Molecular Epidemiology of HIV-1 in Eastern Europe and Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sequence Determination, Analysis, and Phylogenetics
2.3. Determination of the HIV-1 Subtype
2.4. Recombination Analysis
3. Results
3.1. Demographic Characteristics
3.2. HIV-1 Subtype Distribution
3.3. Recombinant Viruses
3.4. Transmission Chains
3.5. Drug Resistance Mutations
3.6. Polymorphic Mutations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Europe 2021 Report by the European Centre for Disease Prevention and Control/WHO Regional Office for Europe 2021. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/2021-Annual_HIV_Report_0.pdf (accessed on 1 July 2022).
- Rospotrebnadzor Report (HIV Infection in the Russian Federation, 2020). Available online: http://www.hivrussia.info/dannye-po-vich-infektsii-v-rossii/ (accessed on 1 July 2022).
- Díez-Fuertes, F.; Cabello, M.; Thomson, M.M. Bayesian phylogeographic analyses clarify the origin of the HIV-1 subtype A variant circulating in former Soviet Union’s countries. Infect. Genet. Evol. 2015, 33, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Novitsky, V.A.; Montano, M.A.; Essex, M. Molecular Epidemiology of an HIV-1 Subtype A Subcluster among Injection Drug Users in the Southern Ukraine. AIDS Res. Hum. Retrovir. 1998, 14, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.H.; Aibekova, L.; Davlidova, S.; Amangeldiyeva, A.; Foley, B.; Ali, S. Origin and evolution of HIV-1 subtype A6. PLoS ONE 2021, 16, e0260604. [Google Scholar] [CrossRef] [PubMed]
- Riva, C.; Romano, L.; Saladini, F.; Lai, A.; Carr, J.K.; Francisci, D.; Balotta, C.; Zazzi, M. Identification of a Possible Ancestor of the Subtype A1 HIV Type 1 Variant Circulating in the Former Soviet Union. AIDS Res. Hum. Retrovir. 2008, 24, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, G.K.; Kostaki, E.-G.; Paraskevis, D. Overview of HIV molecular epidemiology among people who inject drugs in Europe and Asia. Infect. Genet. Evol. 2016, 46, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Liitsola, K.; Holm, K.; Bobkov, A.; Pokrovsky, V.; Smolskaya, T.; Leinikki, P.; Osmanov, S.; Salminen, M. An AB Recombinant and Its Parental HIV Type 1 Strains in the Area of the Former Soviet Union: Low Requirements for Sequence Identity in Re-combination. AIDS Res. Hum. Retrovir. 2000, 16, 1047–1053. [Google Scholar] [CrossRef]
- Vitek, C.R.; Čakalo, J.-I.; Kruglov, Y.V.; Dumchev, K.V.; Salyuk, T.O.; Bozicevic, I.; Baughman, A.L.; Spindler, H.H.; Martsynovska, V.A.; Kobyshcha, Y.V.; et al. Slowing of the HIV Epidemic in Ukraine: Evidence from Case Reporting and Key Population Surveys, 2005–2012. PLoS ONE 2014, 9, e103657. [Google Scholar] [CrossRef]
- World Health Organization. Consolidated Guidelines on HIV Prevention, Testing, Treatment, Service, Delivery and Monitoring: Recommendation for a Public Health Approach; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Orkin, C.; Morell, E.B.; Tan, D.H.S.; Katner, H.; Stellbrink, H.-J.; Belonosova, E.; DeMoor, R.; Griffith, S.; Thiagarajah, S.; Van Solingen-Ristea, R.; et al. Initiation of long-acting cabotegravir plus rilpivirine as direct-to-injection or with an oral lead-in in adults with HIV-1 infection: Week 124 results of the open-label phase 3 FLAIR study. Lancet HIV 2021, 8, e668–e678. [Google Scholar] [CrossRef]
- Jaeger, H.; Overton, E.T.; Richmond, G.; Rizzardini, G.; Andrade-Villanueva, J.F.; Mngqibisa, R.; Hermida, A.O.; Thalme, A.; Belonosova, E.; Ajana, F.; et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 96-week results: A randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet HIV 2021, 8, e679–e689. [Google Scholar] [CrossRef]
