Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae
Abstract
:1. Introduction
2. Characterization of Psa Phages
2.1. Isolation of Psa Phages
2.2. Morphological Characterization
2.3. Host Ranges
2.4. The Lytic Activity
3. Genome Analysis of Psa Phages
4. Infection Mechanism of Phages
5. Tolerance to Environmental Stresses
6. Application in Disease Control
6.1. Lytic Activity
6.2. Biocontrol Potential
6.3. Phage Cocktail
6.4. Advantages
7. Challenges
7.1. Resistance
7.2. Specificity
7.3. Formulation
7.4. Genetic Engineering
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, S.; Ding, J.; Deng, D.; Tang, W.; Sun, H.; Liu, D.; Zhang, L.; Niu, X.; Zhang, X.; Meng, M. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 2013, 4, 2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.; Costa, P.; Pinheiro, L.; Balcão, V.M.; Almeida, A. Kiwifruit bacterial canker: An integrative view focused on biocontrol strategies. Planta 2021, 253, 49. [Google Scholar] [CrossRef] [PubMed]
- Abelleira, A.; López, M.M.; Peñalver, J.; Aguin, O.; Mansilla, J.; Picoaga, A.; García, M. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Spain. Plant Dis. 2011, 95, 1583. [Google Scholar] [CrossRef] [PubMed]
- Balestra, G.; Renzi, M.; Mazzaglia, A. First report of bacterial canker of Actinidia deliciosa caused by Pseudomonas syringae pv. actinidiae in Portugal. New Dis. Rep. 2010, 22, 10. [Google Scholar] [CrossRef] [Green Version]
- Everett, K.R.; Taylor, R.K.; Romberg, M.K.; Rees-George, J.; Fullerton, R.A.; Vanneste, J.L.; Manning, M.A. First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas. Plant Dis. Notes 2011, 6, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Vanneste, J.L.; Scortichini, M.; Balestra, G.M.; Spinelli, F. Pseudomonas syringae pv. actinidiae: Ecology, infection dynamics and disease epidemiology. Microb. Ecol. 2020, 80, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Scortichini, M.; Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G. Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 2012, 13, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, J.L. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 2017, 55, 377–399. [Google Scholar] [CrossRef]
- Woodcock, S. A review of research and development undertaken on Psa. Kiwi Vine Health 2016, 5, 871–874. [Google Scholar]
- Takikawa, Y.; Serizawa, S.; Ichikawa, T.; Tsuyumu, S.; Goto, M. Pseudomonas syringae pv. actinidiae pv. nov. the causal bacterium of canker of kiwifruit in Japan. Jpn. J. Phytopathol. 1989, 55, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Young, J. Pseudomonas syringae pv. actinidiae in New Zealand. J. Plant Pathol. 2012, 94, 5–10. [Google Scholar]
- Morán, F.; Marco-Noales, E.; Landeras, E.; Roselló, M.; Abelleira, A.; Gonzalez, A.J.; López, M.M. Polyphasic Analysis of Isolates from Kiwifruit Reveal New Genetic Lineages of Pseudomonas syringae pv. actinidifoliorum Look-Alike. Agronomy 2021, 11, 2464. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Buriani, G.; Mauri, S.; Kay, C.; Tacconi, G.; Spinelli, F. Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hortic. Res. 2018, 5, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.; Taylor, R.; Weir, B.; Romberg, M.; Vanneste, J.; Luck, J.; Alexander, B. Phylogenetic relationships among global populations of Pseudomonas syringae pv. actinidiae. Phytopathology 2012, 102, 1034–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawada, H.; Shimizu, S.; Miyoshi, T.; Shinozaki, T.; Kusumoto, S.; Noguchi, M.; Naridomi, T.; Kikuhara, K.; Kansako, M.; Fujikawa, T. Characterization of biovar 3 strains of Pseudomonas syringae pv. actinidiae isolated in Japan. Jpn. J. Phytopathol. 2015, 81, 111–126. [Google Scholar] [CrossRef] [Green Version]
- Fox, A. Renewed Fears as Psa Devastates European Orchards. Available online: http://www.stuff.co.nz/business/farming/5050782/Renewed-fears-as-PSA-devastates-European-orchards (accessed on 17 July 2020).
