Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses
Abstract
:1. Introduction
2. T Cell Cross-Reactivity in the Context of Influenza Viruses
3. T Cell Cross-Reactivity in the Context of Coronaviruses Infection
4. Modeling T Cell Cross-Reactivity with a Bipartite Recognition Network
4.1. Constructing the TCR-pMHC Recognition Network
4.1.1. VDP Sampling for Unfocused Cross-Reactivity
4.1.2. VDP Sampling for Focused Cross-Reactivity
5. Dynamics of T Cells during a Viral Infection
5.1. Modeling with an Example: Two Heterologous Viral infections
5.1.1. Death Events
5.1.2. Homeostatic Division-Events
5.1.3. Infection-Induced Differentiation and Division Events
- Differentiation of naive to effector cells during infection ( or ): for a given clonotype i we multiply the per cell stimulus defined above, or , by the number of naive cells of the clonotype, , and by the per cell differentiation rate of naive to effector cells, .
- Differentiation of memory to effector cells during infection ( or ): for a given clonotype i we multiply the per cell stimulus defined above, or , by the number of memory cells of the clonotype, , and by the per cell differentiation rate of memory to effector cells, .
- Proliferation of effector cells during infection ( or ): for a given clonotype i we multiply the per cell stimulus defined above, or , by the number of effector cells of the clonotype, , and by the per (effector) cell proliferation rate, .
- Differentiation of effector to memory cells once the infection has been cleared: for a given clonotype, we assume that once the infection has been cleared, effector T cells become memory with a per cell rate , which does not depend on the T cell clonotype (or TCR).
5.1.4. Stochastic Model of T Cell Dynamics in Homeostasis and during Infection
5.2. Dynamics of T Cell Responses and Cross-Reactivity: Three networks
6. Modeling T Cell Cross-Reactivity with a Distance in Epitope Space
Two Episodes of Infection
7. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIM | Activation induced marker |
CCCs | Common cold coronaviruses |
CDR | Complementarity-determining region |
ELISpot | Enzyme-linked immune absorbent spot |
HLA | Human leukocyte antigen |
IFN | Interferon |
MERS | Middle East respiratory syndrome |
MHC | Major histocompatibility complex |
NK | Natural killer |
NP | Nucleo-protein |
ODE | Ordinary differential equation |
pMHC | Peptide bound to MHC |
RBD | Receptor binding domain |
RDRP | RNA dependent RNA polymerase |
SARS-CoV-1 | Severe acute respiratory syndrome (coronavirus 1) |
SARS-CoV-2 | Severe acute respiratory syndrome (coronavirus 2) |
self-pMHC | Self-peptide bound to MHC |
TCR | T cell receptor |
VDP | Virus derived peptide |
References
- Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 1998, 19, 395–404. [Google Scholar] [CrossRef]
- Moon, J.; Chu, H.; Pepper, M.; McSorley, S.; Jameson, S.; Kedl, R.; Jenkins, M. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007, 27, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, M.; Chu, H.; McLachlan, J.; Moon, J. On the composition of the preimmune repertoire of T cells specific for peptide-major histocompatibility complex ligands. Annu. Rev. Immunol. 2010, 28, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Quinn, K.M.; Zaloumis, S.G.; Cukalac, T.; Kan, W.T.; Sng, X.Y.; Mirams, M.; Watson, K.A.; McCaw, J.M.; Doherty, P.C.; Thomas, P.G.; et al. Heightened self-reactivity associated with selective survival, but not expansion, of naïve virus-specific CD8+ T cells in aged mice. Proc. Natl. Acad. Sci. USA 2016, 113, 1333–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, P.; Ferrarini, M.; Molina-Paris, C.; Lythe, G.; Vasseur, F.; Lim, A.; Rocha, B.; Azogui, O. A new mechanism shapes the naïve CD8+ T cell repertoire: The selection for full diversity. Mol. Immunol. 2017, 85, 66–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Greef, P.C.; Oakes, T.; Gerritsen, B.; Ismail, M.; Heather, J.M.; Hermsen, R.; Chain, B.; de Boer, R.J. The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes. eLife 2020, 9, e49900. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Sullivan, S.G.; Subbarao, K.; Fauci, A.S. Chasing seasonal influenza—The need for a universal influenza vaccine. N. Engl. J. Med. 2018, 378, 7–9. [Google Scholar] [CrossRef]
