Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells and Plasmids
2.2. Construction of the Vector Backbone Plasmid pT-HHrz-HDVrz
2.3. Construction of Full-Length MV cDNA
2.4. Rescue of the MV from Cloned cDNA
2.5. Growth Analysis
2.6. Detection of Viral Proteins
3. Results
3.1. Construction of the Vector Backbone Plasmid and Cloning of the Full-Length cDNA of MV
3.2. Efficient Recovery of Recombinant MV
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yanagi, Y.; Takeda, M.; Ohno, S.; Hashiguchi, T. Measles virus receptors. Curr. Top. Microbiol. Immunol. 2009, 329, 13–30. [Google Scholar] [PubMed]
- Baldo, A.; Galanis, E.; Tangy, F.; Herman, P. Biosafety considerations for attenuated measles virus vectors used in virotherapy and vaccination. Hum. Vaccin. Immunother. 2016, 12, 1102–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnell, M.; Mebatsion, T.; Conzelmann, K.-K. Infectious rabies viruses from cloned cDNA. EMBO J. 1994, 13, 4195–4203. [Google Scholar] [CrossRef] [Green Version]
- Neumann, G.; Whitt, M.A.; Kawaoka, Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA—What have we learned? J. Gen. Virol. 2002, 83, 2635–2662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billeter, M.A.; Naim, H.Y.; Udem, S.A. Reverse Genetics of Measles Virus and Resulting Multivalent Recombinant Vaccines: Applications of Recombinant Measles Viruses. Curr. Top. Microbiol. Immunol. 2009, 329, 129–162. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, C.; Cattaneo, R.; Schnell, M.J. Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 2015, 479–480, 331–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radecke, F.; Spielhofer, P.; Schneider, H.; Kaelin, K.; Huber, M.; Dotsch, C.; Christiansen, G.; Billeter, M.A. Rescue of measles viruses from cloned DNA. EMBO J. 1995, 14, 5773–5784. [Google Scholar] [CrossRef]
- Komase, K.; Nakayama, T.; Iijima, M.; Miki, K.; Kawanishi, R.; Uejima, H. The phosphoprotein of attenuated measles AIK-C vaccine strain contributes to its temperature-sensitive phenotype. Vaccine 2006, 24, 826–834. [Google Scholar] [CrossRef]
- Takeda, M.; Takeuchi, K.; Miyajima, N.; Kobune, F.; Ami, Y.; Nagata, N.; Suzaki, Y.; Nagai, Y.; Tashiro, M. Recovery of pathogenic measles virus from cloned cDNA. J. Virol. 2000, 74, 6643–6647. [Google Scholar] [CrossRef] [Green Version]
- Cathomen, T.; Mrkic, B.; Spehner, D.; Drillien, R.; Naef, R.; Pavlovic, J.; Aguzzi, A.; Billeter, M.A.; Cattaneo, R. A matrix-less measles virus is infectious and elicits extensive cell fusion: Consequences for propagation in the brain. EMBO J. 1998, 17, 3899–3908. [Google Scholar] [CrossRef]
- Nakatsu, Y.; Takeda, M.; Ohno, S.; Koga, R.; Yanagi, Y. Translational Inhibition and Increased Interferon Induction in Cells Infected with C Protein-Deficient Measles Virus. J. Virol. 2006, 80, 11861–11867. [Google Scholar] [CrossRef] [Green Version]
- Takeda, M.; Ohno, S.; Seki, F.; Hashimoto, K.; Miyajima, N.; Takeuchi, K.; Yanagi, Y. Efficient rescue of measles virus from cloned cDNA using SLAM-expressing Chinese hamster ovary cells. Virus Res. 2005, 108, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Spielhofer, P.; Kaelin, K.; Dötsch, C.; Radecke, F.; Sutter, G.; Billeter, M.A. Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J. Virol. Methods 1997, 64, 57–64. [Google Scholar] [CrossRef]
- Kovacs, G.R.; Parks, C.L.; Vasilakis, N.; Udem, S.A. Enhanced genetic rescue of negative-strand RNA viruses: Use of an MVA-T7 RNA polymerase vector and DNA replication inhibitors. J. Virol. Methods 2003, 111, 29–36. [Google Scholar] [CrossRef]
