A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery
Abstract
:1. Introduction
2. Alterations in RNA Polymerase II Holoenzyme and Activity
3. Promoter Clearance and Promoter-Proximal Pausing
4. CTD Phosphorylation
5. RNA Processing in Splicing and Termination
6. Histone and Chromatin Regulation
7. Broader Networks and Future Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bauer, D.L.V.; Tellier, M.; Martínez-Alonso, M.; Nojima, T.; Proudfoot, N.J.; Murphy, S.; Fodor, E. Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep. 2018, 23, 2119–2129.e3. [Google Scholar] [CrossRef] [PubMed]
- Akhrymuk, I.; Frolov, I.; Frolova, E.I. Sindbis Virus Infection Causes Cell Death by nsP2-Induced Transcriptional Shutoff or by nsP3-Dependent Translational Shutoff. J. Virol. 2018, 92, e01388-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackermann, W.W.; Francis, T. Some Biochemical Aspects of Herpes Infection. Exp. Biol. Med. 1950, 74, 123–126. [Google Scholar] [CrossRef]
- Newton, A.; Stoker, M. Changes in nucleic acid content of HeLa cells infected with herpes virus. Virology 1958, 5, 549–560. [Google Scholar] [CrossRef]
- Fan, D.; Wang, M.; Cheng, A.; Jia, R.; Yang, Q.; Wu, Y.; Zhu, D.; Zhao, X.; Chen, S.; Liu, M.; et al. The Role of VP16 in the Life Cycle of Alphaherpesviruses. Front. Microbiol. 2020, 11, 1910. [Google Scholar] [CrossRef] [PubMed]
- Dembowski, J.A.; DeLuca, N.A. Temporal Viral Genome-Protein Interactions Define Distinct Stages of Productive Herpesviral Infection. mBio 2018, 9, e01182-18. [Google Scholar] [CrossRef] [Green Version]
- Aurelian, L.; Roizman, B. Abortive infection of canine cells by herpes simplex virus: II. Alternative suppression of synthesis of interferon and viral constituents. J. Mol. Biol. 1965, 11, 539–548. [Google Scholar] [CrossRef]
- Roizman, B.; Borman, G.S.; Rousta, M.-K. Macromolecular Synthesis in Cells infected with Herpes Simplex Virus. Nature 1965, 206, 1374–1375. [Google Scholar] [CrossRef]
- Hay, J.; Köteles, G.J.; Keir, H.M.; Sharpe, H.S. Herpes Virus Specified Ribonucleic Acids. Nature 1966, 210, 387–390. [Google Scholar] [CrossRef]
- Flanagan, J.F. Virus-specific Ribonucleic Acid Synthesis in KB Cells Infected with Herpes Simplex Virus. J. Virol. 1967, 1, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Wagner, E.K.; Roizman, B. Ribonucleic Acid Synthesis in Cells Infected with Herpes Simplex Virus. J. Virol. 1969, 4, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Pizer, L.I.; Beard, P. The effect of herpes virus infection on mRNA in polyoma virus-transformed cells. Virology 1976, 75, 477–480. [Google Scholar] [CrossRef]
- Stringer, J.R.; Holland, L.E.; Swanstrom, R.I.; Pivo, K.; Wagner, E.K. Quantitation of herpes simplex virus type 1 RNA in infected HeLa cells. J. Virol. 1977, 21, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Spector, D.; Pizer, L.I. Herpesvirus infection modifies adenovirus RNA metabolism in adenovirus type 5-transformed cells. J. Virol. 1978, 27, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenberg, R.M.; Pizer, L.I. Herpes simplex virus-induced changes in cellular and adenovirus RNA metabolism in an adenovirus type 5-transformed human cell line. J. Virol. 1982, 42, 474–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayman, B.A.; Nishioka, Y. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type. J. Virol. 1985, 53, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, L.M.; Latchman, D.S. Induction and repression of cellular gene transcription during Herpes simplex virus infection are mediated by different viral immediate-early gene products. Eur. J. Biochem. 1988, 174, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, M.; Falke, D.; Preuhs, J.; Schroder, H.C.; Pfeifer, K.; Muller, W.E.G. Occurrence of Novel Small RNAs with Concomitant Inhibition of Host Cellular U Small Nuclear RNA Synthesis in Vero Cells Infected with Herpes Simplex Virus Type 1. J. Gen. Virol. 1986, 67, 2587–2594. [Google Scholar] [CrossRef]
- Simonin, D.; Madjar, J.J.; Mass, T.; Diaz, J.-J. Persistence of ribosomal protein synthesis after infection of HeLa cells by herpes simplex virus type 1. J. Gen. Virol. 1997, 78, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Spencer, C.A.; Dahmus, M.E.; Rice, S.A. Repression of host RNA polymerase II transcription by herpes simplex virus type 1. J. Virol. 1997, 71, 2031–2040. [Google Scholar] [CrossRef] [Green Version]
