Cloning, Exogenous Expression and Function Analysis of Interferon–γ from Gadus macrocephalus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish, Cell Culture, Virus and Reagents
2.2. Molecular Cloning and Sequence Analysis of GmIFN–γ
2.3. Expression Pattern of GmIFN–γ in G. macrocephalus
2.4. Preparation of Recombinant Plasmid
2.5. Prokaryotic Expression and Purification
2.6. Yeast Expression and Isolation of GmIFN–γ
2.7. Antivirus Effects of GmIFN–γ
2.8. Immunoregulation of GmIFN–γ in the EPC Cell Line
2.9. Zebrafish Immune Response to GmIFN–γ by Oral Route
3. Results
3.1. Bioinformatic Analysis of GmIFN–γ
3.2. Expression Profiles of GmIFN–γ
3.3. Exogenous Expression of GmIFN–γ
3.4. GmIFN–γ Inhibits SVCV Growth
3.5. MICA Expression in EPC Induced by GmIFN–γ
3.6. Response of Zebrafish Interferon System to Yeast Expressed GmIFN–γ
4. Discussion
4.1. Evolution and Conservation of GmIFN–γ Protein
4.2. Expression of GmIFN–γ In Vivo and In Vitro
4.3. Function analysis of GmIFN–γ
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McBeath, A.J.A.; Snow, M.; Secombes, C.J.; Ellis, A.E.; Collet, B. Expression kinetics of interferon and interferon-induced genes in Atlantic salmon (Salmo salar) following infection with infectious pancreatic necrosis virus and infectious salmon anaemia virus. Fish Shellfish Immunol. 2007, 22, 230–241. [Google Scholar] [CrossRef]
- Fu, J.; Yi, Z.; Cui, H.; Song, C.; Yu, M.; Liu, Y. Intein-mediated expression and purification of common carp IFN-γ and its protective effect against spring viremia of carp virus. Fish Shellfish Immunol. 2019, 88, 403–406. [Google Scholar] [CrossRef]
- Zou, J.; Gorgoglione, B.; Taylor, N.G.H.; Summathed, T.; Lee, P.-T.; Panigrahi, A.; Genet, C.; Chen, Y.-M.; Chen, T.-Y.; Hassan, M.U.; et al. Salmonids Have an Extraordinary Complex Type I IFN System: Characterization of the IFN Locus in Rainbow Trout Oncorhynchus mykiss Reveals Two Novel IFN Subgroups. J. Immunol. 2014, 193, 2273–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahradník, J.; Kolářová, L.; Pařízková, H.; Kolenko, P.; Schneider, B. Interferons type II and their receptors R1 and R2 in fish species: Evolution, structure, and function. Fish Shellfish Immunol. 2018, 79, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef]
- Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.-G.; Li, X.; Perálvarez-Marín, A.; Jiang, J.-L.; Jiang, Z.-Q.; Wen, S.-H.; Lü, H.-Q. Transcriptomic analysis and biomarkers (Rag1 and Igμ) for probing the immune system development in Pacific cod, Gadus macrocephalus. Fish Shellfish Immunol. 2015, 44, 622–632. [Google Scholar] [CrossRef]
- Mao, M.-G.; Jiang, J.-L.; Jiang, Z.-Q.; Liu, R.-T.; Zhang, Q.-Y.; Gui, J.-F. Molecular characterization of caspase members and expression response to Nervous Necrosis Virus outbreak in Pacific cod. Fish Shellfish Immunol. 2018, 74, 559–566. [Google Scholar] [CrossRef]
