A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. RNA Extraction and PCR Amplification
2.3. Sequence Analyses and Phylogenetic Reconstructions
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamre, D.; Procknow, J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 1966, 121, 190–193. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, K.; Dees, J.H.; Becker, W.B.; Kapikian, A.Z.; Chanock, R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 1967, 57, 933–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schalk, A.F. An apparently new respiratory disease of baby chicks. J. Am. Vet. Res. Assoc. 1931, 78, 413. [Google Scholar]
- Kahn, J.S.; McIntosh, K. History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 2005, 24, S223–S227. [Google Scholar] [CrossRef] [PubMed]
- Souilmi, Y.; Lauterbur, M.E.; Tobler, R.; Huber, C.D.; Johar, A.S.; Moradi, S.V.; Johnston, W.A.; Krogan, N.J.; Alexandrov, K.; Enard, D. An ancient viral epidemic involving host coronavirus interacting genes more than 20,000 years ago in East Asia. Curr. Biol. 2021, 31, 3504–3514.e9. [Google Scholar] [CrossRef]
- Wilkinson, D.A.; Joffrin, L.; Lebarbenchon, C.; Mavingui, P. Analysis of partial sequences of the RNA-dependent RNA polymerase gene as a tool for genus and subgenus classification of coronaviruses. J. Gen. Virol. 2020, 101, 1261–1269. [Google Scholar] [CrossRef]
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 December 2021).
- Mallapaty, S. The search for animals harbouring coronavirus—And why it matters. Nature 2021, 591, 26–28. [Google Scholar] [CrossRef]
- Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, A.C.P.; Li, X.; Lau, S.K.P.; Woo, P.C.Y. Global Epidemiology of Bat Coronaviruses. Viruses 2019, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Drexler, J.F.; Gloza-Rausch, F.; Glende, J.; Corman, V.M.; Muth, D.; Goettsche, M.; Seebens, A.; Niedrig, M.; Pfefferle, S.; Yordanov, S.; et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010, 84, 11336–11349. [Google Scholar] [CrossRef] [Green Version]
- Gloza-Rausch, F.; Ipsen, A.; Seebens, A.; Göttsche, M.; Panning, M.; Drexler, J.F.; Petersen, N.; Annan, A.; Grywna, K.; Müller, M.; et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008, 14, 626–631. [Google Scholar] [CrossRef]
- Memish, Z.A.; Alhakeem, R.; Stephens, G.M. Saudi Arabia and the emergence of a novel coronavirus. East. Mediterr. Health J. 2013, 19 (Suppl. 1), S7–S11. [Google Scholar] [CrossRef] [PubMed]
- Phelps, K.L.; Hamel, L.; Alhmoud, N.; Ali, S.; Bilgin, R.; Sidamonidze, K.; Urushadze, L.; Karesh, W.; Olival, K.J. Bat Research Networks and Viral Surveillance: Gaps and Opportunities in Western Asia. Viruses 2019, 11, 240. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Anthony, S.J.; Johnson, C.K.; Greig, D.J.; Kramer, S.; Che, X.; Wells, H.; Hicks, A.L.; Joly, D.O.; Wolfe, N.D.; Daszak, P.; et al. Global patterns in coronavirus diversity. Virus. Evol. 2017, 3, vex012. [Google Scholar] [CrossRef]
- Gu, S.H.; Lim, B.K.; Kadjo, B.; Arai, S.; Kim, J.A.; Nicolas, V.; Lalis, A.; Denys, C.; Cook, J.A.; Dominguez, S.R.; et al. Molecular phylogeny of hantaviruses harbored by insectivorous bats in Côte d’Ivoire and Vietnam. Viruses 2014, 6, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Urushadze, L.; Osikowicz, L.; McKee, C.; Kuzmin, I.; Kandaurov, A.; Babuadze, G.; Natradze, I.; Imnadze, P.; Kosoy, M. Molecular Survey of Bacterial Zoonotic Agents in Bats from the Country of Georgia (Caucasus). PLoS ONE. 2017, 12, e0171175. [Google Scholar] [CrossRef]