- Lipsitch, M.; Grad, Y.H.; Sette, A.; Crotty, S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol. 2020, 20, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.J.; Zhao, M.; Liu, K.; Xu, K.; Wong, G.; Tan, W.; Gao, G.F. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antivir. Res. 2017, 137, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Meliopoulos, V.A.; McClaren, J.L.; Guo, X.Z.J.; Sanders, C.J.; Smallwood, H.S.; Webby, R.J.; Schultz-Cherry, S.L.; Doherty, P.C.; Thomas, P.G. Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. PLoS Pathog. 2015, 11, e1004642. [Google Scholar] [CrossRef] [Green Version]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020, 181, 1489–1501. [Google Scholar] [CrossRef] [PubMed]
- Van de Sandt, C.E.; Kreijtz, J.H.; de Mutsert, G.; Geelhoed-Mieras, M.M.; Hillaire, M.L.; Vogelzang-van Trierum, S.E.; Osterhaus, A.D.; Fouchier, R.A.; Rimmelzwaan, G.F. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J. Virol. 2014, 88, 1684–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewell, A.K. Why must T cells be cross-reactive? Nat. Rev. Immunol. 2012, 12, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Gras, S.; Kedzierski, L.; Valkenburg, S.A.; Laurie, K.; Liu, Y.C.; Denholm, J.T.; Richards, M.J.; Rimmelzwaan, G.F.; Kelso, A.; Doherty, P.C.; et al. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc. Natl. Acad. Sci. USA 2010, 107, 12599–12604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarnitsyna, V.; Evavold, B.; Schoettle, L.; Blattman, J.; Antia, R. Estimating the Diversity, Completeness, and Cross-Reactivity of the T Cell Repertoire. Front. Immunol. 2013, 4, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolich-Žugich, J.; Slifka, M.K.; Messaoudi, I. The many important facets of T-cell repertoire diversity. Nat. Rev. Immunol. 2004, 4, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Molina-París, C.; Lythe, G. Mathematical, Computational and Experimental T Cell Immunology; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Welsh, R.M.; Che, J.W.; Brehm, M.A.; Selin, L.K. Heterologous immunity between viruses. Immunol. Rev. 2010, 235, 244–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souquette, A.; Thomas, P.G. Past life and future effects—How heterologous infections alter immunity to influenza viruses. Front. Immunol. 2018, 9, 1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grifoni, A.; Sidney, J.; Vita, R.; Peters, B.; Crotty, S.; Weiskopf, D.; Sette, A. SARS-CoV-2 Human T cell Epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021, 29, 1076–1092. [Google Scholar] [CrossRef]
- Mateus, J.; Grifoni, A.; Tarke, A.; Sidney, J.; Ramirez, S.I.; Dan, J.M.; Burger, Z.C.; Rawlings, S.A.; Smith, D.M.; Phillips, E.; et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 2020, 370, 89–94. [Google Scholar] [CrossRef]
- DeWitt, W.S., III; Smith, A.; Schoch, G.; Hansen, J.A.; Matsen, F.A., IV; Bradley, P. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. eLife 2018, 7, e38358. [Google Scholar] [CrossRef]
- Sidhom, J.W.; Larman, H.B.; Pardoll, D.M.; Baras, A.S. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nat. Commun. 2021, 12, 1–12. [Google Scholar]
- Li, X.H.; Wang, Z.X.; Lu, T.Y.; Che, X.J. Modelling immune system: Principles, models, analysis and perspectives. J. Bionic Eng. 2009, 6, 77–85. [Google Scholar] [CrossRef]
- Molina-París, C.; Castro, M.; Lythe, G.; Ribeiro, R. Mathematics in Modern Immunology. Interface Focus 2016, 6, 20150093. [Google Scholar]
- Van Den Berg, H.A.; Molina-París, C.; Sewell, A.K. Specific T-cell activation in an unspecific T-cell repertoire. Sci. Prog. 2011, 94, 245–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rvachev, L.A. Modelling experiment of a large-scale epidemic by means of a computer. Dokl. Akad. Nauk 1968, 180, 294–296. [Google Scholar]
- Baroyan, O.V.; Rvachev, L.A.; Basilevsky, U.V.; Ermakov, V.V.; Frank, K.D.; Rvachev, M.A.; Shashkov, V.A. Computer Modelling of Influenza Epidemics for the Whole Country (USSR). Adv. Appl. Probab. 1971, 3, 224–226. [Google Scholar] [CrossRef]