- Alwine, J.C.; Steinhart, W.L.; Hill, C. Transcription of herpes simplex type 1 DNA in nuclei isolated from infected HEp-2 and KB cells. Virology 1974, 60, 302–307. [Google Scholar] [CrossRef]
- Preston, C.M.; Newton, A.A. The Effects of Herpes Simplex Virus Type 1 on Cellular DNA-dependent RNA Polymerase Activities. J. Gen. Virol. 1976, 33, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Smibert, C.A.; Smiley, J.R. Differential regulation of endogenous and transduced beta-globin genes during infection of erythroid cells with a herpes simplex virus type 1 recombinant. J. Virol. 1990, 64, 3882–3894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSwiggen, D.T.; Hansen, A.S.; Teves, S.S.; Marie-Nelly, H.; Hao, Y.; Heckert, A.B.; Umemoto, K.K.; Dugast-Darzacq, C.; Tjian, R.; Darzacq, X. Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation. eLife 2019, 8, e47098. [Google Scholar] [CrossRef] [PubMed]
- Dembowski, J.; DeLuca, N.A. Selective Recruitment of Nuclear Factors to Productively Replicating Herpes Simplex Virus Genomes. PLoS Pathog. 2015, 11, e1004939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, S.; Cramer, P. Structural Biology of RNA Polymerase II Transcription: 20 Years On. Annu. Rev. Cell Dev. Biol. 2020, 36, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, H.L.; Spencer, C.A. RNA Polymerase II Holoenzyme Modifications Accompany Transcription Reprogramming in Herpes Simplex Virus Type 1-Infected Cells. J. Virol. 2001, 75, 9872–9884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Knipe, D.M. Association of Herpes Simplex Virus Type 1 ICP8 and ICP27 Proteins with Cellular RNA Polymerase II Holoenzyme. J. Virol. 2002, 76, 5893–5904. [Google Scholar] [CrossRef] [Green Version]
- Dremel, S.E.; DeLuca, N.A. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off. eLife 2019, 8, e51109. [Google Scholar] [CrossRef] [PubMed]
- Rivas, T.; Goodrich, J.A.; Kugel, J.F. The herpes simplex virus 1 protein ICP4 acts as both an activator and repressor of host genome transcription during infection. Mol. Cell. Biol. 2021, MCB0017121. [Google Scholar] [CrossRef]
- Wyler, E.; Menegatti, J.; Franke, V.; Kocks, C.; Boltengagen, A.; Hennig, T.; Theil, K.; Rutkowski, A.; Ferrai, C.; Baer, L.; et al. Widespread activation of antisense transcription of the host genome during herpes simplex virus 1 infection. Genome Biol. 2017, 18, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, A.; Landry, H.M.; Churchman, L.S. Pause & go: From the discovery of RNA polymerase pausing to its functional implications. Curr. Opin. Cell Biol. 2017, 46, 72–80. [Google Scholar] [CrossRef] [Green Version]
- Core, L.; Adelman, K. Promoter-proximal pausing of RNA polymerase II: A nexus of gene regulation. Genes Dev. 2019, 33, 960–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, S.M.; Farnung, L.; Urlaub, H.; Cramer, P. Structure of paused transcription complex Pol II–DSIF–NELF. Nature 2018, 560, 601–606. [Google Scholar] [CrossRef]
- Bugai, A.; Quaresma, A.J.C.; Friedel, C.C.; Lenasi, T.; Düster, R.; Sibley, C.; Fujinaga, K.; Kukanja, P.; Hennig, T.; Blasius, M.; et al. P-TEFb Activation by RBM7 Shapes a Pro-survival Transcriptional Response to Genotoxic Stress. Mol. Cell 2019, 74, 254–267.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egloff, S. CDK9 keeps RNA polymerase II on track. Cell. Mol. Life Sci. 2021, 78, 5543–5567. [Google Scholar] [CrossRef]
- Abrisch, R.; Eidem, T.M.; Yakovchuk, P.; Kugel, J.F.; Goodrich, J.A. Infection by Herpes Simplex Virus 1 Causes Near-Complete Loss of RNA Polymerase II Occupancy on the Host Cell Genome. J. Virol. 2016, 90, 2503–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkenheuer, C.H.; Danko, C.G.; Baines, J.D. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection. J. Virol. 2018, 92, e02184-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahat, D.B.; Kwak, H.; Booth, G.T.; Jonkers, I.H.; Danko, C.G.; Patel, R.; Waters, C.T.; Munson, K.; Core, L.J.; Lis, J.T. Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat. Protoc. 2016, 11, 1455–1476. [Google Scholar] [CrossRef]
