Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Solvent Partition
2.3. Cell Line and Viral Strains
2.4. Cytotoxic Activity
2.5. Antiviral Activity
- (i)
- Virus pre-treatment assay: each compound was diluted in 1X phosphate-buffered saline (1X PBS) (Sigma-Aldrich, St. Louis, MO, USA) and pre-incubated with the viral suspension at 104 Plaque-Forming Units (PFU) in DMEM without (w/o) FBS for 1 h at 37 °C. Subsequently, the mixture was diluted 1:10 in DMEM w/o FBS and used to infect the cell monolayer for 1 h at 37 °C.
- (ii)
- Cell pre-treatment assay: cells were pre-incubated in DMEM w/o FBS with each extract for 1 h at 37 °C. Then, the cells were infected with the viral suspension at 103 PFU in DMEM w/o FBS for 1 h at 37 °C.
- (iii)
- Co-treatment assay: M, H, and EA, diluted to the selected concentrations, were co-incubated with the viral suspension at 103 PFU directly on the cell monolayer in DMEM w/o FBS for 1 h at 37 °C.
- (iv)
- Post-treatment assay: the cells were previously infected with the viral suspension at 103 PFU in DMEM w/o FBS for 1 h at 37 °C. Then, the cell monolayer was washed in 1X PBS to remove extracellular virions and treated with each extract for 1 h at 37 °C.
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Cytotoxicity and Safety of F. rubiginosa Leaves Extract
3.2. Antiviral Activity by Plaque Reduction Assays
3.2.1. Herpesviridae: HSV-1
3.2.2. Coronaviridae: HCoV-229E
3.2.3. Picornaviridae: PV-1
3.3. Analysis of Viral Gene Expression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, K.M.; Machalaba, C.C.; Seifman, R.; Feferholtz, Y.; Karesh, W.B. Infectious Disease and Economics: The Case for Considering Multi-Sectoral Impacts. One Health 2019, 7, 100080. [Google Scholar] [CrossRef] [PubMed]
- Heukelbach, J.; Alencar, C.H.; Kelvin, A.A.; de Oliveira, W.K.; Pamplona de Góes Cavalcanti, L. Zika Virus Outbreak in Brazil. J. Infect. Dev. Ctries 2016, 10, 116–120. [Google Scholar] [CrossRef]
- Mena, I.; Nelson, M.I.; Quezada-Monroy, F.; Dutta, J.; Cortes-Fernández, R.; Lara-Puente, J.H.; Castro-Peralta, F.; Cunha, L.F.; Trovão, N.S.; Lozano-Dubernard, B.; et al. Origins of the 2009 H1N1 Influenza Pandemic in Swine in Mexico. Elife 2016, 5, e16777. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.; Elrobh, M.; Alzayer, M.; Aljuhani, S.; Balkhy, H. Occurrence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) across the Gulf Corporation Council Countries: Four Years Update. PLoS ONE 2017, 12, e0183850. [Google Scholar] [CrossRef] [Green Version]
- Cenciarelli, O.; Pietropaoli, S.; Malizia, A.; Carestia, M.; D’Amico, F.; Sassolini, A.; Di Giovanni, D.; Rea, S.; Gabbarini, V.; Tamburrini, A.; et al. Ebola Virus Disease 2013-2014 Outbreak in West Africa: An Analysis of the Epidemic Spread and Response. Int. J. Microbiol. 2015, 2015, 769121. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): A Global Pandemic and Treatment Strategies. Int. J. Antimicrob. Agents 2020, 56, 106054. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. P T 2015, 40, 277–283. [Google Scholar] [PubMed]