- Kedzierska, K.; Guillonneau, C.; Gras, S.; Hatton, L.A.; Webby, R.; Purcell, A.W.; Rossjohn, J.; Doherty, P.C.; Turner, S.J. Complete modification of TCR specificity and repertoire selection does not perturb a CD8+ T cell immunodominance hierarchy. Proc. Natl. Acad. Sci. USA 2008, 105, 19408–19413. [Google Scholar] [CrossRef] [Green Version]
- Lowen, A.C. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu. Rev. Virol. 2017, 4, 105–121. [Google Scholar] [CrossRef]
- Sanjuán, R.; Nebot, M.R.; Chirico, N.; Mansky, L.M.; Belshaw, R. Viral mutation rates. J. Virol. 2010, 84, 9733–9748. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Holmes, E.C. The evolution of epidemic influenza. Nat. Rev. Genet. 2007, 8, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Dash, P.; Fiore-Gartland, A.J.; Hertz, T.; Wang, G.C.; Sharma, S.; Souquette, A.; Crawford, J.C.; Clemens, E.B.; Nguyen, T.H.; Kedzierska, K.; et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 2017, 547, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Belz, G.T.; Xie, W.; Altman, J.D.; Doherty, P.C. A previously unrecognized H-2Db-restricted peptide prominent in the primary influenza A virus-specific CD8+ T-cell response is much less apparent following secondary challenge. J. Virol. 2000, 74, 3486–3493. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.G.; Brown, S.A.; Keating, R.; Yue, W.; Morris, M.Y.; Thus, J.; Webby, R.J.; Doherty, P.C. Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell reponses. J. Immunol. 2007, 178, 3091–3098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Antón, L.C.; Bennink, J.R.; Yewdell, J.W. Dissecting the multifactorial causes of immunodominance in class I–restricted T cell responses to viruses. Immunity 2000, 12, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Baccam, P.; Beauchemin, C.; Macken, C.A.; Hayden, F.G.; Perelson, A.S. Kinetics of Influenza A Virus Infection in Humans. J. Virol. 2006, 80, 7590–7599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, B.P.; Beauchemin, C.A. Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture. BMC Public Health 2011, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, R.S.; Hayden, F.G.; Calfee, D.P.; Cass, L.M.; Peng, A.W.; Alvord, W.G.; Strober, W.; Straus, S.E. Nasal cytokine and chemokine responses in experimental influenza A virus infection: Results of a placebo-controlled trial of intravenous zanamivir treatment. J. Infect. Dis. 1999, 180, 586–593. [Google Scholar] [CrossRef]
- Hayden, F.G.; Fritz, R.; Lobo, M.C.; Alvord, W.; Strober, W.; Straus, S.E. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J. Clin. Investig. 1998, 101, 643–649. [Google Scholar] [CrossRef]
- Seo, S.H.; Hoffmann, E.; Webster, R.G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat. Med. 2002, 8, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Jao, R.L.; Wheelock, E.F.; Jackson, G.G. Production of interferon in volunteers infected with Asian influenza. J. Infect. Dis. 1970, 121, 19–426. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.; Chanock, R.; Douglas, R.; Betts, R.; Waterman, D.; Holley, H.; Hoover, D.; Suwanagool, S.; Nalin, D.; Levine, M. Temperature-sensitive mutants of influenza A virus: Evaluation of the Alaska/77-ts-1 A 2 temperature-sensitive recombinant virus in seronegative adult volunteers. Arch. Virol. 1980, 65, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.R.; Rennels, M.B.; Douglas, R.G.; Betts, R.F.; Couch, R.B.; Cate, T.R.; Chanock, R.M.; Kendal, A.P.; Maassab, H.F.; Suwanagool, S.; et al. Evaluation of influenza A/Hong Kong/123/77 (H1N1) ts-1A2 and cold-adapted recombinant viruses in seronegative adult volunteers. Infect. Immun. 1980, 29, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Ribeiro, R.M. Modeling the viral dynamics of influenza A virus infection. Crit. Rev. Immunol. 2010, 30, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Yan, A.W.; Heffernan, J.M.; Petrie, S.; Moss, R.G.; Carolan, L.A.; Guarnaccia, T.A.; Kelso, A.; Barr, I.G.; McVernon, J.; et al. Innate immunity and the inter-exposure interval determine the dynamics of secondary influenza virus infection and explain observed viral hierarchies. PLoS Comput. Biol. 2015, 11, e1004334. [Google Scholar] [CrossRef]