- Birkenheuer, C.H.; Baines, J.D. RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. J. Virol. 2020, 94, e02035-19. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tang, K.-W.; Muylaert, I.; Samuelsson, T.; Elias, P. CDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes. J. Biol. Chem. 2017, 292, 15489–15500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, H.L.; Dembowski, J.A.; DeLuca, N.A. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts. mBio 2017, 8, e00745-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isa, N.F.; Bensaude, O.; Aziz, N.C.; Murphy, S. HSV-1 ICP22 is a selective viral repressor of cellular RNA polymerase II-mediated transcription elongation. Unpublished manuscript. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zaborowska, J.; Egloff, S.; Murphy, S. The pol II CTD: New twists in the tail. Nat. Struct. Mol. Biol. 2016, 23, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.A.; Long, M.C.; Lam, V.; Spencer, C.A. RNA polymerase II is aberrantly phosphorylated and localized to viral replication compartments following herpes simplex virus infection. J. Virol. 1994, 68, 988–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, S.A.; Long, M.C.; Lam, V.; Schaffer, P.A.; Spencer, C.A. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program. J. Virol. 1995, 69, 5550–5559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, K.A.; Rice, S.A. Herpes Simplex Virus Type 1 Infection Leads to Loss of Serine-2 Phosphorylation on the Carboxyl-Terminal Domain of RNA Polymerase II. J. Virol. 2005, 79, 11323–11334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, K.A.; Rice, S.A. Herpes Simplex Virus Immediate-Early Protein ICP22 Triggers Loss of Serine 2-Phosphorylated RNA Polymerase II. J. Virol. 2007, 81, 5091–5101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai-Ju, J.Q.; Li, L.; Johnson, L.A.; Sandri-Goldin, R.M. ICP27 Interacts with the C-Terminal Domain of RNA Polymerase II and Facilitates Its Recruitment to Herpes Simplex Virus 1 Transcription Sites, Where It Undergoes Proteasomal Degradation during Infection. J. Virol. 2006, 80, 3567–3581. [Google Scholar] [CrossRef] [Green Version]
- Whisnant, A.W.; Dionisi, O.D.; Grothey, A.; Rappold, J.M.; Marante, A.L.; Subramanian, S.S.; Dölken, L. Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7. Unpublished manuscript. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zaborowska, J.; Baumli, S.; Laitem, C.; O’Reilly, D.; Thomas, P.H.; O’Hare, P.; Murphy, S. Herpes Simplex Virus 1 (HSV-1) ICP22 Protein Directly Interacts with Cyclin-Dependent Kinase (CDK)9 to Inhibit RNA Polymerase II Transcription Elongation. PLoS ONE 2014, 9, e107654. [Google Scholar] [CrossRef]
- Czudnochowski, N.; Bösken, C.A.; Geyer, M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 2012, 3, 842. [Google Scholar] [CrossRef] [Green Version]
- Sabath, K.; Stäubli, M.L.; Marti, S.; Leitner, A.; Moes, M.; Jonas, S. INTS10–INTS13–INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat. Commun. 2020, 11, 3422. [Google Scholar] [CrossRef]
- Rosa-Mercado, N.A.; Zimmer, J.T.; Apostolidi, M.; Rinehart, J.; Simon, M.D.; Steitz, J.A. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Mol. Cell 2021, 81, 502–513.e4. [Google Scholar] [CrossRef] [PubMed]
- Durand, L.O.; Roizman, B. Role of cdk9 in the Optimization of Expression of the Genes Regulated by ICP22 of Herpes Simplex Virus. J. Virol. 2008, 82, 10591–10599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastian, T.W.; Rice, S.A. Identification of Sequences in Herpes Simplex Virus Type 1 ICP22 That Influence RNA Polymerase II Modification and Viral Late Gene Expression. J. Virol. 2009, 83, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkenheuer, C.H.; Baines, J.D. The ICP22 protein of Herpes Simplex Virus 1 promotes RNA Polymerase II activity on Viral Immediate Early Genes. Unpublished manuscript. bioRxiv 2021. [Google Scholar] [CrossRef]
- Guo, L.; Wu, W.-J.; Liu, L.-D.; Wang, L.-C.; Zhang, Y.; Wu, L.-Q.; Guan, Y.; Li, Q.-H. Herpes Simplex Virus 1 ICP22 Inhibits the Transcription of Viral Gene Promoters by Binding to and Blocking the Recruitment of P-TEFb. PLoS ONE 2012, 7, e45749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matundan, H.; Ghiasi, H. Herpes Simplex Virus 1 ICP22 Suppresses CD80 Expression by Murine Dendritic Cells. J. Virol. 2019, 93, e01803-18. [Google Scholar] [CrossRef] [Green Version]