- Kim, G.H.; Kim, K.-H.; Son, K.I.; Choi, E.D.; Lee, Y.S.; Jung, J.S.; Koh, Y.J. Outbreak and spread of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 in Korea. Plant Pathol. J. 2016, 32, 545. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Kim, J.; Kim, G.H.; Choi, E.D.; Koh, Y.J.; Jung, J.S. Biovars of Pseudomonas syringae pv. actinidiae strains, the causal agent of bacterial canker of kiwifruit, isolated in Korea. Res. Plant Dis. 2017, 23, 35–41. [Google Scholar] [CrossRef]
- Poulter, R.T.M.; Ho, J.; Handley, T.; Taiaroa, G.; Butler, M.I. Comparison between complete genomes of an isolate of Pseudomonas syringae pv. actinidiae from Japan and a New Zealand isolate of the pandemic lineage. Sci. Rep. 2018, 8, 10915. [Google Scholar] [CrossRef] [Green Version]
- Cunty, A.; Cesbron, S.; Poliakoff, F.; Jacques, M.-A.; Manceau, C. Origin of the outbreak in France of Pseudomonas syringae pv. actinidiae biovar 3, the causal agent of bacterial canker of kiwifruit, revealed by a multilocus variable-number tandem-repeat analysis. Appl. Environ. Microbiol. 2015, 81, 6773–6789. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H.; Jung, J.S.; Koh, Y.J. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 2017, 33, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.; Taiaroa, G.; Butler, M.I.; Poulter, R.T.M. The Genome Sequence of M228, a Chinese Isolate of Pseudomonas syringae pv. actinidiae, Illustrates Insertion Sequence Element Mobility. Microbiol. Resour. Announc. 2019, 8, e01427-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariz-Ponte, N.; Gimranov, E.; Rego, R.; Moura, L.; Santos, C.; Tavares, F. Distinct phenotypic behaviours within a clonal population of Pseudomonas syringae pv. actinidiae. PLoS ONE 2022, 17, e0269343. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.S.; Kim, G.H.; Lee, Y.S.; Koh, Y.J.; Jung, J.S. Molecular characteristics of Pseudomonas syringae pv. actinidiae strains isolated in Korea and a multiplex PCR assay for haplotype differentiation. Plant Pathol. J. 2014, 30, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Huang, Q.; Zhao, Z.; Han, Q.; Ke, X.; Qin, H.; Huang, L. Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-labeled strain. PLoS ONE 2016, 11, e0151169. [Google Scholar] [CrossRef] [PubMed]
- Purahong, W.; Orrù, L.; Donati, I.; Perpetuini, G.; Cellini, A.; Lamontanara, A.; Michelotti, V.; Tacconi, G.; Spinelli, F. Plant microbiome and its link to plant health: Host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Front. Plant Sci. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, H.C.; Li, L.; Liu, Y.; Li, D.; Pan, H.; Zhong, C.; Rikkerink, E.H.; Templeton, M.D.; Straub, C.; Colombi, E. Origin and evolution of the kiwifruit canker pandemic. Genome Biol. Evol. 2017, 9, 932–944. [Google Scholar] [CrossRef] [Green Version]
- Loreti, S.; Cunty, A.; Pucci, N.; Chabirand, A.; Stefani, E.; Abelleira, A.; Balestra, G.M.; Cornish, D.A.; Gaffuri, F.; Giovanardi, D. Performance of diagnostic tests for the detection and identification of Pseudomonas syringae pv. actinidiae (Psa) from woody samples. Eur. J. Plant Pathol. 2018, 152, 657–676. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Ding, Z.; Pan, X.; Wei, G.; Wang, P.; Liu, L. Evaluation of the Abilities of Three Kinds of Copper-Based Nanoparticles to Control Kiwifruit Bacterial Canker. Antibiotics 2022, 11, 891. [Google Scholar] [CrossRef]
