Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sequencing
2.2. cDNA Synthesis and Whole-Genome Sequencing
2.3. Phylogenetic Analyses
3. Results
3.1. Phylogenetic Analysis
3.2. Single Nucleotide Polymorphisms (SNPs) Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pialoux, G.; Gaüzère, B.-A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an Epidemic Arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Weaver, S.C.; Lecuit, M. Chikungunya Virus and the Global Spread of a Mosquito-Borne Disease. N. Engl. J. Med. 2015, 372, 1231–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, M.S.; Costa, P.A.G.; Correa, I.A.; de Souza, M.R.M.; Calil, P.T.; da Silva, G.P.D.; Costa, S.M.; Fonseca, V.W.P.; da Costa, L.J. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front. Microbiol. 2020, 11, 1297. [Google Scholar] [CrossRef] [PubMed]
- Suhrbier, A. Rheumatic manifestations of chikungunya: Emerging concepts and interventions. Nat. Rev. Rheumatol. 2019, 15, 597–611. [Google Scholar] [CrossRef]
- Weaver, S.C. Arrival of Chikungunya Virus in the New World: Prospects for Spread and Impact on Public Health. PLoS Negl. Trop. Dis. 2014, 8, e2921. [Google Scholar] [CrossRef] [Green Version]
- Zeller, H.; van Bortel, W.; Sudre, B. Chikungunya: Its History in Africa and Asia and Its Spread to New Regions in 2013–2014. J. Infect. Dis. 2016, 214, S436–S440. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Chen, R.; Sherman, M.B.; Weaver, S.C. Chikungunya Virus: Evolution and Genetic Determinants of Emergence. Curr. Opin. Virol. 2011, 1, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Powers, A.M. Genomic Evolution and Phenotypic Distinctions of Chikungunya Viruses Causing the Indian Ocean Outbreak. Exp. Biol. Med. 2011, 236, 909–914. [Google Scholar] [CrossRef]
- Yactayo, S.; Staples, J.E.; Millot, V.; Cibrelus, L.; Ramon-Pardo, P. Epidemiology of Chikungunya in the Americas. J. Infect. Dis. 2016, 214, S441–S445. [Google Scholar] [CrossRef] [Green Version]
- Cassadou, S.; Boucau, S.; Petit-Sinturel, M.; Huc, P.; Leparc-Goffart, I.; Ledrans, M. Emergence of Chikungunya Fever on the French Side of Saint Martin Island, October to December 2013. Eurosurveillance 2014, 19, 20752. [Google Scholar] [CrossRef]
- Pan American Health Organization. Number of Reported Cases of Chikungunya Fever in the Americas, by Country or Territory 2015 (to Week Noted) Epidemiological Week/EW52 (Updated as of 13 May 2016). Available online: https://www.paho.org/hq/dmdocuments/2016/2015-cha-CHIKV-cumulative-cases-update.pdf (accessed on 1 September 2022).
- Faria, N.R.; Lourenço, J.; Marques de Cerqueira, E.; Maia de Lima, M.; Carlos Junior Alcantara, L. Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014–2015. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goes de Jesus, J.; da Luz Wallau, G.; Lima Maia, M.; Xavier, J.; Oliveira Lima, M.A.; Fonseca, V.; Salgado de Abreu, A.; Fraga de Oliveira Tosta, S.; Ramos do Amaral, H.; Andrade Barbosa Lima, I.; et al. Persistence of Chikungunya ECSA Genotype and Local Outbreak in an Upper Medium Class Neighborhood in Northeast Brazil. PLoS ONE 2020, 15, e0226098. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.R.T.; Faria, N.R.; de Vasconcelos, J.M.; Golding, N.; Kraemer, M.U.; de Oliveira, L.F.; Azevedo, R.d.S.d.S.; da Silva, D.E.A.; da Silva, E.V.P.; da Silva, S.P.; et al. Emergence and Potential for Spread of Chikungunya Virus in Brazil. BMC Med. 2015, 13, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, T.; Ribeiro, E.; Corrêa, V.; Damasco, P.; Santos, C.; de Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Faria, N.; Nunes, P.; Heringer, M.; et al. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapá in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018, 10, 623. [Google Scholar] [CrossRef] [Green Version]
- Secretaria de Vigilância em Saúde. Monitoramento Dos Casos de Arboviroses Urbanas Causados Por Vírus Transmitidos Pelo Mosquito Aedes (Dengue, Chikungunya e Zika), Semanas Epidemiológicas 1 a 7, 2022. Bol. Epidemiológico Arboviroses 2022, 53, 1–36. Available online: http://plataforma.saude.gov.br/anomalias-congenitas/boletim-epidemiologico-SVS-07-2022.pdf (accessed on 1 September 2022).