- Nakatsu, Y.; Takeda, M.; Kidokoro, M.; Kohara, M.; Yanagi, Y. Rescue system for measles virus from cloned cDNA driven by vaccinia virus Lister vaccine strain. J. Virol. Methods 2006, 137, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Staeheli, P.; Schneider, U. RNA Polymerase II-Controlled Expression of Antigenomic RNA Enhances the Rescue Efficacies of Two Different Members of the Mononegavirales Independently of the Site of Viral Genome Replication. J. Virol. 2006, 80, 5708–5715. [Google Scholar] [CrossRef] [Green Version]
- Li, B.-Y.; Li, X.-R.; Lan, X.; Yin, X.-P.; Li, Z.-Y.; Yang, B.; Liu, J.-X. Rescue of Newcastle disease virus from cloned cDNA using an RNA polymerase II promoter. Arch. Virol. 2011, 156, 979–986. [Google Scholar] [CrossRef]
- De Wit, E.; Spronken, M.I.J.; Vervaet, G.; Rimmelzwaan, G.F.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. A reverse-genetics system for Influenza A virus using T7 RNA polymerase. J. Gen. Virol. 2007, 88, 1281–1287. [Google Scholar] [CrossRef]
- Ghanem, A.; Kern, A.; Conzelmann, K.-K. Significantly improved rescue of rabies virus from cDNA plasmids. Eur. J. Cell Biol. 2012, 91, 10–16. [Google Scholar] [CrossRef]
- Ono, N.; Tatsuo, H.; Hidaka, Y.; Aoki, T.; Minagawa, H.; Yanagi, Y. Measles Viruses on Throat Swabs from Measles Patients Use Signaling Lymphocytic Activation Molecule (CDw150) but Not CD46 as a Cellular Receptor. J. Virol. 2001, 75, 4399–4401. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Ono, N.; Tatsuo, H.; Minagawa, H.; Takeda, M.; Takeuchi, K.; Yanagi, Y. SLAM (CD150)-Independent Measles Virus Entry as Revealed by Recombinant Virus Expressing Green Fluorescent Protein. J. Virol. 2002, 76, 6743–6749. [Google Scholar] [CrossRef] [Green Version]
- Fujino, M.; Yoshida, N.; Kimura, K.; Zhou, J.; Motegi, Y.; Komase, K.; Nakayama, T. Development of a new neutralization test for measles virus. J. Virol. Methods 2007, 142, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Barzan, D.; Maier, P.; Zeller, W.J.; Wenz, F.; Herskind, C. Overexpression of caveolin-1 in lymphoblastoid TK6 cells enhances proliferation after irradiation with clinically relevant doses. Strahlenther. Onkol. 2010, 186, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Filonov, G.S.; Piatkevich, K.D.; Ting, L.-M.; Zhang, J.; Kim, K.; Verkhusha, V.V. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 2011, 29, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Msaouel, P.; Iankov, I.D.; Allen, C.; Russell, S.J.; Galanis, E. Oncolytic Measles Virus Retargeting by Ligand Display. Methods Mol. Biol. 2011, 797, 141–162. [Google Scholar] [CrossRef] [Green Version]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 1938, 27, 493–497. [Google Scholar]
- Hoffmann, E.; Neumann, G.; Hobom, G.; Webster, R.G.; Kawaoka, Y. “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 2000, 267, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, A.; Kanrai, P.; Ziebuhr, J.; Pleschka, S. Improved dual promotor-driven reverse genetics system for influenza viruses. J. Virol. Methods 2013, 193, 603–610. [Google Scholar] [CrossRef]
- Neumann, G.; Fujii, K.; Kino, Y.; Kawaoka, Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA 2005, 102, 16825–16829. [Google Scholar] [CrossRef] [Green Version]
- Stosch, J. RNA Polymerase II Based Reverse Genetics System Allows Rescue of Measles Virus. Master’s Thesis, Institute of Virology, University of Leipzig, Leipzig, Germany, 2014. [Google Scholar]