- Banerjee, S.; Guedj, J.; Ribeiro, R.M.; Moses, M.; Perelson, A.S. Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection. J. R. Soc. Interface 2016, 13, 20160130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsakos, M.; Illing, P.T.; Nguyen, T.H.; Mifsud, N.A.; Crawford, J.C.; Rizzetto, S.; Eltahla, A.A.; Clemens, E.B.; Sant, S.; Chua, B.Y.; et al. Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nat. Immunol. 2019, 20, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Coronaviruses 2015, 1282, 1–23. [Google Scholar]
- Ng, O.W.; Chia, A.; Tan, A.T.; Jadi, R.S.; Leong, H.N.; Bertoletti, A.; Tan, Y.J. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 2016, 34, 2008–2014. [Google Scholar] [CrossRef]
- Li, C.K.f.; Wu, H.; Yan, H.; Ma, S.; Wang, L.; Zhang, M.; Tang, X.; Temperton, N.J.; Weiss, R.A.; Brenchley, J.M.; et al. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008, 181, 5490–5500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, K.A.; Glover, M.; Crawford, J.C.; Thomas, P.G.; White, C.; Sant, A.J. Circulating CD4 T Cells Elicited by Endemic Coronaviruses Display Vast Disparities in Abundance and Functional Potential Linked to Antigen Specificity and Age. J. Infect. Dis. 2021, 223, 1555–1563. [Google Scholar] [CrossRef]
- Saini, S.K.; Hersby, D.S.; Tamhane, T.; Povlsen, H.R.; Hernandez, S.P.A.; Nielsen, M.; Gang, A.O.; Hadrup, S.R. SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients. Sci. Immunol. 2021, 6, eabf7550. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Pinho, M.P.; Buckley, P.R.; Woodhouse, I.B.; Ogg, G.; Simmons, A.; Napolitani, G.; Koohy, H. Potential CD8+ T cell cross-reactivity against SARS-CoV-2 conferred by other coronavirus strains. Front. Immunol. 2020, 11, 2878. [Google Scholar] [CrossRef]
- Stirk, E.R.; Molina-París, C.; van den Berg, H.A. Stochastic niche structure and diversity maintenance in the T cell repertoire. J. Theor. Biol. 2008, 255, 237–249. [Google Scholar] [CrossRef]
- Stirk, E.R.; Lythe, G.; Van den Berg, H.A.; Molina-París, C. Stochastic competitive exclusion in the maintenance of the naïve T cell repertoire. J. Theor. Biol. 2010, 265, 396–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stirk, E.R.; Lythe, G.; van den Berg, H.A.; Hurst, G.A.; Molina-París, C. The limiting conditional probability distribution in a stochastic model of T cell repertoire maintenance. Math. Biosci. 2010, 224, 74–86. [Google Scholar] [CrossRef]
- Molina-París, C.; Stirk, E.; Quinn, K.; Lythe, G. Continuous-time birth and death processes: Diversity maintenance of Naïve T cells in the periphery. In Mathematical Models and Immune Cell Biology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 171–186. [Google Scholar]
- Molina-París, C.; Lythe, G.; Stirk, E. Multivariate competition processes: A model for two competing T cell clonotypes. In Mathematical Models and Immune Cell Biology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 187–205. [Google Scholar]
- Tanchot, C.; Lemonnier, F.A.; Pérarnau, B.; Freitas, A.A.; Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 1997, 276, 2057–2062. [Google Scholar] [CrossRef]
- Kawabe, T.; Yi, J.; Sprent, J. Homeostasis of Naive and Memory T Lymphocytes. Cold Spring Harb. Perspect. Biol. 2021, a037879. [Google Scholar] [CrossRef] [PubMed]
- Kaech, S.M.; Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012, 12, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, W.; Niedźwiedzka-Rystwej, P.; Tokarz-Deptuła, B.; Deptuła, W. Immunological memory cells. Cent. Eur. J. Immunol. 2018, 43, 194. [Google Scholar] [CrossRef]
- Lythe, G.; Callard, R.E.; Hoare, R.L.; Molina-París, C. How many TCR clonotypes does a body maintain? J. Theor. Biol. 2016, 389, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Lythe, G.; Molina-París, C. Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol. Rev. 2018, 285, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Barabási, A.L.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.L.; Albert, R.; Jeong, H. Scale-free characteristics of random networks: The topology of the world-wide web. Phys. A Stat. Mech. Its Appl. 2000, 281, 69–77. [Google Scholar] [CrossRef]
- Metzig, C.; Colijn, C. Preferential attachment in systems and networks of constant size. arXiv 2018, arXiv:1811.04972. [Google Scholar]
- Ganusov, V.V. Discriminating between different pathways of memory CD8+ T cell differentiation. J. Immunol. 2007, 179, 5006–5013. [Google Scholar] [CrossRef] [PubMed]