- de Souza, U.J.B.; dos Santos, R.N.; de Melo, F.L.; Belmok, A.; Galvão, J.D.; de Rezende, T.C.V.; Cardoso, F.D.P.; Carvalho, R.F.; da Silva Oliveira, M.; Ribeiro Junior, J.C.; et al. Genomic Epidemiology of SARS-CoV-2 in Tocantins State and the Diffusion of P.1.7 and AY.99.2 Lineages in Brazil. Viruses 2022, 14, 659. [Google Scholar] [CrossRef]
- S H T Secretary of Health of the Tocantins. Available online: http://integra.saude.to.gov.br/Paineis/Chikungunya (accessed on 1 September 2022).
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; vanden Eynden, E.; Vandamme, A.-M.; et al. Genome Detective: An Automated System for Virus Identification from High-Throughput Sequencing Data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A. FigTree. Version v1.4.4. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 5 September 2022).
- Orme, D.; Freckleton, R.; Thomas, G.; Petzoldt, T.; Fritz, S.; Isaac, N.; Pearse, W. Caper: Comparative Analyses of Phylogenetics and Evolution in R. R Package Version 0.5. 2012, Volume 2, p. 458. Available online: https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (accessed on 5 September 2022).
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the Temporal Structure of Heterochronous Sequences Using TempEst (Formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian Phylogenetic and Phylodynamic Data Integration Using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Baele, G.; Li, W.L.S.; Drummond, A.J.; Suchard, M.A.; Lemey, P. Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Mol. Biol. Evol. 2012, 30, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Gill, M.S.; Lemey, P.; Faria, N.R.; Rambaut, A.; Shapiro, B.; Suchard, M.A. Improving Bayesian Population Dynamics Inference: A Coalescent-Based Model for Multiple Loci. Mol. Biol. Evol. 2013, 30, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. Ggtree: An r Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian Phylogeography Finds Its Roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef] [PubMed]
- Fabri, A.A.; Rodrigues, C.D.d.S.; Santos, C.C.d.; Chalhoub, F.L.L.; Sampaio, S.A.; Faria, N.R.d.C.; Torres, M.C.; Fonseca, V.; Brasil, P.; Calvet, G.; et al. Co-Circulation of Two Independent Clades and Persistence of CHIKV-ECSA Genotype during Epidemic Waves in Rio de Janeiro, Southeast Brazil. Pathogens 2020, 9, 984. [Google Scholar] [CrossRef]
- Souza, T.M.L.; Vieira, Y.R.; Delatorre, E.; Barbosa-Lima, G.; Luiz, R.L.F.; Vizzoni, A.; Jain, K.; Miranda, M.M.; Bhuva, N.; Gogarten, J.F.; et al. Emergence of the East-Central-South-African Genotype of Chikungunya Virus in Brazil and the City of Rio de Janeiro May Have Occurred Years before Surveillance Detection. Sci. Rep. 2019, 9, 2760. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.; Giovanetti, M.; Fonseca, V.; Thézé, J.; Gräf, T.; Fabri, A.; Goes de Jesus, J.; Lima de Mendonça, M.C.; Damasceno dos Santos Rodrigues, C.; Mares-Guia, M.A.; et al. Circulation of Chikungunya Virus East/Central/South African Lineage in Rio de Janeiro, Brazil. PLoS ONE 2019, 14, e0217871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, T.M.A.; Azeredo, E.L.; Badolato-Corrêa, J.; Damasco, P.V.; Santos, C.; Petitinga-Paiva, F.; Nunes, P.C.G.; Barbosa, L.S.; Cipitelli, M.C.; Chouin-Carneiro, T. First Report of the East-Central South African Genotype of Chikungunya Virus in Rio de Janeiro, Brazil. PLoS Curr. 2017, 9. [Google Scholar] [CrossRef]