- Mostafa, H.H.; Davido, D.J. Herpes Simplex Virus 1 ICP22 but Not US 1.5 Is Required for Efficient Acute Replication in Mice and VICE Domain Formation. J. Virol. 2013, 87, 13510–13519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mott, K.R.; Allen, S.J.; Zandian, M.; Akbari, O.; Hamrah, P.; Maazi, H.; Wechsler, S.L.; Sharpe, A.H.; Freeman, G.J.; Ghiasi, H. Inclusion of CD80 in HSV Targets the Recombinant Virus to PD-L1 on DCs and Allows Productive Infection and Robust Immune Responses. PLoS ONE 2014, 9, e87617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matundan, H.H.; Jaggi, U.; Wang, S.; Ghiasi, H. Loss of ICP22 in HSV-1 Elicits Immune Infiltration and Maintains Stromal Keratitis Despite Reduced Primary and Latent Virus Infectivity. Investig. Opthalmology Vis. Sci. 2019, 60, 3398–3406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaggi, U.; Matundan, H.H.; Tormanen, K.; Wang, S.; Yu, J.; Mott, K.R.; Ghiasi, H. Expression of Murine CD80 by Herpes Simplex Virus 1 in Place of Latency-Associated Transcript (LAT) Can Compensate for Latency Reactivation and Anti-apoptotic Functions of LAT. J. Virol. 2020, 94, e01798-19. [Google Scholar] [CrossRef] [PubMed]
- Matundan, H.H.; Jaggi, U.; Yu, J.; Akbari, O.; Ghiasi, H. Absence of CD28-CTLA4-PD-L1 Costimulatory Molecules Reduces Herpes Simplex Virus 1 Reactivation. mBio 2021, 12, e0117621. [Google Scholar] [CrossRef]
- Matundan, H.H.; Wang, S.; Jaggi, U.; Yu, J.; Ghiasi, H. Suppression of CD80 expression by ICP22 affect HSV-1 replication and CD8+IFNγ+ infiltrates in the eye of infected mice but not latency-reactivation. J. Virol. 2021, 95, e0103621. [Google Scholar] [CrossRef] [PubMed]
- Long, M.C.; Leong, V.; Schaffer, P.A.; Spencer, C.A.; Rice, S.A. ICP22 and the UL13 Protein Kinase Are both Required for Herpes Simplex Virus-Induced Modification of the Large Subunit of RNA Polymerase II. J. Virol. 1999, 73, 5593–5604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopardi, R.; Ward, P.L.; Ogle, W.O.; Roizman, B. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 protein kinase. J. Virol. 1997, 71, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Durand, L.O.; Advani, S.J.; Poon, A.P.W.; Roizman, B. The Carboxyl-Terminal Domain of RNA Polymerase II Is Phosphorylated by a Complex Containing cdk9 and Infected-Cell Protein 22 of Herpes Simplex Virus. J. Virol. 2005, 79, 6757–6762. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Yamamoto, M.; Ohno, T.; Tanaka, M.; Sata, T.; Nishiyama, Y.; Kawaguchi, Y. Herpes Simplex Virus 1-Encoded Protein Kinase UL13 Phosphorylates Viral Us3 Protein Kinase and Regulates Nuclear Localization of Viral Envelopment Factors UL34 and UL31. J. Virol. 2006, 80, 1476–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojas, S.; Corbin-Lickfett, K.A.; Escudero-Paunetto, L.; Sandri-Goldin, R.M. ICP27 Phosphorylation Site Mutants Are Defective in Herpes Simplex Virus 1 Replication and Gene Expression. J. Virol. 2010, 84, 2200–2211. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Maqbool, M.A.; Yahia, Y.; El Aabidine, A.Z.; Esnault, C.; Forné, I.; Decker, T.-M.; Martin, D.; Schüller, R.; Krebs, S.; et al. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol. Cell 2018, 69, 48–61.e6. [Google Scholar] [CrossRef] [Green Version]
- Ou, M.; Sandri-Goldin, R.M. Inhibition of cdk9 during Herpes Simplex Virus 1 Infection Impedes Viral Transcription. PLoS ONE 2013, 8, e79007. [Google Scholar] [CrossRef] [Green Version]
- Lang, F.; Li, X.; Vladimirova, O.; Hu, B.; Chen, G.; Xiao, Y.; Singh, V.; Lu, D.; Li, L.; Han, H.; et al. CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Sci. Rep. 2017, 7, 39861. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Johnson, L.A.; Dai-Ju, J.Q.; Sandri-Goldin, R.M. Hsc70 Focus Formation at the Periphery of HSV-1 Transcription Sites Requires ICP27. PLoS ONE 2008, 3, e1491. [Google Scholar] [CrossRef] [Green Version]
- Burch, A.D.; Weller, S.K.; Hanley, T.M.; Kiefer, H.L.B.; Schnitzler, A.C.; Marcello, J.E.; Viglianti, G.A. Nuclear Sequestration of Cellular Chaperone and Proteasomal Machinery during Herpes Simplex Virus Type 1 Infection. J. Virol. 2004, 78, 2819–2830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burch, A.D.; Weller, S.K. Herpes Simplex Virus Type 1 DNA Polymerase Requires the Mammalian Chaperone Hsp90 for Proper Localization to the Nucleus. J. Virol. 2005, 79, 10740–10749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingston, C.M.; DeLuca, N.A.; Wilkinson, D.E.; Weller, S.K. Oligomerization of ICP4 and Rearrangement of Heat Shock Proteins May Be Important for Herpes Simplex Virus Type 1 Prereplicative Site Formation. J. Virol. 2008, 82, 6324–6336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingston, C.M.; Ifrim, M.F.; Cowan, A.E.; Weller, S.K. Virus-Induced Chaperone-Enriched (VICE) Domains Function as Nuclear Protein Quality Control Centers during HSV-1 Infection. PLoS Pathog. 2009, 5, e1000619. [Google Scholar] [CrossRef] [Green Version]