- Nakielny, S.; Fischer, U.; Michael, W.M.; Dreyfuss, G. RNA transport. Annu. Rev. Neurosci. 1997, 20, 269–301. [Google Scholar] [CrossRef] [Green Version]
- Collis, P.; Antoniou, M.; Grosveld, F. Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J. 1990, 9, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.M.; Penzes, Z.; Almazan, F.; Calvo, E.; Enjuanes, L. Stabilization of a full-length infectious cDNA clone of transmissible gastroenteritis coronavirus by insertion of an intron. J. Virol. 2002, 76, 4655–4661. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Moya, J.J.; Garcia, J.A. Construction of a stable and highly infectious intron-containing cDNA clone of plum pox potyvirus and its use to infect plants by particle bombardment. Virus Res. 2000, 68, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, R.; Lin, A.C.; Clarke, J. Initiation of transcription by T7 RNA polymerase as its natural promoters. J. Biol. Chem. 1992, 267, 2640–2649. [Google Scholar] [CrossRef]
- Calain, P.; Roux, L. The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J. Virol. 1993, 67, 4822–4830. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, S.; Huang, Z.; Samal, S.K. Recovery of a Virulent Strain of Newcastle Disease Virus from Cloned cDNA: Expression of a Foreign Gene Results in Growth Retardation and Attenuation. Virology 2000, 278, 168–182. [Google Scholar] [CrossRef] [Green Version]
- Le Mercier, P.; Jacob, Y.; Tanner, K.; Tordo, N. A novel expression cassette of lyssavirus shows that the distantly related Mokola virus can rescue a defective rabies virus genome. J. Virol. 2002, 76, 2024–2027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, F.; Yamada, K.; Nakatsu, Y.; Okamura, K.; Yanagi, Y.; Nakayama, T.; Komase, K.; Takeda, M. The SI Strain of Measles Virus Derived from a Patient with Subacute Sclerosing Panencephalitis Possesses Typical Genome Alterations and Unique Amino Acid Changes That Modulate Receptor Specificity and Reduce Membrane Fusion Activity. J. Virol. 2011, 85, 11871–11882. [Google Scholar] [CrossRef] [Green Version]
- Beaty, S.M.; Park, A.; Won, S.T.; Hong, P.; Lyons, M.; Vigant, F.; Freiberg, A.N.; Tenoever, B.R.; Duprex, W.P.; Lee, B. Efficient and Robust Paramyxoviridae Reverse Genetics Systems. mSphere 2017, 2, e00376-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Alía, M.A.; Russell, S.J. Probing Morbillivirus Antisera Neutralization Using Functional Chimerism between Measles Virus and Canine Distemper Virus Envelope Glycoproteins. Viruses 2019, 11, 688. [Google Scholar] [CrossRef] [Green Version]
- Busch, J.; Chey, S.; Sieg, M.; Vahlenkamp, T.; Liebert, U. Mutated Measles Virus Matrix and Fusion Protein Influence Viral Titer In Vitro and Neuro-Invasion in Lewis Rat Brain Slice Cultures. Viruses 2021, 13, 605. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chey, S.; Palmer, J.M.; Doerr, L.; Liebert, U.G. Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells. Viruses 2021, 13, 1723. https://doi.org/10.3390/v13091723
Chey S, Palmer JM, Doerr L, Liebert UG. Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells. Viruses. 2021; 13(9):1723. https://doi.org/10.3390/v13091723
Chicago/Turabian StyleChey, Soroth, Juliane Maria Palmer, Laura Doerr, and Uwe Gerd Liebert. 2021. "Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells" Viruses 13, no. 9: 1723. https://doi.org/10.3390/v13091723
APA StyleChey, S., Palmer, J. M., Doerr, L., & Liebert, U. G. (2021). Dual Promoters Improve the Rescue of Recombinant Measles Virus in Human Cells. Viruses, 13(9), 1723. https://doi.org/10.3390/v13091723