Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border—November 2020–March 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Wastewater Collection, Processing, and Analysis
2.3. Public Health Response
2.4. Contextualization of SARS-CoV-2 Detections
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aday, S.; Aday, M.S. Impact of COVID-19 on the food supply chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Deconinck, K.; Avery, E.; Jackson, L.A. Food Supply Chains and Covid-19: Impacts and Policy Lessons. EuroChoices 2020, 19, 34–39. [Google Scholar] [CrossRef]
- Barman, A.; Das, R.; De, P.K. Impact of COVID-19 in food supply chain: Disruptions and recovery strategy. Curr. Res. Behav. Sci. 2021, 2, 100017. [Google Scholar] [CrossRef]
- Rahimi, P.; Islam, M.S.; Duarte, P.M.; Tazerji, S.S.; Sobur, M.A.; El Zowalaty, M.E.; Ashour, H.M.; Rahman, M.T. Impact of the COVID-19 pandemic on food production and animal health. Trends Food Sci. Technol. 2022, 121, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Reay-Jones, F.P. Editorial: Impacts of COVID-19 on global plant health and crop protection and the resulting effect on global food security and safety. Crop. Prot. 2021, 139, 105383. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Yar, M.K.; Badar, I.H.; Ali, S.; Islam, M.S.; Jaspal, M.H.; Hayat, Z.; Sardar, A.; Ullah, S.; Guevara-Ruiz, D. Meat Production and Supply Chain Under COVID-19 Scenario: Current Trends and Future Prospects. Front. Vet. Sci. 2021, 8, 432. [Google Scholar] [CrossRef]
- Trmčić, A.; Demmings, E.; Kniel, K.; Wiedmann, M.; Alcaine, S. Food Safety and Employee Health Implications of COVID-19: A Review. J. Food Prot. 2021, 84, 1973–1989. [Google Scholar] [CrossRef]
- Lusk, J.L.; Chandra, R. Farmer and farm worker illnesses and deaths from COVID-19 and impacts on agricultural output. PLoS ONE 2021, 16, e0250621. [Google Scholar] [CrossRef]
- USDA/NASS 2021 State Agriculture Overview for Arizona. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MINNESOTA (accessed on 30 October 2022).
- U.S. Department of Agriculture National Agriculture Statistics Service. Vegetables 2020 Summary; USDA: Washington, DC, USA, 2021. [Google Scholar]
- Kerna, A.; Duval, D.; Frisvold, G. Arizona Leafy Greens: Economic Contributions of the Industry Cluster 2015 Economic Contribution Analysis; University of Arizona: Tucson, AZ, USA, 2017. [Google Scholar]
- Saitone, T.L.; Aleks Schaefer, K.; Scheitrum, D.P. COVID-19 morbidity and mortality in U.S. meatpacking counties. Food Policy 2021, 101, 102072. [Google Scholar] [CrossRef]
- Reeves, K.; Liebig, J.; Feula, A.; Saldi, T.; Lasda, E.; Johnson, W.; Lilienfeld, J.; Maggi, J.; Pulley, K.; Wilkerson, P.J.; et al. High-resolution within-sewer SARS-CoV-2 surveillance facilitates informed intervention. Water Res. 2021, 204, 117613. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Pogreba Brown, K.M.; Stark, E.R.; Foster, A.R.; Sprissler, R.S.; Harris, D.T.; Sherchan, S.P.; et al. COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Sci. Total Environ. 2021, 779, 146408. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Ibaraki, M.; VanTassell, J.; Geith, K.; Cavallo, M.; Kann, R.; Guo, L.; Moe, C.L. A sensitive, simple, and low-cost method for COVID-19 wastewater surveillance at an institutional level. Sci. Total Environ. 2022, 807, 151047. [Google Scholar] [CrossRef] [PubMed]
- Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A.E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe 2020, 2, e13–e22. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, J.; Guo, L.; Yao, H.; Wang, L.; Xia, X.D.; Zhang, W. Fecal viral shedding in COVID-19 patients: Clinical significance, viral load dynamics and survival analysis. Virus Res. 2020, 289, 198147. [Google Scholar] [CrossRef]
- Lambrou, A.S.; Shirk, P.; Steele, M.K.; Paul, P.; Paden, C.R.; Cadwell, B.; Reese, H.E.; Aoki, Y.; Hassell, N.; Caravas, J.; et al. Genomic Surveillance for SARS-CoV-2 Variants: Predominance of the Delta (B.1.617.2) and Omicron (B.1.1.529) Variants—United States, June 2021–January 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 206–211. [Google Scholar] [CrossRef]
- Galloway, S.E.; Paul, P.; MacCannell, D.R.; Johansson, M.A.; Brooks, J.T.; MacNeil, A.; Slayton, R.B.; Tong, S.; Silk, B.J.; Armstrong, G.L.; et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, 29 December 2020–12 January 2021. MMWR. Morb. Mortal. Wkly. Rep. 2021, 70, 95–99. [Google Scholar] [CrossRef]
- CDC. SARS-CoV-2 Variant Classifications and Definitions; CDC: Altanta, GA, USA, 2021. [Google Scholar]
- Gupta, S.; Parker, J.; Smits, S.; Underwood, J.; Dolwani, S. Persistent viral shedding of SARS-CoV-2 in faeces—A rapid review. Color. Dis. Off. J. Assoc. Coloproctol. Gt. Britain Irel. 2020, 22, 611–620. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Zhu, B.; Liang, H.; Fang, C.; Gong, Y.; Guo, Q.; Sun, X.; Zhao, D.; Shen, J.; et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020, 26, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Guo, C.; Tang, L.; Hong, Z.; Zhou, J.; Dong, X.; Yin, H.; Xiao, Q.; Tang, Y.; Qu, X.; et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. lancet. Gastroenterol. Hepatol. 2020, 5, 434–435. [Google Scholar] [CrossRef]
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet. Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Miura, F.; Kitajima, M.; Omori, R. Duration of SARS-CoV-2 viral shedding in faeces as a parameter for wastewater-based epidemiology: Re-analysis of patient data using a shedding dynamics model. Sci. Total Environ. 2021, 769, 144549. [Google Scholar] [CrossRef] [PubMed]
- Favakeh, D. Health Officials: Masks Recommended again for Indoor Use in Many Arizona Counties, All Schools. AZ Central. 2021. Available online: https://www.azcentral.com/story/news/local/arizona-health/2021/07/27/cdc-azdhs-recommend-arizonans-wear-masks-indoors/5394534001/ (accessed on 30 October 2022).