- Urushadze, L.; Bai, Y.; Osikowicz, L.; McKee, C.; Sidamonidze, K.; Putkaradze, D.; Imnadze, P.; Kandaurov, A.; Kuzmin, I.; Kosoy, M. Prevalence, diversity, and host associations of Bartonella strains in bats from Georgia (Caucasus). PLoS Negl. Trop. Dis. 2017, 11, e0005428. [Google Scholar] [CrossRef] [Green Version]
- Dietz, C.; Helversen, O. Identification Key to the Bats of Europe, Version 1.0; Electronical Publication, University of Tübingen: Tübingen, Germany, 2012; p. 72. [Google Scholar]
- Lelli, D.; Papetti, A.; Sabelli, C.; Rosti, E.; Moreno, A.; Boniotti, M.B. Detection of coronaviruses in bats of various species in Italy. Viruses 2013, 5, 2679–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–411. [Google Scholar] [CrossRef]
- Drexler, J.F.; Corman, V.M.; Drosten, C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. J. Antiviral. Res. 2014, 101, 45–56. [Google Scholar] [CrossRef]
- Wassenaar, T.M.; Zou, Y. 2019_nCoV/SARS-CoV-2: Rapid classification of betacoronaviruses and identification of Traditional Chinese Medicine as potential origin of zoonotic coronaviruses. Lett. Appl. Microbiol. 2020, 70, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Geldenhuys, M.; Mortlock, M.; Epstein, J.H.; Pawęska, J.T.; Weyer, J.; Markotter, W. Overview of Bat and Wildlife Coronavirus Surveillance in Africa: A Framework for Global Investigations. Viruses 2021, 13, 936. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. 1999, 41, 95–98. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Kruskop, S.V.; Godlevska, L.; Bücs, S.; Çoraman, E.; Gazaryan, S. Myotis daubentonii (errata version published in 2021). IUCN Red List Threat. Species 2020, e.T85342710A195858793. [Google Scholar] [CrossRef]
- Coroiu, I.; Juste, J.; Paunović, M. Myotis myotis. IUCN Red List Threat. Species 2016, e.T14133A22051759. [Google Scholar] [CrossRef]
- Jiang, T.L.; Feng, J.; Csorba, G.; Bates, P. Myotis pilosus. IUCN Red List Threat. Species 2019, e.T14193A22062554. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, T.L. Myotis pequinius. IUCN Red List Threat. Species 2019, e.T14190A22066613. [Google Scholar] [CrossRef]
- Fukui, D.; Sano, A.; Kruskop, S.V. Vespertilio sinensis. IUCN Red List Threat. Species 2019, e.T22949A22071812. [Google Scholar] [CrossRef]
- Coroiu, I. Eptesicus nilssonii. IUCN Red List Threat. Species 2016, e.T7910A22116204. [Google Scholar] [CrossRef]
- Csorba, G.; Hutson, A.M. Nyctalus noctula. IUCN Red List Threat. Species 2016, e.T14920A22015682. [Google Scholar] [CrossRef]
- Godlevska, L.; Kruskop, S.V.; Gazaryan, S. Eptesicus serotinus (amended version of 2020 assessment). IUCN Red List Threat. Species 2021, e.T85199559A195834153. [Google Scholar] [CrossRef]
- Gazaryan, S.; Bücs, S.; Çoraman, E. Miniopterus schreibersii (errata version published in 2021). IUCN Red List Threat. Species 2020, e.T81633057A195856522. [Google Scholar] [CrossRef]
- Piraccini, R. Rhinolophus ferrumequinum. IUCN Red List Threat. Species 2016, e.T19517A21973253. [Google Scholar] [CrossRef]
- Juste, J.; Alcaldé, J. Rhinolophus euryale. IUCN Red List Threat. Species 2016, e.T19516A21971185. [Google Scholar] [CrossRef]
- Juste, J.; Paunović, M. Myotis blythii. IUCN Red List Threat. Species 2016, e.T14124A22053297. [Google Scholar] [CrossRef]
- Piraccini, R. Myotis emarginatus. IUCN Red List Threat. Species 2016, e.T14129A22051191. [Google Scholar] [CrossRef]
- ESRI. ArcGIS Desktop: Release 10.8; Environmental Systems Research Institute: Redlands, CA, USA, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org/ (accessed on 31 March 2021).