- Colombi, E.; Straub, C.; Künzel, S.; Templeton, M.D.; McCann, H.C.; Rainey, P.B. Evolution of Copper Resistance in the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae through Acquisition of Integrative Conjugative Elements and Plasmids. Environ. Microbiol. 2017, 19, 819–832. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, G.H.; Song, Y.-R.; Oh, C.-S.; Koh, Y.J.; Jung, J.S. Streptomycin Resistant Isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 2020, 26, 44–47. [Google Scholar] [CrossRef]
- Froud, K.J. Kiwifruit Bacterial Canker in ‘Hayward’ Kiwifruit: The Application of Observational Study Design and Epidemiological Techniques to the Study of Disease Outbreaks Affecting Plant Health: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Veterinary Epidemiology, Institute of Veterinary, Animal and Biomedical Sciences at Massey University, Manawatu, New Zealand; Massey University: Manawatu, New Zealand, 2017. [Google Scholar]
- De Jong, H.; Reglinski, T.; Elmer, P.A.G.; Wurms, K.; Vanneste, J.L.; Guo, L.F.; Alavi, M. Integrated Use of Aureobasidium Pullulans Strain CG163 and Acibenzolar-S-Methyl for Management of Bacterial Canker in Kiwifruit. Plants 2019, 8, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.M.; Li, J.W.; Ye, K.Y.; Liu, P.P.; Gong, H.J.; Jiang, Q.S.; Qi, B.B.; Mo, Q.H. An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae. Plant Pathol. J. 2019, 35, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I.; Kim, D.-R.; Kwak, Y.-S. Screening of Antibacterial Lichen Extract and Streptomyces against Kiwifruit Bacterial Canker Pathogen, Pseudomonas syringae pv. actinidiae. Korean J. Pestic. Sci. 2021, 25, 221–229. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, D.-R.; Kwak, Y.-S. Characteristics of Streptomyces venezuelae 1-1 9D Strain against Kiwifruit Bacterial Canker Pathogen. Korean J. Pestic. Sci. 2022, 26, 9–15. [Google Scholar] [CrossRef]
- Ali, M.A.; Luo, J.; Ahmed, T.; Zhang, J.; Xie, T.; Dai, D.; Jiang, J.; Zhu, J.; Hassan, S.; Alorabi, J.A. Pseudomonas bijieensis Strain XL17 within the P. corrugata Subgroup Producing 2, 4-Diacetylphloroglucinol and Lipopeptides Controls Bacterial Canker and Gray Mold Pathogens of Kiwifruit. Microorganisms 2022, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Biondi, E.; Gallipoli, L.; Mazzaglia, A.; Fuentealba, S.P.; Kuzmanović, N.; Bertaccini, A.; Balestra, G. Bacillus-based products for management of kiwifruit bacterial canker. Phytopathol. Mediterr. 2021, 60, 215–228. [Google Scholar] [CrossRef]
- Frampton, R.A.; Pitman, A.R.; Fineran, P.C. Advances in Bacteriophage-Mediated Control of Plant Pathogens. Int. J. Microbiol. 2012, 2012, 326452. [Google Scholar] [CrossRef] [Green Version]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Ni, P.E.; Deng, B.; Wang, S.; Xu, W.; Wang, D. Isolation and characterisation of phages against Pseudomonas syringae pv. actinidiae. Acta Agric. Scand. B Soil Plant Sci. 2019, 69, 199–208. [Google Scholar]
- Liu, Y.; Liu, M.; Hu, R.; Bai, J.; He, X.; Jin, Y. Isolation of the Novel Phage PHB09 and Its Potential Use against the Plant Pathogen Pseudomonas syringae pv. actinidiae. Viruses 2021, 13, 2275. [Google Scholar] [CrossRef]