- Adamson, B.; Sikka, R.; Wyllie, A.L.; Premsrirut, P. Discordant SARS-CoV-2 PCR and Rapid Antigen Test Results When Infectious: A December 2021 Occupational Case Series. medRxiv 2022. [Google Scholar] [CrossRef]
- Su, Z.; McDonnell, D.; Ahmad, J.; Cheshmehzangi, A.; Xiang, Y.-T. Mind the “worry fatigue” amid Omicron scares. Brain. Behav. Immun. 2021, 101, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Hardick, J.; Gallagher, N.; Sachithanandham, J.; Fall, A.; Siddiqui, Z.; Pekosz, A.; Manabe, Y.C.; Mostafa, H.H. Evaluation of Four Point of Care (POC) Antigen Assays for the Detection of the SARS-CoV-2 Variant Omicron. Microbiol. Spectr. 2022, 10, e0102522. [Google Scholar] [CrossRef]
- Arizona Department of Health Services Vaccine Administration. Available online: http://www.azdhs.org/ (accessed on 30 October 2022).
- Blumenthal, D.S. Is community-based participatory research possible? Am. J. Prev. Med. 2011, 40, 386–389. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Bertsch, P.M.; Angel, N.; Bibby, K.; Bivins, A.; Dierens, L.; Edson, J.; Ehret, J.; Gyawali, P.; Hamilton, K.A.; et al. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: A surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 2020, 27, taaa116. [Google Scholar] [CrossRef]
- Brooks, Y.M.; Gryskwicz, B.; Sheehan, S.; Piers, S.; Mahale, P.; McNeil, S.; Chase, J.; Webber, D.; Borys, D.; Hilton, M.; et al. Detection of SARS-CoV-2 in Wastewater at Residential College, Maine, USA, August–November 2020. Emerg. Infect. Dis. 2021, 27, 3111–3114. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, X.; Zheng, X.; Ding, J.; Li, S.; Chui, H.-K.; Wong, T.-K.; Poon, L.L.M.; Zhang, T. Use of sewage surveillance for COVID-19 to guide public health response: A case study in Hong Kong. Sci. Total Environ. 2022, 821, 153250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Innes, G.K.; Schmitz, B.W.; Brierley, P.E.; Guzman, J.; Prasek, S.M.; Ruedas, M.; Sanchez, A.; Bhattacharjee, S.; Slinski, S. Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border—November 2020–March 2022. Viruses 2022, 14, 2684. https://doi.org/10.3390/v14122684
Innes GK, Schmitz BW, Brierley PE, Guzman J, Prasek SM, Ruedas M, Sanchez A, Bhattacharjee S, Slinski S. Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border—November 2020–March 2022. Viruses. 2022; 14(12):2684. https://doi.org/10.3390/v14122684
Chicago/Turabian StyleInnes, Gabriel K., Bradley W. Schmitz, Paul E. Brierley, Juan Guzman, Sarah M. Prasek, Martha Ruedas, Ana Sanchez, Subhadeep Bhattacharjee, and Stephanie Slinski. 2022. "Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border—November 2020–March 2022" Viruses 14, no. 12: 2684. https://doi.org/10.3390/v14122684
APA StyleInnes, G. K., Schmitz, B. W., Brierley, P. E., Guzman, J., Prasek, S. M., Ruedas, M., Sanchez, A., Bhattacharjee, S., & Slinski, S. (2022). Wastewater-Based Epidemiology Mitigates COVID-19 Outbreaks at a Food Processing Facility near the Mexico-U.S. Border—November 2020–March 2022. Viruses, 14(12), 2684. https://doi.org/10.3390/v14122684