- de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year Due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes Simplex Virus: Global Infection Prevalence and Incidence Estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, H.H.; Chemaitelly, H.; Abu-Raddad, L.J. Characterizing the Transitioning Epidemiology of Herpes Simplex Virus Type 1 in the USA: Model-Based Predictions. BMC Med. 2019, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Polčic, P.; Jaká, P.; Mentel, M. Yeast as a Tool for Studying Proteins of the Bcl-2 Family. Microb. Cell 2015, 2, 74–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacon, T.H.; Levin, M.J.; Leary, J.J.; Sarisky, R.T.; Sutton, D. Herpes Simplex Virus Resistance to Acyclovir and Penciclovir after Two Decades of Antiviral Therapy. Clin. Microbiol. Rev. 2003, 16, 114–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.-C.; Feng, H.; Lin, Y.-C.; Guo, X.-R. New Strategies against Drug Resistance to Herpes Simplex Virus. Int. J. Oral. Sci. 2016, 8, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus 2020, 12, e7423. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Lu, K.; Mao, B.; Liu, S.; Trilling, M.; Huang, A.; Lu, M.; Lin, Y. The Interplay between Emerging Human Coronavirus Infections and Autophagy. Emerg. Microbes Infect. 2021, 10, 196–205. [Google Scholar] [CrossRef]
- Ferravante, C.; Sanna, G.; Melone, V.; Fromentier, A.; Rocco, T.; D’Agostino, Y.; Lamberti, J.; Alexandrova, E.; Pecoraro, G.; Pagliano, P.; et al. Nasopharyngeal Virome Analysis of COVID-19 Patients during Three Different Waves in Campania Region of Italy. J. Med. Virol. 2022, 94, 2275–2283. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial Co-Infections in COVID-19: Associated Microbiota and Underlying Mechanisms of Pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Perepliotchikov, Y.; Ziv-Baran, T.; Hindiyeh, M.; Manor, Y.; Sofer, D.; Moran-Gilad, J.; Stephens, L.; Mendelson, E.; Weil, M.; Bassal, R.; et al. Inferring Numbers of Wild Poliovirus Excretors Using Quantitative Environmental Surveillance. Vaccines 2021, 9, 870. [Google Scholar] [CrossRef]
- Yusuf, N.; de Wee, R.; Foster, N.; Watkins, M.A.; Tiruneh, D.; Chauvin, C.; Bossarte, R.; Mandlhate, C.; Jack, A.; Gumede, N.; et al. Outbreak of Type 1 Wild Poliovirus Infection in Adults, Namibia, 2006. J. Infect. Dis. 2014, 210, S353–S360. [Google Scholar] [CrossRef] [Green Version]
- Demgne, O.M.F.; Damen, F.; Fankam, A.G.; Guefack, M.-G.F.; Wamba, B.E.N.; Nayim, P.; Mbaveng, A.T.; Bitchagno, G.T.M.; Tapondjou, L.A.; Penlap, V.B.; et al. Botanicals and Phytochemicals from the Bark of Hypericum Roeperianum (Hypericaceae) Had Strong Antibacterial Activity and Showed Synergistic Effects with Antibiotics against Multidrug-Resistant Bacteria Expressing Active Efflux Pumps. J. Ethnopharmacol. 2021, 277, 114257. [Google Scholar] [CrossRef]
- Bachar, S.C.; Mazumder, K.; Bachar, R.; Aktar, A.; Al Mahtab, M. A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol. 2021, 12, 732891. [Google Scholar] [CrossRef] [PubMed]
- Olawuwo, O.S.; Famuyide, I.M.; McGaw, L.J. Antibacterial and Antibiofilm Activity of Selected Medicinal Plant Leaf Extracts Against Pathogens Implicated in Poultry Diseases. Front. Vet. Sci. 2022, 9, 820304. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ceja, A.; Loeza-Lara, P.D.; Espinosa-García, F.J.; García-Rodríguez, Y.M.; Medina-Medrano, J.R.; Gutiérrez-Hernández, G.F.; Ceja-Torres, L.F. In Vitro Antifungal Activity of Plant Extracts on Pathogenic Fungi of Blueberry (Vaccinium Sp.). Plants 2021, 10, 852. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A Comprehensive Review on Medicinal Plants as Antimicrobial Therapeutics: Potential Avenues of Biocompatible Drug Discovery. Metabolites 2019, 9, E258. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on Plant Antimicrobials: A Mechanistic Viewpoint. Antimicrob. Resist. Infect. Control. 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Proestos, C. The Benefits of Plant Extracts for Human Health. Foods 2020, 9, E1653. [Google Scholar] [CrossRef]