- Zhang, M.; Qian, J.; Xu, X.; Ahmed, T.; Yang, Y.; Yan, C.; Elsharkawy, M.M.; Hassan, M.M.; Alorabi, J.A.; Chen, J. Resistance of Xanthomonas oryzae pv. oryzae to Lytic Phage X2 by Spontaneous Mutation of Lipopolysaccharide Synthesis-Related Glycosyltransferase. Viruses 2022, 14, 1088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, Y.; Chen, J.; Hong, X.; Xu, X.; Wu, Z.; Ahmed, T.; Loh, B.; Leptihn, S.; Hassan, S. Identification and Characterization of a New Type of Holin-Endolysin Lysis Cassette in Acidovorax oryzae Phage AP1. Viruses 2022, 14, 167. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, Y.; Liu, M.; Luo, S.; Cheng, Y.; Li, G.; Liu, C.; Wen, S.; Xia, M.; He, X. Application of phage therapy against red-fleshed kiwifruit canker. Biol. Control 2022, 169, 104893. [Google Scholar] [CrossRef]
- Ni, P.; Wang, L.; Deng, B.; Jiu, S.; Ma, C.; Zhang, C.; Almeida, A.; Wang, D.; Xu, W.; Wang, S. Combined application of bacteriophages and carvacrol in the control of Pseudomonas syringae pv. actinidiae planktonic and biofilm forms. Microorganisms 2020, 8, 837. [Google Scholar] [CrossRef]
- Ni, P.; Wang, L.; Deng, B.; Jiu, S.; Ma, C.; Zhang, C.; Almeida, A.; Wang, D.; Xu, W.; Wang, S. Characterization of a lytic bacteriophage against Pseudomonas syringae pv. actinidiae and its endolysin. Viruses 2021, 13, 631. [Google Scholar] [CrossRef]
- Flores, O.; Retamales, J.; Núñez, M.; León, M.; Salinas, P.; Besoain, X.; Yañez, C.; Bastías, R. Characterization of bacteriophages against Pseudomonas syringae pv. actinidiae with potential use as natural antimicrobials in kiwifruit plants. Microorganisms 2020, 8, 974. [Google Scholar] [CrossRef]
- Frampton, R.A.; Taylor, C.; Holguín Moreno, A.V.; Visnovsky, S.B.; Petty, N.K.; Pitman, A.R.; Fineran, P.C. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 2014, 80, 2216–2228. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.-G.; Lim, J.-A.; Song, Y.-R.; Heu, S.; Kim, G.H.; Koh, Y.J.; Oh, C.-S. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Appl. Microbiol. Biotechnol. 2016, 26, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Di Lallo, G.; Evangelisti, M.; Mancuso, F.; Ferrante, P.; Marcelletti, S.; Tinari, A.; Superti, F.; Migliore, L.; D’Addabbo, P.; Frezza, D. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J. Basic Microbiol. 2014, 54, 1210–1221. [Google Scholar] [CrossRef] [Green Version]
- Martino, G.; Holtappels, D.; Vallino, M.; Chiapello, M.; Turina, M.; Lavigne, R.; Wagemans, J.; Ciuffo, M. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy. Viruses 2021, 13, 2083. [Google Scholar] [CrossRef]
- Park, J.; Lim, J.-A.; Yu, J.-G.; Oh, C.-S. Genomic features and lytic activity of the bacteriophage PPPL-1 effective against Pseudomonas syringae pv. actinidiae, a cause of bacterial canker in kiwifruit. J. Microbiol. Biotechnol. 2018, 28, 1542–1546. [Google Scholar] [CrossRef]
- Adriaenssens, E.M.; Sullivan, M.B.; Knezevic, P.; van Zyl, L.J.; Sarkar, B.L.; Dutilh, B.E.; Alfenas-Zerbini, P.; Łobocka, M.; Tong, Y.; Brister, J.R.; et al. Taxonomy of prokaryotic viruses: 2018–2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Arch. Virol. 2020, 165, 1253–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grace, E.R.; Rabiey, M.; Friman, V.P.; Jackson, R.W. Seeing the forest for the trees: Use of phages to treat bacterial tree diseases. Plant Pathol. 2021, 70, 1987–2004. [Google Scholar] [CrossRef]
- Pinheiro, L.A.; Pereira, C.; Frazão, C.; Balcão, V.M.; Almeida, A. Efficiency of phage φ6 for biocontrol of Pseudomonas syringae pv. syringae: An in vitro preliminary study. Microorganisms 2019, 7, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, L.A.; Pereira, C.; Barreal, M.E.; Gallego, P.P.; Balcão, V.M.; Almeida, A. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Appl. Microbiol. Biotechnol. 2020, 104, 1319–1330. [Google Scholar] [CrossRef]