- Naveca, F.G.; Claro, I.; Giovanetti, M.; de Jesus, J.G.; Xavier, J.; Iani, F.C.d.M.; do Nascimento, V.A.; de Souza, V.C.; Silveira, P.P.; Lourenço, J.; et al. Genomic, Epidemiological and Digital Surveillance of Chikungunya Virus in the Brazilian Amazon. PLoS Negl. Trop. Dis. 2019, 13, e0007065. [Google Scholar] [CrossRef] [Green Version]
- de Castro Moreira, D.; Junior, F.F.D.; Júnior, J.R.P.; Jorge, F.A.; dos Santos Rando, F.; Thomazella, M.V.; Presibella, M.M.; Riediger, I.N.; Fernandez, M.A.; Bertolini, D.A. Genetic Characterization of Chikungunya Virus Circulating in Individuals from Paraná, Brazil. Braz. J. Microbiol. 2022, 53, 641–645. [Google Scholar] [CrossRef]
- Xavier, J.; Fonseca, V.; Bezerra, J.F.; do Monte Alves, M.; Mares-Guia, M.A.; Claro, I.M.; de Jesus, R.; Adelino, T.; Araújo, E.; Cavalcante, K.R.L.J.; et al. Chikungunya Virus ECSA Lineage Reintroduction in the Northeasternmost Region of Brazil. Int. J. Infect. Dis. 2021, 105, 120–123. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Agarwal, A.; Sharma, A.K.; Sukumaran, D.; Parida, M.; Dash, P.K. Two Novel Epistatic Mutations (E1:K211E and E2:V264A) in Structural Proteins of Chikungunya Virus Enhance Fitness in Aedes Aegypti. Virology 2016, 497, 59–68. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; McGee, C.E.; Volk, S.M.; Vanlandingham, D.L.; Weaver, S.C.; Higgs, S. Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes. PLoS ONE 2009, 4, e6835. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.Y.; Nogueira, J.S.; Campos, K.R.; Camargo, C.H.; da Silva Vasami, F.G.; Arvigo, A.P.B.; Santos, M.B.N.; Abbud, A.; Sacchi, C.T. Circulation of Chikungunya Virus East-Central-South African Genotype during the 2020–21 Outbreak in São Paulo State, Brazil. J. Clin. Virol. Plus 2022, 2, 100070. [Google Scholar] [CrossRef]
- Fischer, C.; de Lamballerie, X.; Drexler, J.F. Enhanced Molecular Surveillance of Chikungunya Virus. mSphere 2019, 4, e00295-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Plante, J.A.; Plante, K.S.; Yun, R.; Shinde, D.; Liu, J.; Haller, S.; Mukhopadhyay, S.; Weaver, S.C. Lineage Divergence and Vector-Specific Adaptation Have Driven Chikungunya Virus onto Multiple Adaptive Landscapes. mBio 2021, 12, e0273821. [Google Scholar] [CrossRef]
Sample ID | Accession ID | Cycle Threshold | Coverage | Depth of Coverage | Host | State | Municipality | Collection Date | Sex | Age |
---|---|---|---|---|---|---|---|---|---|---|
TO-UFT-245 | ON586954 | 25.2 | 98.2 | 3588.8 | Human | Tocantins | Lavandeira | 2021-09-14 | Male | 17 |
TO-UFT-7124 | ON586955 | 24.3 | 98.4 | 3448.3 | Human | Tocantins | Paraíso do Tocantins | 2021-07-30 | Male | 39 |
TO-UFT-252 | ON586956 | 22.1 | 98.4 | 4059.3 | Human | Tocantins | Lavandeira | 2021-10-08 | Female | 13 |
TO-UFT-5070 | ON586957 | 21.3 | 98.4 | 4338.4 | Human | Tocantins | Palmas | 2021-11-18 | Male | 56 |
TO-UFT-22529 | ON586958 | 19.7 | 74.3 | 1035.7 | Human | Tocantins | Palmas | 2022-01-21 | Female | 53 |
TO-UFT-33522 | ON586959 | 21.6 | 91.5 | 1499.3 | Human | Tocantins | Palmas | 2022-01-22 | Male | 51 |
TO-UFT-67522 | ON586960 | 18.9 | 77.0 | 1088.9 | Human | Tocantins | Palmas | 2022-01-24 | Female | 27 |