- Iglehart, D.L. Multivariate competition processes. Ann. Math. Stat. 1964, 35, 350–361. [Google Scholar] [CrossRef]
- Seddon, B.; Zamoyska, R. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J. Immunol. 2002, 169, 2997–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieper, W.C.; Jameson, S.C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl. Acad. Sci. USA 1999, 96, 13306–13311. [Google Scholar] [CrossRef] [Green Version]
- Wherry, E.J.; Puorro, K.A.; Porgador, A.; Eisenlohr, L.C. The induction of virus-specific CTL as a function of increasing epitope expression: Responses rise steadily until excessively high levels of epitope are attained. J. Immunol. 1999, 163, 3735–3745. [Google Scholar] [PubMed]
- Zehn, D.; Lee, S.Y.; Bevan, M.J. Complete but curtailed T-cell response to very low-affinity antigen. Nature 2009, 458, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, J.T.; Ernst, B.; Kieper, W.C.; LeRoy, E.; Sprent, J.; Surh, C.D. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 2002, 195, 1523–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surh, C.D.; Sprent, J. Homeostasis of naive and memory T cells. Immunity 2008, 29, 848–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldrath, A.W.; Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 1999, 11, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Viret, C.; Wong, F.S.; Janeway, C.A., Jr. Designing and maintaining the mature TCR repertoire: The continuum of self-peptide: Self-MHC complex recognition. Immunity 1999, 10, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Ernst, B.; Lee, D.S.; Chang, J.M.; Sprent, J.; Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 1999, 11, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Rushdi, M.; Li, K.; Yuan, Z.; Travaglino, S.; Grakoui, A.; Zhu, C. Mechanotransduction in T cell development, differentiation and function. Cells 2020, 9, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Luque, D. WolfDanny/X-Reactivity-Review: Quantifying Cross-Reactivity: Influenza and Coronaviruses; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Bradley, P.; Thomas, P.G. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu. Rev. Immunol. 2019, 37, 547–570. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Blackwell, K.; Schattgen, S.; Cohen-Lavi, L.; Crawford, J.C.; Souquette, A.; Gaevert, J.A.; Hertz, T.; Thomas, P.G.; Bradley, P.; Fiore-Gartland, A. TCR meta-clonotypes for biomarker discovery with tcrdist3: Quantification of public, HLA-restricted TCR biomarkers of SARS-CoV-2 infection. bioRxiv 2020. [Google Scholar] [CrossRef]
- Schattgen, S.A.; Guion, K.; Crawford, J.C.; Souquette, A.; Barrio, A.M.; Stubbington, M.J.; Thomas, P.G.; Bradley, P. Linking T cell receptor sequence to transcriptional profiles with clonotype neighbor graph analysis (CoNGA). bioRxiv 2020. [Google Scholar] [CrossRef]
- Robins, G.; Alexander, M. Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Comput. Math. Organ. Theory 2004, 10, 69–94. [Google Scholar] [CrossRef]
- Lambiotte, R.; Ausloos, M. Uncovering collective listening habits and music genres in bipartite networks. Phys. Rev. E 2005, 72, 066107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitsak, M.; Papadopoulos, F.; Krioukov, D. Latent geometry of bipartite networks. Phys. Rev. E 2017, 95, 032309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Bousso, P.; Casrouge, A.; Altman, J.D.; Haury, M.; Kanellopoulos, J.; Abastado, J.P.; Kourilsky, P. Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 1998, 9, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Blattman, J.N.; Antia, R.; Sourdive, D.J.; Wang, X.; Kaech, S.M.; Murali-Krishna, K.; Altman, J.D.; Ahmed, R. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 2002, 195, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Chu, H.; Hataye, J.; Pagán, A.; Pepper, M.; McLachlan, J.; Zell, T.; Jenkins, M. Tracking epitope-specific T cells. Nat. Protoc. 2009, 4, 565–581. [Google Scholar] [CrossRef] [Green Version]