- Wojtus, J.K.; Frampton, R.A.; Warring, S.; Hendrickson, H.; Fineran, P.C. Genome sequence of a jumbo bacteriophage that infects the kiwifruit phytopathogen Pseudomonas syringae pv. actinidiae. Microbiol. Resour. Announc. 2019, 8, e00224-19. [Google Scholar] [CrossRef] [Green Version]
- Frampton, R.A.; Lopez Acedo, E.; Young, V.L.; Chen, D.; Tong, B.; Taylor, C.; Easingwood, R.A.; Pitman, A.R.; Kleffmann, T.; Bostina, M. Genome, proteome and structure of a T7-like bacteriophage of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2015, 7, 3361–3379. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Xu, X.; Ahmed, T.; Yang, Y.; Loh, B.; Leptihn, S.; Yan, C.; Chen, J.; Li, B. The holin-endolysin lysis system of the OP2-Like phage X2 infecting Xanthomonas oryzae pv. oryzae. Viruses 2021, 13, 1949. [Google Scholar] [CrossRef]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.B.; Vallad, G.E.; Iriarte, F.B.; Obradović, A.; Wernsing, M.H.; Jackson, L.E.; Balogh, B.; Hong, J.C.; Momol, M.T. Considerations for using bacteriophages for plant disease control. Bacteriophage 2012, 2, e23857. [Google Scholar] [CrossRef] [Green Version]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.; Garton, N.J.; Stapley, A.G.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.S.; Karmakar, S.; Kumar, P.; Mishra, V. Application of filamentous phages in environment: A tectonic shift in the science and practice of ecorestoration. Ecol. Evol. 2019, 9, 2263–2304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulugeta, B.; Tesfaye, S.; Tesfaye, W. Bacteriophages and phage products: Applications in medicine and biotechnological industries, and general concerns. Sci. Res. Essays 2018, 13, 55–70. [Google Scholar] [CrossRef]
- Harada, L.K.; Silva, E.C.; Campos, W.F.; Del Fiol, F.S.; Vila, M.; Dąbrowska, K.; Krylov, V.N.; Balcão, V.M. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res. 2018, 212, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Iriarte, F.B.; Obradović, A.; Wernsing, M.H.; Jackson, L.E.; Balogh, B.; Hong, J.A.; Momol, M.T.; Jones, J.B.; Vallad, G.E. Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: Two possible strategies for improving bacteriophage persistence for plant disease control. Bacteriophage 2012, 2, e23530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żaczek, M.; Weber-Dąbrowska, B.; Górski, A. Phages in the global fruit and vegetable industry. J. Appl. Microbiol. 2015, 118, 537–556. [Google Scholar] [CrossRef]
- Song, Y.R.; Vu, N.T.; Park, J.; Hwang, I.S.; Jeong, H.J.; Cho, Y.S.; Oh, C.S. Phage PPPL-1, a new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in Kiwifruit. Antibiotics 2021, 10, 554. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Abedon, S.T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, S.; Liu, Q.; Mai, G.; Yang, J.; Deng, D.; Zhang, B.; Liu, C.; Ma, Y. In Vitro Design and Evaluation of Phage Cocktails Against Aeromonas salmonicida. Front. Microbiol. 2018, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Chibani-Chennoufi, S.; Bruttin, A.; Dillmann, M.-L.; Brussow, H. Phage-host interaction: An ecological perspective. J. Bacteriol. 2004, 186, 3677–3686. [Google Scholar] [CrossRef] [Green Version]