- Gouilh, M.A.; Puechmaille, S.J.; Gonzalez, J.P.; Teeling, E.; Kittayapong, P.; Manuguerra, J.C. SARS-Coronavirus ancestor’s foot-prints in South-East Asian bat colonies and the refuge theory. Infect. Genet. Evol. 2011, 11, 1690–1702. [Google Scholar] [CrossRef]
- Dominguez, S.R.; O’Shea, T.J.; Oko, L.M.; Holmes, K.V. Detection of group 1 coronavirus in bats in north America. Emerg. Infect. Dis. 2007, 13, e9. [Google Scholar] [CrossRef]
- Kohl, C.; Nitsche, A.; Kurth, A. Update on Potentially Zoonotic Viruses of European Bats. Vaccines 2021, 9, 690. [Google Scholar] [CrossRef]
- Dietz, C.; Kiefer, A. Bats of Britain and Europe; Bloomsbury Publishing: London, UK, 2016. [Google Scholar]
- Ar Gouilh, M.; Puechmaille, S.J.; Diancourt, L.; Vandenbogaert, M.; Serra-Cobo, J.; Lopez Roïg, M.; Brown, P.; Moutou, F.; Caro, V.; Vabret, A.; et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology 2018, 517, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Reusken, C.B.; Lina, P.H.; Pielaat, A.; de Vries, A.; Dam-Deisz, C.; Adema, J.; Drexler, J.F.; Drosten, C.; Kooi, E.A. Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe. Vector-Borne Zoonotic Dis. 2010, 10, 785–791. [Google Scholar] [CrossRef] [PubMed]
- De Benedictis, P.; Marciano, S.; Scaravelli, D.; Priori, P.; Zecchin, B.; Capua, I.; Monne, I.; Cattoli, G. Alpha and lineage C BetaCoV infections in Italian bats. Virus Genes 2014, 48, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Falcón, A.; Vázquez-Morón, S.; Casas, I.; Aznar, C.; Ruiz, G.; Pozo, F.; Perez-Brena, P.; Juste, J.; Ibánez, C.; Garin, I.; et al. Detection of alpha and betacoronaviruses in multiple Iberian bat species. Arch. Virol. 2011, 156, 1883–1890. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, I.H.; Kerimbayev, A.A.; Strochkov, V.M.; Sultankulova, K.T.; Kopeyev, S.K.; Su, Y.C.F.; Smith, G.J.D.; Orynbayev, M.B. Discovery and Characterization of Novel Bat Coronavirus Lineages from Kazakhstan. Viruses 2019, 11, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.Y.; Wang, N.; Zhang, W.; Hu, B.; Li, B.; Zhang, Y.Z.; Zhou, J.H.; Luo, C.M.; Yang, X.L.; Wu, L.J.; et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 2016, 31, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liu, W.; Zhang, Q.; Xu, K.; Ye, G.; Wu, W.; Sun, Z.; Liu, F.; Wu, K.; Zhong, B.; et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect. 2020, 9, 313–319. [Google Scholar] [CrossRef]
- Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Tsoi, H.W.; Wong, B.H.; Wong, S.S.; Leung, S.Y.; Chan, K.H.; Yuen, K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 2005, 102, 14040–14045. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.K.; Yoon, S.W.; Kim, D.J.; Koo, B.S.; Noh, J.Y.; Kim, J.H.; Choi, Y.G.; Na, W.; Chang, K.T.; Song, D.; et al. Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats. Transbound. Emerg. Dis. 2016, 63, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, L.; Ren, X.; He, G.; Zhang, J.; Yang, J.; Qian, Z.; Dong, J.; Sun, L.; Zhu, Y.; et al. Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 2016, 10, 609–620. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, F.; Yang, W.; Jiang, T.; Lu, G.; He, B.; Li, X.; Hu, T.; Chen, G.; Feng, Y.; et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 2016, 31, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.C.; Zhang, J.X.; Zhang, S.Y.; Wang, P.; Fan, X.H.; Li, L.F.; Li, G.; Dong, B.Q.; Liu, W.; Cheung, C.L.; et al. Prevalence and genetic diversity of coronaviruses in bats from China. J. Virol. 2006, 80, 7481–7490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jevšnik, M.; Uršič, T.; Zigon, N.; Lusa, L.; Krivec, U.; Petrovec, M. Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease. BMC Infect. Dis. 2012, 12, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