- Gu, J.; Zhan, A.-J.; Jiang, J.-L.; Chen, Y.; Xu, J.; Ye, L.; Mao, M.-G. Conserved function of pacific cod caspase-3 in apoptosis. Gene 2020, 732, 144370. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual (Fourth Edition): Three-Volume Set; Cold Spring Harbor Laboratory Pr.: New York, NY, USA, 2012. [Google Scholar]
- Jiang, H.; Qiao, H.W.; Cong, Z.; Tong, W.; Wei, Q. Plaque Assay in SARS-CoV Titration. Chin. J. Comp. Med. 2009, 8, 65–66. [Google Scholar] [CrossRef]
- Zou, J.; Carrington, A.; Collet, B.; Dijkstra, J.M.; Yoshiura, Y.; Bols, N.; Secombes, C. Identification and Bioactivities of IFN-γ in Rainbow Trout Oncorhynchus mykiss: The First Th1-Type Cytokine Characterized Functionally in Fish. J. Immunol. 2005, 175, 2484–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzella, H.G. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microb. Cell Factories 2011, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Zhang, Y.; Tang, Z.; Mao, J.; Kuang, Z.; Qin, C.; Li, W. Production of recombinant orange-spotted grouper (Epinephelus coioides) follicle-stimulating hormone (FSH) in single-chain form and dimer form by Pichia pastoris and their biological activities. Gen. Comp. Endocrinol. 2012, 178, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei, M.; Rezaee, S.A.; Farsiani, H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J. Cell. Physiol. 2020, 235, 5867–5881. [Google Scholar] [CrossRef] [PubMed]
- Aird, S.D. Nucleoside composition of Heloderma venoms. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 150, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Apweiler, R.; Hermjakob, H.; Sharon, N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta-Gen. Subj. 1999, 1473, 4–8. [Google Scholar] [CrossRef]
- Jun, L.I.; Xin, D.U.; Moghaddam, S.H.; Chen, Y. The research progress in protein glycosylation modification. Bull. Sci. Technol. 2009, 6, 773–778. [Google Scholar] [CrossRef]
- Pijanowski, L.; Scheer, M.; Verburg-van Kemenade, B.M.L.; Chadzinska, M. Production of inflammatory mediators and extracellular traps by carp macrophages and neutrophils in response to lipopolysaccharide and/or interferon-γ2. Fish Shellfish Immunol. 2015, 42, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xiao, J.; Miao, Q.; Feng, W.-X.; Wu, X.-R.; Yin, Q.-Q.; Jiao, W.-W.; Shen, C.; Liu, F.; Shen, D.; et al. Interferon gamma release assay in diagnosis of pediatric tuberculosis: A meta-analysis. FEMS Immunol. Med. Microbiol. 2011, 63, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.-F.; Zhang, Y.-B.; Liu, T.-K.; Liu, Y.; Sun, F.; Jiang, J.; Gui, J.-F. Fish virus-induced interferon exerts antiviral function through Stat1 pathway. Mol. Immunol. 2010, 47, 2330–2341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.R. Cultural Cytology and Technique for Cell Culture; Shanghai Science and Technology Press: Shanghai, China, 2004. [Google Scholar]
- Xu, T.J.; Chen, S.L. Progress of major histocompatibility complex (MHC) and relevant gene research in fish. Mar. Fish Res. 2008, 29, 116–126. [Google Scholar]