- Rizzardini, G.; Overton, E.T.; Orkin, C.; Swindells, S.; Arasteh, K.; Hernández-Mora, M.G.; Pokrovsky, V.; Girard, P.-M.; Oka, S.; Andrade-Villanueva, J.F.; et al. Long-Acting Injectable Cabotegravir + Rilpivirine for HIV Maintenance Therapy: Week 48 Pooled Analysis of Phase 3 ATLAS and FLAIR Trials. J. Acquir. Immune Defic. Syndr. 2020, 85, 498–506. [Google Scholar] [CrossRef]
- Cutrell, A.G.; Schapiro, J.M.; Perno, C.F.; Kuritzkes, D.R.; Quercia, R.; Patel, P.; Polli, J.W.; Dorey, D.; Wang, Y.; Wu, S.; et al. Exploring predictors of HIV-1 virologic failure to long-acting cabotegravir and rilpivirine: A multivariable analysis. AIDS 2021, 35, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, C. Performance of an in-house genotypic antiretroviral resistance assay in patients pretreated with multiple human immunodeficiency virus type 1 protease and reverse transcriptase inhibitors. J. Clin. Virol. 2002, 25, 57–62. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Information Retrieval Ltd.: London, UK, 1999; Volume 41, pp. 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.F.; Shafer, R.W. Web Resources for HIV Type 1 Genotypic-Resistance Test Interpretation. Clin. Infect. Dis. 2006, 42, 1608–1618. [Google Scholar] [CrossRef]
- HivDB Stanford. Available online: http://hivdb.stanford.edu (accessed on 1 May 2022).
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef] [PubMed]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Neilson, J.R.; John, G.C.; Carr, J.K.; Lewis, P.; Kreiss, J.K.; Jackson, S.; Nduati, R.W.; Mbori-Ngacha, D.; Panteleeff, D.D.; Bodrug, S.; et al. Subtypes of Human Immunodeficiency Virus Type 1 and Disease Stage among Women in Nairobi, Kenya. J. Virol. 1999, 73, 4393–4403. [Google Scholar] [CrossRef]
- Cloyd, M.W.; Moore, B.E. Spectrum of biological properties of human immunodeficiency virus (HIV-1) isolates. Virology 1990, 174, 103–116. [Google Scholar] [CrossRef]
- Struck, D.; Lawyer, G.; Ternes, A.-M.; Schmit, J.-C.; Bercoff, D.P. COMET: Adaptive context-based modeling for ultrafast HIV-1 subtype identification. Nucleic Acids Res. 2014, 42, e144. [Google Scholar] [CrossRef]
- Rhee, S.-Y.; Kantor, R.; Katzenstein, D.; Camacho, R.; Morris, L.; Sirivichayakul, S.; Jorgensen, L.; Brigido, L.; Schapiro, J.M.; Shafer, R.W. HIV-1 pol mutation frequency by subtype and treatment experience: Extension of the HIVseq program to seven non-B subtypes. AIDS 2006, 20, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Shafer, R.W.; Jung, D.R.; Betts, B. Human immunodeficiency virus type 1 reverse transcriptase and protease mutation search engine for queries. Nat. Med. 2000, 6, 1290–1292. [Google Scholar] [CrossRef] [PubMed]
- REGA. Available online: http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-hiv/typingtool (accessed on 1 May 2022).
- BLAST. Available online: https://www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html (accessed on 1 May 2022).
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- RIP Tool. Available online: https://www.hiv.lanl.gov/content/sequence/RIP/RIP.html (accessed on 1 May 2022).
- Siepel, A.C.; Halpern, A.L.; Macken, C.; Korber, B. A Computer Program Designed to Screen Rapidly for HIV Type 1 Inter-subtype Recombinant Sequences. AIDS Res. Hum. Retrovir. 1995, 11, 1413–1416. [Google Scholar] [CrossRef]
- Schlösser, M.; Kartashev, V.V.; Mikkola, V.H.; Shemshura, A.; Saukhat, S.; Kolpakov, D.; Suladze, A.; Tverdokhlebova, T.; Hutt, K.; Heger, E.; et al. HIV-1 Sub-Subtype A6: Settings for Normalised Identification and Molecular Epidemiology in the Southern Federal District, Russia. Viruses 2020, 12, 475. [Google Scholar] [CrossRef]
- Gobics. Available online: http://jphmm.gobics.de (accessed on 1 July 2022).