- Corbi, G.; Conti, V.; Komici, K.; Manzo, V.; Filippelli, A.; Palazzo, M.; Vizzari, F.; Davinelli, S.; Di Costanzo, A.; Scapagnini, G.; et al. Phenolic Plant Extracts Induce Sirt1 Activity and Increase Antioxidant Levels in the Rabbit’s Heart and Liver. Oxid. Med. Cell Longev. 2018, 2018, 2731289. [Google Scholar] [CrossRef]
- Adorisio, S.; Fierabracci, A.; Muscari, I.; Liberati, A.M.; Calvitti, M.; Cossignani, L.; Blasi, F.; Quan, T.D.; Tam, N.T.; Sung, T.V.; et al. Artocarpus Tonkinensis Protects Mice Against Collagen-Induced Arthritis and Decreases Th17 Cell Function. Front. Pharmacol. 2019, 10, 503. [Google Scholar] [CrossRef]
- Salehi, B.; Prakash Mishra, A.; Nigam, M.; Karazhan, N.; Shukla, I.; Kiełtyka-Dadasiewicz, A.; Sawicka, B.; Głowacka, A.; Abu-Darwish, M.S.; Hussein Tarawneh, A.; et al. Ficus Plants: State of the Art from a Phytochemical, Pharmacological, and Toxicological Perspective. Phytother. Res. 2021, 35, 1187–1217. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Salem, A.Z.M.; Camacho, L.M.; Ali, H.M. Antimicrobial Activities and Phytochemical Composition of Extracts of Ficus Species: An over View. Afr. J. Microbiol. Res. 2013, 7, 4207–4219. [Google Scholar]
- Bhawana, R.; Kaur, J.; Vig, A.P.; Arora, S.; Kaur, R.P. Evaluation of Antibacterial Potential of Ficus Species. J. Pharm. Sci. Res. 2018, 10, 1251–1255. [Google Scholar]
- Aref, H.L.; Salah, K.B.H.; Chaumont, J.P.; Fekih, A.; Aouni, M.; Said, K. In Vitro Antimicrobial Activity of Four Ficus Carica Latex Fractions against Resistant Human Pathogens (Antimicrobial Activity of Ficus Carica Latex). Pak. J. Pharm. Sci. 2010, 23, 53–58. [Google Scholar]
- Yarmolinsky, L.; Zaccai, M.; Ben-Shabat, S.; Mills, D.; Huleihel, M. Antiviral Activity of Ethanol Extracts of Ficus Binjamina and Lilium Candidum in Vitro. N. Biotechnol. 2009, 26, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Gonda, K.; Suzuki, K.; Sunabe, Y.; Kono, K.; Takenoshita, S. Ficus Pumila L. Improves the Prognosis of Patients Infected with HTLV-1, an RNA Virus. Nutr. J. 2021, 20, 16. [Google Scholar] [CrossRef]
- Truchan, M.A.; Tkachenko, G.M.; Buyun, L.I.; Osadowski, Z.; Sosnovskyi, Y.V.; Prokopiv, A.I.; Honcharenko, V.I. Evaluation of Antimicrobial Activity of Ficus Species Leaves Extracts against Pseudomonas Aeruginosa. Scientific Medical Bullettin 2015, 2, 90–98. [Google Scholar] [CrossRef]
- Pękala-Safińska, A.; Tkachenko, H.; Kurhaluk, N.; Buyun, L.; Osadowski, Z.; Honcharenko, V.; Prokopiv, A. Studies on the Inhibitory Properties of Leaf Ethanolic Extracts Obtained from Ficus ( Moraceae ) Species against Aeromonas Spp. Strains. J. Vet. Res. 2021, 65, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, H.; Buyun, L.; Terech-Majewska, E.; Osadowski, Z. In Vitro Antimicrobial Activity of Ethanolic Extracts Obtained from Ficus Spp. Leaves against the Fish Pathogen Aeromonas Hydrophila. Arch. Pol. Fish. 2016, 24, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Dell’Annunziata, F.; Martora, F.; Della Pepa, M.E.; Folliero, V.; Luongo, L.; Bocelli, S.; Guida, F.; Mascolo, P.; Campobasso, C.P.; Maione, S.; et al. Post-Mortem Interval Assessment by MALDI-TOF Mass Spectrometry Analysis in Murine Cadavers. J. Appl. Microbiol. 