- Den Braber, I.; Mugwagwa, T.; Vrisekoop, N.; Westera, L.; Mögling, R.; de Boer, A.B.; Willems, N.; Schrijver, E.H.; Spierenburg, G.; Gaiser, K.; et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 2012, 36, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Westera, L.; Drylewicz, J.; den Braber, I.; Mugwagwa, T.; van der Maas, I.; Kwast, L.; Volman, T.; van de Weg-Schrijver, E.H.; Bartha, I.; Spierenburg, G.; et al. Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and men. Blood 2013, 122, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Borghans, J.A.M.; Tesselaar, K.; Boer, R.J. Current best estimates for the average lifespans of mouse and human leukocytes: Reviewing two decades of deuterium-labeling experiments. Immunol. Rev. 2018, 285, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Ganusov, V.V.; De Boer, R.J. Do most lymphocytes in humans really reside in the gut? Trends Immunol. 2007, 28, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Seddon, B.; Yates, A.J. The natural history of naive T cells from birth to maturity. Immunol. Rev. 2018, 285, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Bains, I.; Antia, R.; Callard, R.; Yates, A. Quantifying the development of the peripheral naive CD4+ T-cell pool in humans. Blood 2009, 113, 5480. [Google Scholar] [CrossRef] [Green Version]
- Murugan, A.; Mora, T.; Walczak, A.M.; Callan, C.G. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc. Natl. Acad. Sci. USA 2012, 109, 16161–16166. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M.; King, M.F.; López-García, M.; Clifton, I.J.; Proctor, J.; Reynolds, K.A.; Noakes, C.J. Effects of patient room layout on viral accruement on healthcare professionals’ hands. Indoor Air 2021, 31, 1657–1672. [Google Scholar] [CrossRef]
Description | Symbol |
---|---|
Set of clonotypes modeled | |
Set of clonotypes that can recognize VDP v | |
Set of VDPs presented during the first infection | |
Set of VDPs presented during the first infection recognized by clonotype i | |
Set of VDPs presented during the second infection | |
Set of VDPs presented during the second infection recognized by clonotype i | |
Probability of a random VDP to be recognized by a clonotype | p |
Number of VDPs a clonotype can recognize | k |
Total naive homeostatic stimulus rate for clonotype i | |
Memory homeostatic division rate | |
Effector to memory differentiation fraction | |
Stimulus rate provided by VDP v | |
Naive death rate (per cell) | |
Memory death rate (per cell) | |
Effector death rate (per cell) |
Description | Symbol | Units | Value |
---|---|---|---|
Probability of a VDP being drawn | p | - | |
Degree of a clonotype in the bipartite network | k | - | 8 |
Total naive homeostatic stimulus rate for clonotype i | 10 | ||
Probability of not sharing self-pMHCs with other clonotypes | - | ||
Probability of sharing self-pMHCs with one clonotype | - | ||
Probability of sharing self-pMHCs with two clonotypes | - | ||
Memory homeostatic division rate | 1 | ||
Effector to memory differentiation fraction | - | ||
VDP stimulus rate | |||
Naive to effector differentiation constant | - | 1 | |
Memory to effector differentiation constant | - | 2 | |
Effector division constant | - | 1 | |
Naive death rate (per cell) | 1 | ||
Memory death rate (per cell) | 0.8 | ||
Effector death rate (per cell) | 20 |
Parameter | Figures | Mouse | Human | Definition |
---|---|---|---|---|
month−1 | month−1 | month−1 | thymic output rate | |
8 | 8 | 8 | thymic clonal size | |
1 month−1 | 1 month−1 | month−1 | per cell death rate | |
10 | peripheral division strength | |||
M | 200 | total number of self-pMHCs | ||
p | precursor frequency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaevert, J.A.; Luque Duque, D.; Lythe, G.; Molina-París, C.; Thomas, P.G. Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses 2021, 13, 1786. https://doi.org/10.3390/v13091786
Gaevert JA, Luque Duque D, Lythe G, Molina-París C, Thomas PG. Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses. 2021; 13(9):1786. https://doi.org/10.3390/v13091786
Chicago/Turabian StyleGaevert, Jessica Ann, Daniel Luque Duque, Grant Lythe, Carmen Molina-París, and Paul Glyndwr Thomas. 2021. "Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses" Viruses 13, no. 9: 1786. https://doi.org/10.3390/v13091786
APA StyleGaevert, J. A., Luque Duque, D., Lythe, G., Molina-París, C., & Thomas, P. G. (2021). Quantifying T Cell Cross-Reactivity: Influenza and Coronaviruses. Viruses, 13(9), 1786. https://doi.org/10.3390/v13091786