view/ncov-2019-sequencing-protocol-bbmuik6w (accessed on 10 May 2021).
- EPI2ME Labs. 2021. Available online: https://github.com/epi2me-labs/wf-artic (accessed on 10 May 2021).
- Oxford Nanopore Technologies. 2021. Available online: https://github.com/nanoporetech/medaka (accessed on 10 May 2021).
- Grabowski, F.; Preibisch, G.; Giziński, S.; Kochańczyk, M.; Lipniacki, T. SARS-CoV-2 Variant of Concern 202012/01 Has about Twofold Replicative Advantage and Acquires Concerning Mutations. Viruses 2021, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, K.; Wang, R.; Wei, G.-W. Revealing the threat of emerging SARS-CoV-2 mutations to antibody therapies. BioRxiv Prepr. Serv. Biol. 2021. [Google Scholar] [CrossRef]
- Clark, S.A.; Clark, L.E.; Pan, J.; Coscia, A.; McKay, L.G.A.; Shankar, S.; Johnson, R.I.; Brusic, V.; Choudhary, M.C.; Regan, J.; et al. SARS-CoV-2 evolution in an immunocompromised host reveals shared neutralization escape mechanisms. Cell 2021, 184, 2605–2617. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.T.; Pujol, F.H.; Jastrzebska, B.; Rangel, H.R. Mutations in the SARS-CoV-2 spike protein modulate the virus affinity to the human ACE2 receptor, an in silico analysis. EXCLI J. 2021, 20, 585–600. [Google Scholar] [PubMed]
- Néant, N.; Lingas, G.; Hingrat, Q.L.; Ghosn, J.; Engelmann, I.; Lepiller, Q.; Gaymard, A.; Ferre, V.; Hartard, C.; Plantier, J.-C.; et al. Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. Proc. Natl. Acad. Sci. USA 2021, 118, e2017962118. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Luebke, N.; Feldt, T.; Keitel, V.; Brandenburger, T.; Kindgen-Milles, D.; Lutterbeck, M.; Freise, N.F.; Schoeler, D.; Haas, R.; et al. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. Lancet Reg. Health—Eur. 2021, 8, 100164. Available online: https://www.thelancet.com/journals/lanepe/article/PIIS2666-7762(21)00141-1/abstract (accessed on 10 August 2021). [CrossRef] [PubMed]
- Widera, M.; Wilhelm, A.; Hoehl, S.; Pallas, C.; Kohmer, N.; Wolf, T.; Rabenau, H.F.; Corman, V.M.; Drosten, C.; Vehreschild, M.J.G.T.; et al. Limited neutralization of authentic SARS-CoV-2 variants carrying E484K in vitro. J. Infect. Dis. 2021, jiab355. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.N.; Greaney, A.J.; Dingens, A.S.; Bloom, J.D. Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. Cell Rep. Med. 2021, 2, 100255. [Google Scholar] [CrossRef] [PubMed]
Patient ID | #1 | #2 | #3 | #4 | #5 | #6 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Days after Bamlanivimab Infusion | 2 | 4 | 6 | 7 | 3 | 5 | 6 | 7 | 9 | 1 | 2 | 3 | 12 | 3 | 14 | 15 | 19 | 26 | 0 | 3 | 5 | 7 | 23 | |
Ct Values | 19 | 35 | 20 | 23 | 25 | 26 | 29 | 26 | 24 | 16 | 23 | 24 | 28 | 20 | 21 | 16 | 27 | 27 | 16 | 21 | 29 | 20 | 19 | |
Mutation | ||||||||||||||||||||||||
Nucleotide | Amino-acid | |||||||||||||||||||||||
21736-C_T | F58F | • | • | • | - | - | - | - | - | • | • | - | • | • | • | • | - | - | - | - | - | • | - | • |
21765-ATACATG_A | Del 69-70 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
21991-TTTA_T | Del 144 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
23012-G_A | E484K | - | - | • | - | - | - | - | • | - | - | - | - | • | - | • | - | - | • | - | - | - | - | - |
23013-A_C | E484A | - | - | - | - | - | - | • | - | • | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23040-A_G | Q493R | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | • |
23042-T_C | S494P | - | - | - | • | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23063-A_T | N501Y | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
23271-C_A | A570D | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiffer-Smadja, N.; Bridier-Nahmias, A.; Ferré, V.M.; Charpentier, C.; Garé, M.; Rioux, C.; Allemand, A.; Lavallée, P.; Ghosn, J.; Kramer, L.; et al. Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2. Viruses 2021, 13, 1642. https://doi.org/10.3390/v13081642
Peiffer-Smadja N, Bridier-Nahmias A, Ferré VM, Charpentier C, Garé M, Rioux C, Allemand A, Lavallée P, Ghosn J, Kramer L, et al. Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2. Viruses. 2021; 13(8):1642. https://doi.org/10.3390/v13081642
Chicago/Turabian StylePeiffer-Smadja, Nathan, Antoine Bridier-Nahmias, Valentine Marie Ferré, Charlotte Charpentier, Mathilde Garé, Christophe Rioux, Aude Allemand, Philippa Lavallée, Jade Ghosn, Laura Kramer, and et al. 2021. "Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2" Viruses 13, no. 8: 1642. https://doi.org/10.3390/v13081642
APA StylePeiffer-Smadja, N., Bridier-Nahmias, A., Ferré, V. M., Charpentier, C., Garé, M., Rioux, C., Allemand, A., Lavallée, P., Ghosn, J., Kramer, L., Descamps, D., Yazdanpanah, Y., & Visseaux, B. (2021). Emergence of E484K Mutation Following Bamlanivimab Monotherapy among High-Risk Patients Infected with the Alpha Variant of SARS-CoV-2. Viruses, 13(8), 1642. https://doi.org/10.3390/v13081642