2021. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Monti, A.; De Filippis, A.; Doti, N.; Franci, G.; Galdiero, M. The Broad-Spectrum Antiviral Potential of the Amphibian Peptide AR-23. Int. J. Mol. Sci. 2022, 23, 883. [Google Scholar] [CrossRef]
- Giugliano, R.; Buonocore, C.; Zannella, C.; Chianese, A.; Palma Esposito, F.; Tedesco, P.; De Filippis, A.; Galdiero, M.; Franci, G.; de Pascale, D. Antiviral Activity of the Rhamnolipids Mixture from the Antarctic Bacterium Pseudomonas Gessardii M15 against Herpes Simplex Viruses and Coronaviruses. Pharmaceutics 2021, 13, 2121. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Skrzypczak, D.; Izydorczyk, G.; Mikula, K.; Szopa, D.; Witek-Krowiak, A. Antiviral Properties of Polyphenols from Plants. Foods 2021, 10, 2277. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Mandalari, G.; Sciortino, M.T. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021, 13, 828. [Google Scholar] [CrossRef] [PubMed]
- Hilterbrand, A.T.; Heldwein, E.E. Go Go Gadget Glycoprotein!: HSV-1 Draws on Its Sizeable Glycoprotein Tool Kit to Customize Its Diverse Entry Routes. PLoS Pathog. 2019, 15, e1007660. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). In Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 428–440. ISBN 978-0-12-814516-6. [Google Scholar]
- Wang, G.; Wang, H.; Song, Y.; Jia, C.; Wang, Z.; Xu, H. Studies on anti-HSV effect of Ficus carica leaves. Zhong Yao Cai 2004, 27, 754–756. [Google Scholar]
- Lazreg Aref, H.; Gaaliche, B.; Fekih, A.; Mars, M.; Aouni, M.; Pierre Chaumon, J.; Said, K. In Vitro Cytotoxic and Antiviral Activities of Ficus Carica Latex Extracts. Nat. Prod. Res. 2011, 25, 310–319. [Google Scholar] [CrossRef]
- Ghosh, M.; Civra, A.; Rittà, M.; Cagno, V.; Mavuduru, S.G.; Awasthi, P.; Lembo, D.; Donalisio, M. Ficus Religiosa, L. Bark Extracts Inhibit Infection by Herpes Simplex Virus Type 2 in Vitro. Arch. Virol. 2016, 161, 3509–3514. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K.; Ono, L. Evaluation of Cytotoxicity, Anti-Herpes Simplex Virus Type 1 (HSV-1) and Antibacterial Activities of Ficus Vasta and Phytoconstituents. Int. Curr. Pharm. J. 2013, 3, 211–218. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Chou, G.-X.; Wang, Z.-T. A New Luteolin Triglycoside from Ficus Ischnopoda Leaves. Nat. Prod. Res. 2014, 28, 1052–1057. [Google Scholar] [CrossRef]
- Strasfeld, L.; Chou, S. Antiviral Drug Resistance: Mechanisms and Clinical Implications. Infect. Dis. Clin. N. Am. 2010, 24, 413–437. [Google Scholar] [CrossRef] [PubMed]
- Powell, K.L.; Thomas, E.; Cockerill, G.S. Antiviral Drugs for Acute Infections. In Comprehensive Medicinal Chemistry III; Elsevier: Amsterdam, The Netherlands, 2017; pp. 665–681. ISBN 978-0-12-803201-5. [Google Scholar]
Viral Strain | Family | Nucleic Acid | Symmetry | Envelope | Dimension |
---|---|---|---|---|---|
HSV-1 | Herpesviridae | dsDNA | icosahedral | yes | 115–240 nm |
HCoV-229E | Coronaviridae | ssRNA (+) | helical | yes | 80–120 nm |