TO-UFT-5531 | ON586961 | 16.2 | 94.4 | 3437.5 | Human | Tocantins | Palmas | 2022-01-25 | Female | 54 |
TO-UFT-18531 | ON586962 | 20.7 | 79.1 | 910.8 | Human | Tocantins | Palmas | 2022-01-26 | Female | 75 |
TO-UFT-32531 | ON586963 | 21.2 | 87.8 | 1633.8 | Human | Tocantins | Palmas | 2022-01-26 | Male | 4 |
TO-UFT-50531 | ON586964 | 22.4 | 83.5 | 959.7 | Human | Tocantins | Palmas | 2022-01-31 | Female | 48 |
TO-UFT-52531 | ON586965 | 20.4 | 90.9 | 1686.3 | Human | Tocantins | Palmas | 2022-01-31 | Male | 18 |
TO-UFT-72569 | ON586966 | 23.6 | 84.0 | 1151.4 | Human | Tocantins | Palmas | 2022-02-07 | Male | 36 |
TO-UFT-86569 | ON586967 | 25.2 | 94.0 | 3830.9 | Human | Tocantins | Palmas | 2022-02-07 | Female | 53 |
TO-UFT-64569 | ON586968 | 26.9 | 94.2 | 1795.7 | Human | Tocantins | Palmas | 2022-02-09 | Female | 38 |
TO-UFT-9217 | OP485445 | 26.7 | 84.9 | 2884.7 | Human | Tocantins | Palmas | 2022-05-27 | Female | 26 |
TO-UFT-9317 | OP485446 | 24.0 | 81.5 | 2897.4 | Human | Tocantins | Palmas | 2022-05-26 | Female | 66 |
TO-UFT-2017 | OP485447 | 25.9 | 83.7 | 3385.3 | Human | Tocantins | Porto Nacional | 2022-05-29 | Female | 9 |
TO-UFT-4345 | OP485448 | 24.7 | 85.0 | 2513.0 | Human | Tocantins | Palmas | 2022-06-21 | Male | 27 |
TO-UFT-8545 | OP485449 | 23.9 | 86.3 | 2618.0 | Human | Tocantins | Palmas | 2022-06-22 | Female | 8 |
TO-UFT-3045 | OP485450 | 24.1 | 84.2 | 3209.1 | Human | Tocantins | Palmas | 2022-06-24 | Male | 21 |
TO-UFT-6145 | OP485451 | 24.3 | 86.1 | 3840.0 | Human | Tocantins | Palmas | 2022-06-24 | Female | 9 |
TO-UFT-4945 | OP485452 | 23.1 | 85.0 | 3269.7 | Human | Tocantins | Palmas | 2022-06-26 | Male | 37 |
TO-UFT-2447 | OP485453 | 23.8 | 81.7 | 2791.1 | Human | Tocantins | Palmas | 2022-07-14 | Male | 25 |
TO-UFT-2645 | OP485454 | 23.5 | 86.6 | 2897.2 | Human | Tocantins | Porto Nacional | 2022-07-20 | Male | 26 |
TO-UFT-6747 | OP485455 | 25.8 | 84.1 | 2603.7 | Human | Tocantins | Paraíso do Tocantins | 2022-07-23 | Male | 41 |
TO-UFT-447 | OP485444 | 22.5 | 79.6 | 3968.6 | Human | Tocantins | Porto Nacional | 2022-07-24 | Male | 46 |
Nonstructural Protein (NSP) | Structural Protein (SP) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | NSP1 | NSP2 | NSP3 | NSP4 | E2 | E1 | |||||||||||||||||
Sites (Protein) | 149 | 256 | 352 | 466 | 470 | 540 | 545 | 565 | 645 | 284 | 388 | 434 | 464 | 39 | 481 | 248 | 391 | 35 | 98 | 211 | 269 | 305 | 366 |
KP164568 aa * | Ile | Lys | Pro | Met | Thr | Val | Ala | Ala | Val | Ile | Ala | Leu | Ala | Lys | Ala | Leu | Met | Ser | Ala | Lys | Val | Ala | Arg |
TO-UFT-7124 | Val | Ala | Leu | Ser | Pro | Asp | Thr | Met | Thr | ||||||||||||||
TO-UFT-245 | Val | Ala | Leu | Ser | Pro | Asp | Phe | Thr | Met | Thr | |||||||||||||
TO-UFT-252 | Val | Ala | Leu | Ser | Pro | Asp | Thr | Met | Thr | ||||||||||||||
TO-UFT-5070 | Val | Ala | Leu | Ser | Pro | Asp | Thr | Met | Thr | ||||||||||||||
TO-UFT-22529 | Ala | Ser | Val | Ala | Thr | Pro | Asp | Thr | Met | ||||||||||||||
TO-UFT-33522 | Val | Ala | Leu | Ser | Thr | Pro | Asp | Thr | Thr | Met | Thr | ||||||||||||
TO-UFT-67522 | Ala | Leu | Ser | Asp | Thr | Thr | Met | Thr | |||||||||||||||
TO-UFT-5531 | Val | Ala | Leu | Ile | Ser | Thr | Pro | Asp | Phe | Thr | Met | Thr | |||||||||||