- Adlakha, M.; Livingston, C.M.; Bezsonova, I.; Weller, S.K. The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J. Virol. 2020, 94, e01564-19. [Google Scholar] [CrossRef]
- Bastian, T.W.; Livingston, C.M.; Weller, S.K.; Rice, S.A. Herpes Simplex Virus Type 1 Immediate-Early Protein ICP22 Is Required for VICE Domain Formation during Productive Viral Infection. J. Virol. 2010, 84, 2384–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowski, A.J.; Erhard, F.; L’Hernault, A.; Bonfert, T.; Schilhabel, M.; Crump, C.; Rosenstiel, P.; Efstathiou, S.; Zimmer, R.; Friedel, C.C.; et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 2015, 6, 7126. [Google Scholar] [CrossRef] [Green Version]
- Hennig, T.; Michalski, M.; Rutkowski, A.J.; Djakovic, L.; Whisnant, A.W.; Friedl, M.-S.; Jha, B.A.; Baptista, M.A.P.; L’Hernault, A.; Erhard, F.; et al. HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes. PLoS Pathog. 2018, 14, e1006954. [Google Scholar] [CrossRef]
- Wang, X.; Hennig, T.; Whisnant, A.W.; Erhard, F.; Prusty, B.K.; Friedel, C.C.; Forouzmand, E.; Hu, W.; Erber, L.; Chen, Y.; et al. Herpes simplex virus blocks host transcription termination via the bimodal activities of ICP27. Nat. Commun. 2020, 11, 293. [Google Scholar] [CrossRef] [Green Version]
- McGregor, F.; Phelan, A.; Dunlop, J.; Clements, J.B. Regulation of herpes simplex virus poly (A) site usage and the action of immediate-early protein IE63 in the early-late switch. J. Virol. 1996, 70, 1931–1940. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, L.; Whisnant, A.W.; Hennig, T.; Djakovic, L.; Haque, N.; Bach, C.; Sandri-Goldin, R.M.; Erhard, F.; Friedel, C.C.; et al. Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation. PLoS Genet. 2021, 17, e1009263. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Patel, A.; Krause, P.R. Herpes simplex virus ICP27 regulates alternative pre-mRNA polyadenylation and splicing in a sequence-dependent manner. Proc. Natl. Acad. Sci. USA 2016, 113, 12256–12261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröder, H.C.; Falke, D.; Weise, K.; Bachmann, M.; Carmo-Fonseca, M.; Zaubitzer, T.; Müller, W.E. Change of processing and nucleocytoplasmic transport of mRNA in HSV-1-infected cells. Virus Res. 1989, 13, 61–78. [Google Scholar] [CrossRef]
- Bastow, K.F.; Bouchard, J.; Ren, X.-J.; Cheng, Y.-C. Synthesis of dihydrofolate reductase and metabolism of related RNA in a methotrexate resistant human cell line infected with herpes simplex virus type 2. Virology 1986, 149, 199–207. [Google Scholar] [CrossRef]
- Sandri-Goldin, R.M.; Mendoza, G.E. A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes Dev. 1992, 6, 848–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardwicke, M.A.; Sandri-Goldin, R.M. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J. Virol. 1994, 68, 4797–4810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, W.R.; Sandri-Goldin, R.M. Herpes simplex virus inhibits host cell splicing, and regulatory protein ICP27 is required for this effect. J. Virol. 1994, 68, 7790–7799. [Google Scholar] [CrossRef] [Green Version]
- Sandri-Goldin, R.M.; Hibbard, M.K.; Hardwicke, M.A. The C-terminal repressor region of herpes simplex virus type 1 ICP27 is required for the redistribution of small nuclear ribonucleoprotein particles and splicing factor SC35; however, these alterations are not sufficient to inhibit host cell splicing. J. Virol. 1995, 69, 6063–6076. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, A.; Kreivi, J.-P. Splicing Inhibition at the Level of Spliceosome Assembly in the Presence of Herpes Simplex Virus Protein ICP27. Virology 2002, 294, 189–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Guo, N.; Patel, A.; Krause, P.R. Herpes Simplex Virus 2 Expresses a Novel Form of ICP34.5, a Major Viral Neurovirulence Factor, through Regulated Alternative Splicing. J. Virol. 2013, 87, 5820–5830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, N.; Watkins, S.; Schaffer, P.A.; DeLuca, N.A. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate-early genes encoding ICP4, ICP27, and ICP22. J. Virol. 1996, 70, 6358–6369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, S.; Patel, A.; Krause, P.R. Hidden regulation of herpes simplex virus 1 pre-mRNA splicing and polyadenylation by virally encoded immediate early gene ICP27. PLoS Pathog. 2019, 15, e1007884. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.; Ellison, K.S.; Verity, R.; Smiley, J.R. Herpes Simplex Virus ICP27 Induces Cytoplasmic Accumulation of Unspliced Polyadenylated α-Globin Pre-mRNA in Infected HeLa Cells. J. Virol. 2000, 74, 2913–2919. [Google Scholar] [CrossRef] [Green Version]