PV-1 | Picornaviridae | ssRNA (+) | icosahedral | no | 30–40 nm |
Virus | Gene | Forward Sequence | Reverse Sequence |
---|---|---|---|
HSV-1 | UL54 | 5′-TGGCGGACATTAAGGACATTG-3′ | 3′-TGGCCGTCAACTCGCAG-5′ |
HSV-1 | UL27 | 5′-GCCTTCTTCGCCTTTCGC-3′ | 3′-CGCTCGTGCCCTTCTTCTT-5′ |
HCoV-229E | S | 5′-CGTTGAACTTCAAACCTCAGA-3′ | 3′-ACCAACATTGGCATAAACAG-5′ |
HCoV-229E | N | 5′-GTCGTCAGGGGTAGAATACCTTA-3′ | 3′-CCCGTTTGCCCTTTCTAGT-5′ |
GAPDH | 5′-CCTTTCATTGAGCTCCAT-3’ | 3′-CGTACATGGGAGCGTC-5’ |
A | Virus Pre-Treatment HSV-1 | B | Virus Pre-Treatment HCoV-229E | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M (µg/mL) | H (µg/mL) | EA (µg/mL) | M (µg/mL) | H (µg/mL) | EA (µg/mL) | ||||||
IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 |
0.33 | 0.73 | 0.125 | 0.24 | 0.455 | 0.89 | 0.50 | 1.14 | 0.20 | 0.78 | 2.60 | 5.52 |
Cell Pre-treatment HSV-1 | Cell Pre-treatment HCoV-229E | ||||||||||
M (µg/mL) | H (µg/mL) | EA (µg/mL) | M (µg/mL) | M (µg/mL) | M (µg/mL) | ||||||
IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC50 | IC50 | IC50 | IC50 | IC50 |
>10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Virus Co-treatment HSV-1 | Cell Pre-treatment HCoV-229E | ||||||||||
M (µg/mL) | H (µg/mL) | EA (µg/mL) | M (µg/mL) | M (µg/mL) | M (µg/mL) | ||||||
IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC50 | IC50 | IC50 | IC50 | IC50 |
0.51 | 1.33 | 0.29 | 0.67 | 0.63 | 1.62 | 3.70 | 3.70 | 3.70 | 3.70 | 3.70 | 3.70 |
Post-treatment HSV-1 | Post-treatment HCoV-229E | ||||||||||
M (µg/mL) | H (µg/mL) | EA (µg/mL) | M (µg/mL) | H (µg/mL) | EA (µg/mL) | ||||||
IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 | IC50 | IC90 |
>10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 | >10 |
Virus Pre-Treatment PV-1 (% Inhibition) | ||
---|---|---|
M (10 µg/mL) | H (10 µg/mL) | EA (10 µg/mL) |
12% | 15% | 9% |
Co-treatment PV-1 (% Inhibition) | ||
M (10 µg/mL) | H (10 µg/mL) | EA (10 µg/mL) |
9% | 15% | 11% |
Cell pre-treatment PV-1 (% Inhibition) | ||
M (10 µg/mL) | H (10 µg/mL) | EA (10 µg/mL) |
5% | 6% | 5% |
Post-treatment PV-1 (% Inhibition) | ||
M (10 µg/mL) | H (10 µg/mL) | EA (10 µg/mL) |
9% | 7% | 5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Annunziata, F.; Sellitto, C.; Franci, G.; Marcotullio, M.C.; Piovan, A.; Della Marca, R.; Folliero, V.; Galdiero, M.; Filippelli, A.; Conti, V.; et al. Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses 2022, 14, 2257. https://doi.org/10.3390/v14102257
Dell’Annunziata F, Sellitto C, Franci G, Marcotullio MC, Piovan A, Della Marca R, Folliero V, Galdiero M, Filippelli A, Conti V, et al. Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses. 2022; 14(10):2257. https://doi.org/10.3390/v14102257
Chicago/Turabian StyleDell’Annunziata, Federica, Carmine Sellitto, Gianluigi Franci, Maria Carla Marcotullio, Anna Piovan, Roberta Della Marca, Veronica Folliero, Massimiliano Galdiero, Amelia Filippelli, Valeria Conti, and et al. 2022. "Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1" Viruses 14, no. 10: 2257. https://doi.org/10.3390/v14102257
APA StyleDell’Annunziata, F., Sellitto, C., Franci, G., Marcotullio, M. C., Piovan, A., Della Marca, R., Folliero, V., Galdiero, M., Filippelli, A., Conti, V., & Delfino, D. V. (2022). Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses, 14(10), 2257. https://doi.org/10.3390/v14102257