TO-UFT-18531 | Ala | Leu | Ser | Ala | Asp | Phe | Thr | Thr | Met | Thr | |||||||||||||
TO-UFT-32531 | Ala | Leu | Ser | Thr | Pro | Asp | Thr | Thr | Met | Thr | |||||||||||||
TO-UFT-50531 | Ala | Leu | Met | Ser | Ala | Thr | Pro | Asp | Leu | Thr | Thr | Met | Thr | ||||||||||
TO-UFT-52531 | Ala | Leu | Met | Ser | Ala | Thr | Pro | Asp | Phe | Leu | Thr | Thr | Met | Thr | |||||||||
TO-UFT-72569 | Ala | Leu | Ser | Ala | Thr | Pro | Arg | Asp | Thr | Thr | Met | Thr | |||||||||||
TO-UFT-86569 | Val | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Thr | Met | Thr | ||||||||||||
TO-UFT-64569 | Val | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Thr | Met | Thr | ||||||||||||
TO-UFT-9217 | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Thr | Thr | Met | Thr | ||||||||||||
TO-UFT-9317 | Ala | Leu | Ser | Val | Ala | Thr | Pro | Val | Asp | Phe | Thr | Thr | Met | Thr | Leu | ||||||||
TO-UFT-2017 | Ala | Leu | Ser | Thr | Pro | Arg | Asp | Phe | Thr | Thr | Met | Thr | |||||||||||
TO-UFT-4345 | Arg | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Ile | Thr | Thr | Met | Thr | ||||||||||
TO-UFT-8545 | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Ile | Thr | Thr | Met | Thr | |||||||||||
TO-UFT-3045 | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Thr | Thr | Met | Thr | ||||||||||||
TO-UFT-6145 | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Thr | Thr | Met | Thr | ||||||||||||
TO-UFT-4945 | Ala | Leu | Ile | Ser | Ala | Thr | Pro | Asp | Phe | Thr | Met | Thr | |||||||||||
TO-UFT-2447 | Arg | Ala | Leu | Ser | Thr | Pro | Asp | Phe | Ile | Thr | Thr | Met | Thr | ||||||||||
TO-UFT-2645 | Ala | Leu | Ser | Thr | Thr | Pro | Asp | Thr | Thr | Met | Thr | ||||||||||||
TO-UFT-6747 | Ala | Leu | Ser | Val | Thr | Pro | Val | Asp | Phe | Thr | Thr | Met | Thr | Leu | |||||||||
TO-UFT-447 | Ala | Leu | Ser | Ala | Thr | Thr | Pro | Asp | Phe | Thr | Thr | Met | Thr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, U.J.B.d.; Santos, R.N.d.; Giovanetti, M.; Alcantara, L.C.J.; Galvão, J.D.; Cardoso, F.D.P.; Brito, F.C.S.; Franco, A.C.; Roehe, P.M.; Ribeiro, B.M.; et al. Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil. Viruses 2022, 14, 2311. https://doi.org/10.3390/v14102311
Souza UJBd, Santos RNd, Giovanetti M, Alcantara LCJ, Galvão JD, Cardoso FDP, Brito FCS, Franco AC, Roehe PM, Ribeiro BM, et al. Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil. Viruses. 2022; 14(10):2311. https://doi.org/10.3390/v14102311
Chicago/Turabian StyleSouza, Ueric José Borges de, Raíssa Nunes dos Santos, Marta Giovanetti, Luiz Carlos Junior Alcantara, Jucimária Dantas Galvão, Franciano Dias Pereira Cardoso, Feliph Cássio Sobrinho Brito, Ana Cláudia Franco, Paulo Michel Roehe, Bergmann Morais Ribeiro, and et al. 2022. "Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil" Viruses 14, no. 10: 2311. https://doi.org/10.3390/v14102311
APA StyleSouza, U. J. B. d., Santos, R. N. d., Giovanetti, M., Alcantara, L. C. J., Galvão, J. D., Cardoso, F. D. P., Brito, F. C. S., Franco, A. C., Roehe, P. M., Ribeiro, B. M., Spilki, F. R., & Campos, F. S. (2022). Genomic Epidemiology Reveals the Circulation of the Chikungunya Virus East/Central/South African Lineage in Tocantins State, North Brazil. Viruses, 14(10), 2311. https://doi.org/10.3390/v14102311