- Ellison, K.S.; Rice, S.A.; Verity, R.; Smiley, J.R. Processing of α-Globin and ICP0 mRNA in Cells Infected with Herpes Simplex Virus Type 1 ICP27 Mutants. J. Virol. 2000, 74, 7307–7319. [Google Scholar] [CrossRef] [Green Version]
- Sandri-Goldin, R.M.; Hibbard, M.K. The herpes simplex virus type 1 regulatory protein ICP27 coimmunoprecipitates with anti-Sm antiserum, and the C terminus appears to be required for this interaction. J. Virol. 1996, 70, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Bryant, H.E.; Wadd, S.E.; Lamond, A.I.; Silverstein, S.J.; Clements, J.B. Herpes Simplex Virus IE63 (ICP27) Protein Interacts with Spliceosome-Associated Protein 145 and Inhibits Splicing prior to the First Catalytic Step. J. Virol. 2001, 75, 4376–4385. [Google Scholar] [CrossRef] [Green Version]
- Sciabica, K.S.; Dai, Q.J.; Sandri-Goldin, R.M. ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation. EMBO J. 2003, 22, 1608–1619. [Google Scholar] [CrossRef] [Green Version]
- Souki, S.K.; Sandri-Goldin, R.M. Arginine Methylation of the ICP27 RGG Box Regulates the Functional Interactions of ICP27 with SRPK1 and Aly/REF during Herpes Simplex Virus 1 Infection. J. Virol. 2009, 83, 8970–8975. [Google Scholar] [CrossRef] [Green Version]
- Tunnicliffe, R.B.; Hu, W.K.; Wu, M.Y.; Levy, C.; Mould, A.P.; McKenzie, E.A.; Sandri-Goldin, R.M.; Golovanov, A.P. Molecular Mechanism of SR Protein Kinase 1 Inhibition by the Herpes Virus Protein ICP27. mBio 2019, 10, e02551–e02619. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.E.; Barghusen, S.C.; Leser, G.P.; Spear, P.G. Redistribution of nuclear ribonucleoprotein antigens during herpes simplex virus infection. J. Cell Biol. 1987, 105, 2069–2082. [Google Scholar] [CrossRef] [Green Version]
- Phelan, A.; Carmo-Fonseca, M.; McLaughlan, J.; Lamond, A.; Clements, J.B. A herpes simplex virus type 1 immediate-early gene product, IE63, regulates small nuclear ribonucleoprotein distribution. Proc. Natl. Acad. Sci. USA 1993, 90, 9056–9060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, M.; Falke, D.; Schröder, H.-C.; Müller, W.E.G. Intracellular Distribution of the La Antigen in CV-1 Cells after Herpes Simplex Virus Type 1 Infection Compared with the Localization of U Small Nuclear Ribonucleoprotein Particles. J. Gen. Virol. 1989, 70, 881–891. [Google Scholar] [CrossRef]
- Sandri-Goldin, R.M. Interactions between a Herpes Simplex Virus Regulatory Protein and Cellular mRNA Processing Pathways. Methods 1998, 16, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Nojima, T.; Oshiro-Ideue, T.; Nakanoya, H.; Kawamura, H.; Morimoto, T.; Kawaguchi, Y.; Kataoka, N.; Hagiwara, M. Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Res. 2009, 37, 6515–6527. [Google Scholar] [CrossRef]
- Escudero-Paunetto, L.; Li, L.; Hernandez, F.P.; Sandri-Goldin, R.M. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs. Virology 2010, 401, 155–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadek, J.; Read, G.S. The Splicing History of an mRNA Affects Its Level of Translation and Sensitivity to Cleavage by the Virion Host Shutoff Endonuclease during Herpes Simplex Virus Infections. J. Virol. 2016, 90, 10844–10856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedel, C.C.; Whisnant, A.W.; Djakovic, L.; Rutkowski, A.J.; Friedl, M.-S.; Kluge, M.; Williamson, J.C.; Sai, S.; Vidal, R.O.; Sauer, S.; et al. Dissecting Herpes Simplex Virus 1-Induced Host Shutoff at the RNA Level. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Li, B.; Carey, M.; Workman, J.L. The Role of Chromatin during Transcription. Cell 2007, 128, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Cutter, A.R.; Hayes, J.J. A brief review of nucleosome structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef] [Green Version]