- Schultz, A.-K.; Bulla, I.; Abdou-Chekaraou, M.; Gordien, E.; Morgenstern, B.; Zoulim, F.; Dény, P.; Stanke, M. jpHMM: Re-combination analysis in viruses with circular genomes such as the hepatitis B virus. Nucleic Acids Res. 2012, 40, W193–W198. [Google Scholar] [CrossRef]
- Zhang, M.; Schultz, A.-K.; Calef, C.; Kuiken, C.; Leitner, T.; Korber, B.; Morgenstern, B.; Stanke, M. jpHMM at GOBICS: A web server to detect genomic recombinations in HIV-1. Nucleic Acids Res. 2006, 34, W463–W465. [Google Scholar] [CrossRef]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Kelz, Z.; Kumar, V.; Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2020, 7, veaa087. [Google Scholar] [CrossRef]
- Recombinant Drawing Tool. Available online: https://www.hiv.lanl.gov/content/sequence/DRAW_CRF/recom_mapper.html (accessed on 1 June 2022).
- Baryshev, P.B.; Bogachev, V.V.; Gashnikova, N.M. HIV-1 Genetic Diversity in Russia: CRF63_02A1, a New HIV Type 1 Genetic Variant Spreading in Siberia. AIDS Res. Hum. Retrovir. 2014, 30, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.; Pasechnik, O.; Ozhmegova, E.; Antonova, A.; Blokh, A.; Grezina, L.; Sandyreva, T.; Dementeva, N.; Kazennova, E.; Bobkova, M. Prevalence and spatiotemporal dynamics of HIV-1 Circulating Recombinant Form 03_AB (CRF03_AB) in the Former Soviet Union countries. PLoS ONE 2020, 15, e0241269. [Google Scholar] [CrossRef]
- Kirichenko, A.; Kireev, D.; Lopatukhin, A.; Murzakova, A.; Lapovok, I.; Saleeva, D.; Ladnaya, N.; Gadirova, A.; Ibrahimova, S.; Safarova, A.; et al. Prevalence of HIV-1 drug resistance in Eastern European and Central Asian countries. PLoS ONE 2022, 17, e0257731. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Lebedev, A.; Gromov, K.; Kazennova, E.; Zazzi, M.; Incardona, F.; Sönnerborg, A.; Bobkova, M. Pre-existing singleton E138A mutations in the reverse transcriptase gene do not affect the efficacy of first-line antiretroviral therapy regi-mens using rilpivirine in human immunodeficiency virus-infected patients. Clin. Case Rep. 2022, 10, e05373. [Google Scholar] [CrossRef]
- Lapovok, V.L.I.; Laga, V.; Kazennova, E.; Bobkova, M. HIV Type 1 Integrase Natural Polymorphisms in Viral Variants Cir-culating in FSU Countries. Curr. HIV Res. 2017, 15, 318–326. [Google Scholar] [CrossRef]
- Kirichenko, A.A.; Kireev, D.E.; Lopatukhin, A.; Murzakova, A.; Lapovok, I.A.; Ladnaya, N.N.; Pokrovsky, V.V. Prevalence and structure of hiv-1 drug resistance among treatment naïve patients since the introduction of antiretroviral therapy in the russian federation. HIV Infect. Immunosuppr. Disord. 2019, 11, 75–83. [Google Scholar] [CrossRef]
- Mamatkulov, A.; Kazakova, E.; Ibadullaeva, N.; Joldasova, E.; Bayjanov, A.; Musabaev, E.; Kan, N.; Mustafaeva, D.; Lebedev, A.V.; Bobkova, M.; et al. Prevalence of Antiretroviral Drug Resistance Mutations Among Pretreatment and Antiretroviral Therapy-Failure HIV Patients in Uzbekistan. AIDS Res. Hum. Retrovir. 2021, 37, 38–43. [Google Scholar] [CrossRef]