- Cuesta, A.; Meseguer, J.; Esteban, M. Cloning and regulation of the major histocompatibility class I alpha gene in the teleost fish gilthead seabream. Fish Shellfish Immunol. 2007, 22, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-W.; Chao, Y.-M.; Guo, T.-C.; Santi, N.; Evensen, Ø.; Kasani, S.K.; Hong, J.-R.; Wu, J.-L. The interferon response is involved in nervous necrosis virus acute and persistent infection in zebrafish infection model. Mol. Immunol. 2008, 45, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Li, D.M. Immunoprotection of Grass Carp (Ctenopharyngodon Idella) with Recombinant Interferon rCiIFN; Nanchang University: Nanchang, China, 2013. [Google Scholar]
Name | 5′-3′Primer Sequence | Purpose |
---|---|---|
IFN–γf1 IFN–γr1 | GAAAGGCTGTATCGTCCTGCCGGGG TGAACCACCCGAGCCAGATAAAAAC | Cloning of GmIFN–γ |
IFN–γf2 IFN–γr2 | CAAGACTCTAAGCCTACAACA ACACCTTCCCAAGCACAA | qPCR for GmIFN–γ |
ActinF1 ActinR1 | CCAAAGCAACAGGGAGA GCAGTGGTGGTGAAGGAGTAG | Internal control gene of qPCR in Gadus macrocephalus |
ActinF2 ActinR2 | GGCACTGCTGCTTCCTC ACCGCAAGACTCCATACCC | Internal control gene of qPCR in EPC cell |
pF1 pR1 | CGGAATTCCTGCCAGTGGCTCCCGTT CCGCTCGAGCATAGCCCTCCTAAATTT | Plasmid construction of pET32a–GmIFN–γ |
pF2 pR2 | CGGAATTCATGCTGCCAGTGGCTCCCGTTC CCGCTCGAGGTCATAGCCCTCCTAAATTTAG | Plasmid construction of pGAPZA–GmIFN–γ |
pF3 pR3 | CCGCTCGAGATGCTGCCAGTGGCTCCCGTTC CGGAATTCGTCATAGCCCTCCTAAATTTAG | Plasmid construction of pcDNA3.1–GmIFN–γ |
MicaF1 MicaR1 | GAGATTCTGCCCAACGG CAGCCACATCTGAAACAAA | qPCR of MICA in EPC cell |
ActinF3 ActinR3 | CATGTTCGAGACCTT AGGCAGCTCATAGCT | Internal control gene of qPCR in D. rerio |
PkrF PkrR | ACCAAACCCAGCAAAGG AGAAGTAGCGGACGATG | qPCR of PKR in D. rerio |
MxF MxR | TGGCTGGAGCAGGTGTT AATGCTTCTGTGGTGGC | qPCR of Mx in D. rerio |
Irf1F Irf1R | ATGCCCGTGTCCAGAAT CTGAGTCACTCCCTCCTTAT | qPCR of IRF1 in D. rerio |
IfnrF1 IfnrR1 | GTCCAATCGCAATCCAC CCGTAAGCGTCTACAATA | qPCR of IFN–γR1 in D. rerio |
IrfF1 IrfR1 | CAGAATGACAGCGTGGAT CTTTAGCCTGCCGTCTC | qPCR of IFN–γ1 in D. rerio |
Irf7F Irf7R | GGCATCTATGGCTTTCG GGCAAATCAGAGGGACA | qPCR of IRF7 in D. rerio |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Gu, J.; Zhan, A.; Mao, M.; Liu, Y.; Wang, H.; Mao, Y. Cloning, Exogenous Expression and Function Analysis of Interferon–γ from Gadus macrocephalus. Viruses 2022, 14, 2304. https://doi.org/10.3390/v14102304
Jiang J, Gu J, Zhan A, Mao M, Liu Y, Wang H, Mao Y. Cloning, Exogenous Expression and Function Analysis of Interferon–γ from Gadus macrocephalus. Viruses. 2022; 14(10):2304. https://doi.org/10.3390/v14102304
Chicago/Turabian StyleJiang, Jielan, Jie Gu, Aijun Zhan, Mingguang Mao, Yumeng Liu, Haishan Wang, and Yunxiang Mao. 2022. "Cloning, Exogenous Expression and Function Analysis of Interferon–γ from Gadus macrocephalus" Viruses 14, no. 10: 2304. https://doi.org/10.3390/v14102304
APA StyleJiang, J., Gu, J., Zhan, A., Mao, M., Liu, Y., Wang, H., & Mao, Y. (2022). Cloning, Exogenous Expression and Function Analysis of Interferon–γ from Gadus macrocephalus. Viruses, 14(10), 2304. https://doi.org/10.3390/v14102304