- Knipe, D.M.; Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Genet. 2008, 6, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Kutluay, S.B.; Triezenberg, S.J. Role of chromatin during herpesvirus infections. Biochim. Biophys. Acta Gen. Subj. 2009, 1790, 456–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schang, L.M.; Hu, M.Y.; Cortes, E.F.; Sun, K. Chromatin-mediated epigenetic regulation of HSV-1 transcription as a potential target in antiviral therapy. Antivir. Res. 2021, 192, 105103. [Google Scholar] [CrossRef] [PubMed]
- Gurova, K.; Chang, H.-W.; Valieva, M.; Sandlesh, P.; Studitsky, V.M. Structure and function of the histone chaperone FACT—Resolving FACTual issues. Biochim. Biophys. Acta Gene Regul. Mech. 2018, 1861, 892–904. [Google Scholar] [CrossRef]
- Taylor, T.J.; Knipe, D.M. Proteomics of Herpes Simplex Virus Replication Compartments: Association of Cellular DNA Replication, Repair, Recombination, and Chromatin Remodeling Proteins with ICP8. J. Virol. 2004, 78, 5856–5866. [Google Scholar] [CrossRef] [Green Version]
- Wada, T.; Orphanides, G.; Hasegawa, J.; Kim, D.-K.; Shima, D.; Yamaguchi, Y.; Fukuda, A.; Hisatake, K.; Oh, S.; Reinberg, D.; et al. FACT relieves DSIF/NELF-mediated inhibition of transcriptional elongation and reveals functional differences between P-TEFb and TFIIH. Mol. Cell 2000, 5, 1067–1072. [Google Scholar] [CrossRef]
- Belotserkovskaya, R.; Oh, S.; Bondarenko, V.A.; Orphanides, G.; Studitsky, V.M.; Reinberg, D. FACT Facilitates Transcription-Dependent Nucleosome Alteration. Science 2003, 301, 1090–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, K.L.; Hendzel, M.; Schang, L.M. Linker Histones Are Mobilized during Infection with Herpes Simplex Virus Type. J. Virol. 2008, 82, 8629–8646. [Google Scholar] [CrossRef] [Green Version]
- Conn, K.L.; Hendzel, M.J.; Schang, L.M. Core Histones H2B and H4 Are Mobilized during Infection with Herpes Simplex Virus. J. Virol. 2011, 85, 13234–13252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conn, K.L.; Hendzel, M.J.; Schang, L.M. The Differential Mobilization of Histones H3.1 and H3.3 by Herpes Simplex Virus 1 Relates Histone Dynamics to the Assembly of Viral Chromatin. PLoS Pathog. 2013, 9, e1003695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, M.H.; Cliffe, A.R.; Knipe, D.M.; Smiley, J.R. Herpes Simplex Virus VP16, but Not ICP0, Is Required to Reduce Histone Occupancy and Enhance Histone Acetylation on Viral Genomes in U2OS Osteosarcoma Cells. J. Virol. 2010, 84, 1366–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, K.E.; Bottero, V.; Flaherty, S.; Dutta, S.; Singh, V.V.; Chandran, B. IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications. PLoS Pathog. 2014, 10, e1004503. [Google Scholar] [CrossRef] [PubMed]
- Gibeault, R.L.; Conn, K.L.; Bildersheim, M.D.; Schang, L.M. An Essential Viral Transcription Activator Modulates Chromatin Dynamics. PLoS Pathog. 2016, 12, e1005842. [Google Scholar] [CrossRef] [Green Version]
- Kulej, K.; Avgousti, D.C.; Sidoli, S.; Herrmann, C.; Della Fera, A.N.; Kim, E.T.; Garcia, B.A.; Weitzman, M.D. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection. Mol. Cell. Proteom. 2017, 16, S92–S107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobbs, W.E.; Brough, D.E.; Kovesdi, I.; DeLuca, N.A. Efficient Activation of Viral Genomes by Levels of Herpes Simplex Virus ICP0 Insufficient to Affect Cellular Gene Expression or Cell Survival. J. Virol. 2001, 75, 3391–3403. [Google Scholar] [CrossRef] [Green Version]
- Mossman, K.L.; Macgregor, P.F.; Rozmus, J.J.; Goryachev, A.; Edwards, A.M.; Smiley, J.R. Herpes Simplex Virus Triggers and Then Disarms a Host Antiviral Response. J. Virol. 2001, 75, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Stingley, S.W.; García-Ramírez, J.J.; Aguilar, S.A.; Simmen, K.; Sandri-Goldin, R.M.; Ghazal, P.; Wagner, E.K. Global Analysis of Herpes Simplex Virus Type 1 Transcription Using an Oligonucleotide-Based DNA Microarray. J. Virol. 2000, 74, 9916–9927. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Li, X.; Huo, Y.; Yu, Y.; Zhang, Q.; Chen, G.; Zhang, Y.; Fraser, N.W.; Wu, D.; Zhou, J. Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci. Rep. 2016, 6, 28075. [Google Scholar] [CrossRef]
- Pheasant, K.; Möller-Levet, C.S.; Jones, J.; Depledge, D.; Breuer, J.; Elliott, G. Nuclear-cytoplasmic compartmentalization of the herpes simplex virus 1 infected cell transcriptome is co-ordinated by the viral endoribonuclease vhs and cofactors to facilitate the translation of late proteins. PLoS Pathog. 2018, 14, e1007331. [Google Scholar] [CrossRef] [Green Version]