- Garcia, P.; Martinez, B.; Obeso, J.; Rodriguez, A. Bacteriophages and their application in food safety. Lett. Appl. Microbiol. 2008, 47, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.; Frezza, D.; Di Lallo, G.; Visconti, S. A phage therapy model for the prevention of Pseudomonas syringae pv. actinidiae infection of kiwifruit plants. Plant Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sieiro, C.; Areal-Hermida, L.; Pichardo-Gallardo, Á.; Almuiña-González, R.; De Miguel, T.; Sánchez, S.; Sánchez-Pérez, Á.; Villa, T.G. A hundred years of bacteriophages: Can phages replace antibiotics in agriculture and aquaculture? Antibiotics 2020, 9, 493. [Google Scholar] [CrossRef]
- Warring, S.L.; Malone, L.M.; Jayaraman, J.; Easingwood, R.A.; Rigano, L.A.; Frampton, R.A.; Visnovsky, S.B.; Addison, S.M.; Hernandez, L.; Pitman, A.R. A lipopolysaccharide-dependent phage infects a pseudomonad phytopathogen and can evolve to evade phage resistance. Environ. Microbiol. 2022, 24, 4834–4852. [Google Scholar] [CrossRef] [PubMed]
- Tabare, E.; Glonti, T.; Cochez, C.; Ngassam, C.; Pirnay, J.P.; Amighi, K.; Goole, J. A Design of Experiment Approach to Optimize Spray-Dried Powders Containing Pseudomonas aeruginosa Podoviridae and Myoviridae Bacteriophages. Viruses 2021, 13, 1926. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Xia, H.; Zhong, C.; Li, L.; Zeng, C. Genomic characterization of two nickie-like bacteriophages that infect the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Arch. Virol. 2022, 167, 1713–1715. [Google Scholar] [CrossRef]
- Altamirano, F.L.G.; Barr, J.J. Unlocking the next generation of phage therapy: The key is in the receptors. Curr. Opin. Biotechnol. 2021, 68, 115–123. [Google Scholar] [CrossRef]
- Fong, K.; Wong, C.W.; Wang, S.; Delaquis, P. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. Ther. Applic Res. 2021, 2, 83–91. [Google Scholar] [CrossRef]
Phage Name | Region | Classification | Head Size (nm) | Total Length (nm) | References |
---|---|---|---|---|---|
φxwy0013 | Shanghai, China | Siphovirus | 73 | 252 | [41] |
φxwy0014 | Shanghai, China | Myovirus | 70 | 193 | [41] |
φxwy0026 | Shanghai, China | Podovirus | 80 | 102 | [41] |
CHF1,4,7,9–10,15–19,21,30,33 | Chilean | Podovirus | 60 | / | [48] |
ΦPsa1,21,267,268,281,292,300,315–317,331,343,347,374,375,381,386,393,394,397,410,440 | New Zealand | Myovirus | 67.1–126.1 | 167.7–293.1 | [49] |
ΦPsa17 | New Zealand | T7-like Podovirus | 55.9 | 55.9 | [49] |
ΦPsa173 | New Zealand | Siphovirus | 77.5 | 252.8 | [49] |
KHUΦ34 | Korea | Myovirus | 90 | 231 | [50] |
KHUΦ38 | Korea | Podovirus | 70 | 90 | [50] |
KHUΦ44 | Korea | Myovirus | 90 | 220 | [50] |
KHUΦ59 | Korea | Podovirus | 69 | 87 | [50] |
KHUΦ74 | Korea | Podovirus | 66 | 88 | [50] |
PHB09 | Sichuan, China | New Myovirus | 55.2 | 145 | [42] |
phiPSA1 | Italy | Siphovirus | 60 | 200 | [51] |
phiPSA2 (φPSA2) | Italy | Podovirus | 60 | / | [51] |
PsageK4,K4e,A1,A2 | Northern Italy | Myovirus | 72 | 125 | [52] |
PsageK9,B1,B2 | Northern Italy | Siphovirus | 78 | 176 | [52] |
PN05 | Zhejiang, China | Myovirus | / | / | [46] |
PN09 | Zhejiang, China | Myovirus | 77.5 | 187.8 | [46] |
Φ6 | DSMZ, Germany | Cystovirus | / | / | [56,57] |
PPPL-1 | South Korea | Podovirus | / | / | [53] |
φPsa21 | Jambo phage | Myovirus | / | / | [58] |
Phages | Lytic/Lysogenic | Latent Period | Rise Period | Burst Size (PFU/Host Cell) | References |
---|---|---|---|---|---|
φXWY0013 | lytic | 20 min | 35 min | 100 | [41] |
φXWY0014 | lytic | 15 min | 35 min | 200 | [41] |