Inclusion | Gender | Route of Transmission | |||||||
---|---|---|---|---|---|---|---|---|---|
Period | Patients | Male | Female | HTX | MSM | IDU | Other | Unkn. | |
Russia (Mos) | Aug. 2019–Jul. 2020 | 363 | 232 (64) | 132 (36) | 232 (64) | 48 (13) | 78 (21) | 1 (<1) | 5 (1) |
Russia (Krd) | Aug. 2019–Nov. 2019 | 56 | 22 (59) | 23 (41) | 31 (55) | 4 (7) | 20 (36) | 1 (2) | 0 |
Georgia | Jan. 2013–Dec. 2017 | 201 | 127 (63) | 74 (37) | 74 (37) | 8 (4) | 76 (38) | 0 | 5 (2) |
Ukraine | Dec. 2019–Oct. 2020 | 191 | 113 (59) | 78 (41) | 78 (41) | 28 (11) | 38 (20) | 2 (1) | 1 (1) |
Total | Jan. 2013–Oct. 2020 | 812 | 505 (62) | 307 (38) | 497 (61) | 88 (11) | 212 (26) | 4 (<1) | 11 (1) |
A6 | B | CRF02_AG | CRF63_02A6 | URF | Other | Total | |
---|---|---|---|---|---|---|---|
Russia (Mos) | 288 (79.1) | 41 (11.3) | 16 (4.4) | 1 (1.6) | 5 (1.4) | 8 (2.2) | 364 |
Russia (Krd) | 43 (76.8) | 6 (10.6) | 0 | 2 (3.6) | 5 (8.9) | 0 | 56 |
Georgia | 198 (98.5) | 1 (0.5) | 0 | 0 | 2 (1.0) | 0 | 201 |
Ukraine | 177 (92.7) | 11 (5.8) | 0 | 0 | 2 (1.0) | 1 (0.5) | 191 |
Total | 706 (86.9) | 59 (8.4) | 16 (2.0) | 8 (1.0) | 14 (2.0) | 9 (1.1) | 812 |
A6 | B | CRF02_AG | CRF63_02A6 | URF | Other | |
---|---|---|---|---|---|---|
HTX | 446 (90) | 29 (6) | 5 (1) | 6 (1) | 8 (2) | 4 (1) |
MSM | 57 (65) | 21 (24) | 3 (3) | 0 | 4 (5) | 3 (3) |
IDU | 191 (90) | 7 (3) | 8 (4) | 2 (1) | 2 (1) | 2 (1) |
Other | 2 (67) | 1 (33) | 0 | 0 | 0 | 0 |
Unknown | 10 (91) | 1 (9) | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Klundert, M.A.A.; Antonova, A.; Di Teodoro, G.; Ceña Diez, R.; Chkhartishvili, N.; Heger, E.; Kuznetsova, A.; Lebedev, A.; Narayanan, A.; Ozhmegova, E.; et al. Molecular Epidemiology of HIV-1 in Eastern Europe and Russia. Viruses 2022, 14, 2099. https://doi.org/10.3390/v14102099
van de Klundert MAA, Antonova A, Di Teodoro G, Ceña Diez R, Chkhartishvili N, Heger E, Kuznetsova A, Lebedev A, Narayanan A, Ozhmegova E, et al. Molecular Epidemiology of HIV-1 in Eastern Europe and Russia. Viruses. 2022; 14(10):2099. https://doi.org/10.3390/v14102099
Chicago/Turabian Stylevan de Klundert, Maarten A. A., Anastasiia Antonova, Giulia Di Teodoro, Rafael Ceña Diez, Nikoloz Chkhartishvili, Eva Heger, Anna Kuznetsova, Aleksey Lebedev, Aswathy Narayanan, Ekaterina Ozhmegova, and et al. 2022. "Molecular Epidemiology of HIV-1 in Eastern Europe and Russia" Viruses 14, no. 10: 2099. https://doi.org/10.3390/v14102099
APA Stylevan de Klundert, M. A. A., Antonova, A., Di Teodoro, G., Ceña Diez, R., Chkhartishvili, N., Heger, E., Kuznetsova, A., Lebedev, A., Narayanan, A., Ozhmegova, E., Pronin, A., Shemshura, A., Tumanov, A., Pfeifer, N., Kaiser, R., Saladini, F., Zazzi, M., Incardona, F., Bobkova, M., & Sönnerborg, A. (2022). Molecular Epidemiology of HIV-1 in Eastern Europe and Russia. Viruses, 14(10), 2099. https://doi.org/10.3390/v14102099