- Wyler, E.; Franke, V.; Menegatti, J.; Kocks, C.; Boltengagen, A.; Praktiknjo, S.; Walch-Rückheim, B.; Bosse, J.; Rajewsky, N.; Grässer, F.; et al. Single-cell RNA-sequencing of herpes simplex virus 1-infected cells connects NRF2 activation to an antiviral program. Nat. Commun. 2019, 10, 4878. [Google Scholar] [CrossRef] [Green Version]
- Drayman, N.; Patel, P.; Vistain, L.; Tay, S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 2019, 8, e46339. [Google Scholar] [CrossRef]
- Mangold, C.A.; Rathbun, M.M.; Renner, D.W.; Kuny, C.V.; Szpara, M.L. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog. 2021, 17, e1009441. [Google Scholar] [CrossRef]
- Abernathy, E.; Gilbertson, S.; Alla, R.; Glaunsinger, B. Viral Nucleases Induce an mRNA Degradation-Transcription Feedback Loop in Mammalian Cells. Cell Host Microbe 2015, 18, 243–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Full, F.; Van Gent, M.; Sparrer, K.; Chiang, C.; Zurenski, M.A.; Scherer, M.; Brockmeyer, N.H.; Heinzerling, L.; Stürzl, M.; Korn, K.; et al. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat. Microbiol. 2018, 4, 164–176. [Google Scholar] [CrossRef]
- Walter, S.; Franke, V.; Drayman, N.; Wyler, E.; Tay, S.; Landthaler, M.; Akalin, A.; Ensser, A.; Full, F. Herpesviral induction of germline transcription factor DUX4 is critical for viral gene expression. Unpublished manuscript. bioRxiv 2021. [Google Scholar] [CrossRef]
- Bbachmann, M.; Althoff, H.; Tröster, H.; Selenka, C.; Falke, D.; Müller, W.E.G. Translocation of the Nuclear Autoantigen La to the Cell Surface of Herpes Simplex Virus Type 1 Infected Cells. Autoimmunity 1992, 12, 37–45. [Google Scholar] [CrossRef]
- Bachmann, M.; Deister, H.; Pautz, A.; Laubinger, J.; Schmitz, M.; Falke, D.; Podlech, J.; Grölz, D. The human autoantigen La/SS-B accelerates herpes simplex virus type 1 replication in transfected mouse 3T3 cells. Clin. Exp. Immunol. 1998, 112, 482–489. [Google Scholar] [CrossRef]
- Chiang, J.J.; Sparrer, K.M.J.; Van Gent, M.; Lässig, C.; Huang, T.; Osterrieder, N.; Hopfner, K.-P.; Gack, M.U. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 2017, 19, 53–62. [Google Scholar] [CrossRef]
- Shao, D.-D.; Meng, F.-Z.; Liu, Y.; Xu, X.-Q.; Wang, X.; Hu, W.-H.; Hou, W.; Ho, W.-Z. Poly(dA:dT) Suppresses HSV-2 Infection of Human Cervical Epithelial Cells Through RIG-I Activation. Front. Immunol. 2021, 11, 598884. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; MacMillan, J.; Chen, Z.J. RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway. Cell 2009, 138, 576–591. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Kim, E.T.; Vladimirova, O.; Dheekollu, J.; Wang, Z.; Newhart, A.; Liu, D.; Myers, J.L.; Hensley, S.E.; Moffat, J.; et al. HSV-1 Remodels Host Telomeres to Facilitate Viral Replication. Cell Rep. 2014, 9, 2263–2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffran, H.A.; Pare, J.M.; Corcoran, J.A.; Weller, S.; Smiley, J.R. Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep. 2006, 8, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corcoran, J.A.; Saffran, H.A.; Duguay, B.A.; Smiley, J.R. Herpes Simplex Virus UL12.5 Targets Mitochondria through a Mitochondrial Localization Sequence Proximal to the N Terminus. J. Virol. 2009, 83, 2601–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, A.P.; Khoury-Hanold, W.; Staron, M.; Tal, M.; Pineda, C.M.; Lang, S.M.; Bestwick, M.; Duguay, B.A.; Raimundo, N.; MacDuff, D.A.; et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 2015, 520, 553–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hennig, T.; Djakovic, L.; Dölken, L.; Whisnant, A.W. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses 2021, 13, 1836. https://doi.org/10.3390/v13091836
Hennig T, Djakovic L, Dölken L, Whisnant AW. A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses. 2021; 13(9):1836. https://doi.org/10.3390/v13091836
Chicago/Turabian StyleHennig, Thomas, Lara Djakovic, Lars Dölken, and Adam W. Whisnant. 2021. "A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery" Viruses 13, no. 9: 1836. https://doi.org/10.3390/v13091836
APA StyleHennig, T., Djakovic, L., Dölken, L., & Whisnant, A. W. (2021). A Review of the Multipronged Attack of Herpes Simplex Virus 1 on the Host Transcriptional Machinery. Viruses, 13(9), 1836. https://doi.org/10.3390/v13091836