φXWY0026 | lytic | 30 min | 50 min | 170 | [41] |
PN09 | lytic | 20 min | 100 min | 51.3 | [47] |
fPSA1 | lysogenic | 100 min | 50 min | 178 | [51] |
fPSA2 | lytic | 15 min | 15 min | 92 | [51] |
Φ6 | lytic | 100 min | 20 min | 60 | [56,57] |
PHB09 | lytic | 60 min | 40 min | 182 | [42] |
Phage | Lytic/Lysogenic | Number of Genes | Size | G+C | References |
---|---|---|---|---|---|
PHB09 | lytic | 186 predicted genes, no tRNAs | 94,844 bp | 57.61% | [42] |
PN09 | lytic | 177 predicted genes, nine tRNAs | 99,229 bp | 48.16% | [47] |
fPSA1 | lysogenic | 52 predicted genes | 51,090 bp | 58.5% | [51] |
fPSA2 | lytic | 47 predicted genes | 40,472 bp | 57.4% | [51] |
psageA1 | lytic | 176 predicted genes, 14 tRNAs | 98,780 bp | 48.79% | [52] |
psageB2 | lysogenic | 77 predicted genes, no tRNAs | 50 kb | 58.51% | [52] |
PsageK4 | lytic | 179 predicted genes, 18 tRNAs | 98,440 bp | 60.44% | [52] |
psageB1 | lytic | 161 predicted genes, 4 tRNAs | 112,269 bp | 56.47% | [52] |
φPsa17 | lytic | 49 predicted genes, no tRNAs | 40,525 bp | 57% | [49,59] |
φPsa374, | lytic | 11 tRNAs | / | 47.4% | [59] |
Psa21 | lytic, jumbo | 420 predicted genes, 8 tRNAs | 305,260 bp | 43.1% | [49,58] |
CHF1,7,19,21 | lytic | 48 predicted genes | 40,557–40,999 bp | near 57% | [48] |
phage φ6 | lytic | / | / | / | [56] |
φPsa173 | lytic | / | ~110 kb | / | [49] |
φPsa1,267,268,281,292,300,315–317,331,343,347,375,381,386,393,394,397,410,440 | lytic | / | ~95 kb | / | [49] |
φPsa374 | lytic | 173 predicted genes, 11 tRNAs | 97,761 bp | 47.4% | [49] |
Phage Name | Accession Number | Terminase Acc No. | Genome Length (Kb) | GC Content (%) | Gene Numbers | Morphotype | Countries |
---|---|---|---|---|---|---|---|
PN09 | MW175491 | QPB10483 | 99.299 | 48.16 | 177 | Myovirus | China |
CHF1 | MN729595 | / | 40.999 | 57.3 | 49 | Podovirus | Chilean |
CHF7 | MN729596 | / | 40.557 | 57.4 | 48 | Podovirus | Chilean |
CHF17 | MN729600 | / | 40.882 | 57.3 | 48 | Podovirus | Chilean |
CHF19 | MN729597 | / | 40.882 | 57.3 | 48 | Podovirus | Chilean |
CHF21 | MN729598 | / | 40.557 | 57.4 | 48 | Podovirus | Chilean |
CHF33 | MN729599 | / | 40.999 | 57.3 | 49 | Podovirus | Chilean |
ΦPsa267 | MT670417 | QNN99863 | 100.18 | 47.7 | 176 | Myovirus | New Zealand |
ΦPsa300 | MT670418 | QNO00040 | 99.27 | 47.7 | 171 | Myovirus | New Zealand |
ΦPsa315 | MT670419 | QNO00211 | 98.74 | 48.0 | 172 | Myovirus | New Zealand |
ΦPsa347 | MT670420 | QNO00383 | 99.69 | 47.7 | 174 | Myovirus | New Zealand |
ΦPsa374 | KJ409772 | AHJ87316 | 98.29 | 47.7 | 181 | Myovirus | New Zealand |
ΦPsa381 | MT670421 | QNO00557 | 98.8 | 47.8 | 173 | Myovirus | New Zealand |
ΦPsa397 | MT670422 | QNO00730 | 98.95 | 47.7 | 173 | Myovirus | New Zealand |
phiPsa17 | KR091952 | / | 40.53 | 57.3 | 49 | Podovirus | New Zealand |
psageA1 | MT740307 | QNR53853 | 98.78 | 48.8 | 174 | Myovirus | Italy |
psageB1 | MT354569 | QOC57867 | 112.27 | 56.5 | 169 | Siphovirus | Italy |
psageK4 | MZ348426 | QXV71718 | 98.44 | 60.4 | 197 | Myovirus | Italy |
psageB2 | MZ348425 | QXV71641 | 50.74 | 58.5 | 77 | Siphovirus | Italy |
phiPSA1 | KJ507100 | AHZ95062 | 51.09 | 58.5 | / | Siphovirus | Italy |
phiPSA2 | KJ507099 | / | 40.48 | 57.4 | / | Podovirus | Italy |
PHB09 | OK040171 | UAV84529 | 94.884 | 57.61 | 185 | New Myovirus | China |
PPPL-1 | KU064779 | / | 41.15 | 57.0 | 49 | Podovirus | South Korea |
psageK9 | MZ868718 | UAW53939 | 51.47 | 58.5 | 87 | Siphovirus | Northern Italy |