Location | Coordinates Long, Lat/Habitat | Tested | Positive | Overall CoV Positive Rate (%) | Positive Rate Per CoV Genus |
---|---|---|---|---|---|
David Gajeri, Tetri Senakebi | 41.536, 45.257 Mostly natural vegetation in a mosaic with cropland | 10 | 2 | 20 | α = 10% n = 1 β = 10% n = 1 Neg = 80% n = 8 |
Gardabani Managed Reserve | 41.376, 45.079 Mostly natural vegetation in a mosaic with cropland | 49 | 7 | 14 | α = 2% n = 1 β = 12% n = 6 Neg = 86% n = 43 |
Tskaltubo, cave Gliana | 42.373, 42.597 Mostly cropland in a mosaic with natural vegetation | 92 | 31 | 34 | α = 16.5% n = 15 β = 17.5% n = 16 Neg = 66% n = 60 |
Chiatura.Taroklde cave | 42.345, 43.308 Rainfed cropland | 10 | 2 | 20 | α = 20% n = 2 Neg = 66.7% n = 4 |
Chkhorotsku. Cave Lescurcume | 42.529 42.102 Mostly cropland in a mosaic with natural vegetation | 17 | 4 | 24 | β = 24% n = 19% Neg = 81% n = 17 |
Saadamio Senaki | 42.324, 42.103 Mostly trees and shrubs in a mosaic of herbaceous cover | 5 | 0 | 0 | Neg = 100% n = 5 |
Tetritskaro, Sabneleti | 41.581, 44.582 Rainfed cropland | 4 | 0 | 0 | Neg = 100% n = 4 |
Sveri kvabkari | 42.224, 43.302 Rainfed cropland | 1 | 0 | 0 | Neg = 100% n = 1 |
Species | Tested | Overall CoV Positive Rate (%) | Positive Rate Per CoV Genus |
---|---|---|---|
Rhinolophus euryale | 40 | 14/40 = 35 | α = 4/40 = 10 β = 10/40 = 25 Negative = 26/40 = 65 |
Rhinolophus ferrumequinum | 39 | 7/39 = 18 | α = 1/39 = 3 β = 6/39 = 15 Negative = 32/39 = 82 |
Rhinolopus blasii | 5 | 0 | Negative = 5/5 = 100 |
Eptesicus serotinus | 6 | 0 | Negative = 6/6 = 100 |
Miniopterus schreibersii | 22 | 5/22 = 23 | α = 5/22 = 23 Negative = 17/22 = 77 |
Myotis blythii | 52 | 18/52 = 35 | α = 8/52 = 15 β = 10/52 = 19 Negative = 34/52 = 66 |
Myotis emarginatus | 10 | 2/10 = 20 | α = 1/10 = 10 β = 1/10 = 10 Negative = 8/10 = 80 |
Pipistrellus pygmaeus | 7 | 0 | Negative = 7/7 = 100 |
Myotis mystacinus | 4 | 0 | Negative = 4/4 = 100 |
Nyctalus leisleri | 2 | 0 | Negative = 2/2 = 100 |
Myotis alcathoe | 1 | 0 | Negative = 1/1 = 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urushadze, L.; Babuadze, G.; Shi, M.; Escobar, L.E.; Mauldin, M.R.; Natradeze, I.; Machablishvili, A.; Kutateladze, T.; Imnadze, P.; Nakazawa, Y.; et al. A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses 2022, 14, 72. https://doi.org/10.3390/v14010072
Urushadze L, Babuadze G, Shi M, Escobar LE, Mauldin MR, Natradeze I, Machablishvili A, Kutateladze T, Imnadze P, Nakazawa Y, et al. A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses. 2022; 14(1):72. https://doi.org/10.3390/v14010072
Chicago/Turabian StyleUrushadze, Lela, George Babuadze, Mang Shi, Luis E. Escobar, Matthew R. Mauldin, Ioseb Natradeze, Ann Machablishvili, Tamar Kutateladze, Paata Imnadze, Yoshinori Nakazawa, and et al. 2022. "A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia" Viruses 14, no. 1: 72. https://doi.org/10.3390/v14010072
APA StyleUrushadze, L., Babuadze, G., Shi, M., Escobar, L. E., Mauldin, M. R., Natradeze, I., Machablishvili, A., Kutateladze, T., Imnadze, P., Nakazawa, Y., & Velasco-Villa, A. (2022). A Cross Sectional Sampling Reveals Novel Coronaviruses in Bat Populations of Georgia. Viruses, 14(1), 72. https://doi.org/10.3390/v14010072