ZY21 | OM140839 | UIS24573 | 112.01 | 56.5 | 169 | Nickievirus | China |
hairong | OM223115 | UKL14915 | 112.842 | 55.1 | 173 | Nickievirus | China |
Temperature | pH | UV Irradiation and Solar Radiation | References |
---|---|---|---|
Most phages grow well at 4–25 °C | / | UV light affect phage stability | [49] |
Five phages survive at 40 °C (1 h), reduce at 50 °C, inactivate at 60 °C | Most of the phages, survive at pH 3–11 (1 h), inactivated at pH 12 | Most of the phages keep activity under 365 nm UV, reduced by >50% under 306 nm UV (60 min) | [50] |
Phage PPPL-1 survive up to 40 °C | Can survive at pH 3–11 | Can survive under UV-A | [53] |
Phage φXWY0013, 0014 and 0026 survive at 25–60 °C, with optimum at 25–40 °C, inactivated at 70 °C | Can survive at pH 2–12 | / | [41] |
The majority of 13 phages survive at 37, 18, and 4 °C (1 h) | some phages were sensitive to pH 4 and 5, while other phages can endure these pHs | Most phages were sensitive to solar radiation (30 or 60 min) while some phages can endure. | [48] |
PN09 was stable at 25–35 °C, a relatively strong activity at 45 °C, low activity at 55 °C, completely inactivated at 65 °C. | Survive well at pH 6.0–9.0, and could remain relatively high activity above a pH of 9.0. | / | [47] |
Most phages can be stored successfully at 4 °C, and survival well at ambient temperature (25 °C). | / | / | [49] |
Phage PHB09 can survive at 4–37 °C (12 h), decreased significantly at 37 °C and 50 °C (6 h) | Survive at pH 3–11 (1 h), significantly reduced at pH 3 and 11 | Relatively high UV stability (0–60 min), with the increase of exposure time, the phage titers gradually decreased | [42] |
Phage φ6 survive at 15 and 25 °C, completely inactivated at 37 °C (6 d) | Survive at 5 < pH < 10, the optimum pH is 6–8 | The abundance of phage particles decreased when exposed to UV and solar radiation. | [46,56] |
All phages showed a comparable titer at 4 °C, 26 °C and 37 °C (1 h), however, at 55 °C, some phages inactivated, while others remained stable and reduced activity | All phages could survive at pH 4–10 (18 h), but the lytic capacity was markedly decreased when expose to pH 2 | The number of phages was reduced when exposure to UV-C irradiation (10 min), in most cases, the phage particles were completely inactivated (2 h) | [52] |
fPSA1 and fPSA2 are viable when exposed to 40 °C (60 min), remain about 80% of viability at 50 °C (60 min); rapidly reduced at 60 °C and inactivated when exposure to 60 °C (40 min) | No reduction in lytic activity at pH 5–9 (1 h); the reduced activity at pH 10.0 and 11; and almost inactivated at pH 2 and 3 | / | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Dai, D.; Lv, L.; Ahmed, T.; Chen, L.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2022, 14, 2704. https://doi.org/10.3390/v14122704
Luo J, Dai D, Lv L, Ahmed T, Chen L, Wang Y, An Q, Sun G, Li B. Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses. 2022; 14(12):2704. https://doi.org/10.3390/v14122704
Chicago/Turabian StyleLuo, Jinyan, Dejiang Dai, Luqiong Lv, Temoor Ahmed, Lei Chen, Yanli Wang, Qianli An, Guochang Sun, and Bin Li. 2022. "Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae" Viruses 14, no. 12: 2704. https://doi.org/10.3390/v14122704
APA StyleLuo, J., Dai, D., Lv, L., Ahmed, T., Chen, L., Wang, Y., An, Q., Sun, G., & Li, B. (2022). Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses, 14(12), 2704. https://doi.org/10.3390/v14122704